Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
gbrfs - gbrfs: iterative refinement
SYNOPSIS
Functions subroutine cgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info) CGBRFS subroutine dgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info) DGBRFS subroutine sgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info) SGBRFS subroutine zgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info) ZGBRFS
Detailed Description
Function Documentation
subroutine cgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info) CGBRFS Purpose: CGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution. Parameters TRANS TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) N N is INTEGER The order of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AB AB is COMPLEX array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1. AFB AFB is COMPLEX array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by CGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. LDAFB LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. IPIV IPIV is INTEGER array, dimension (N) The pivot indices from CGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B B is COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is COMPLEX array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by CGBTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is COMPLEX array, dimension (2*N) RWORK RWORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info) DGBRFS Purpose: DGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution. Parameters TRANS TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose) N N is INTEGER The order of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AB AB is DOUBLE PRECISION array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1. AFB AFB is DOUBLE PRECISION array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by DGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. LDAFB LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. IPIV IPIV is INTEGER array, dimension (N) The pivot indices from DGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DGBTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is DOUBLE PRECISION array, dimension (3*N) IWORK IWORK is INTEGER array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine sgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info) SGBRFS Purpose: SGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution. Parameters TRANS TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose) N N is INTEGER The order of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AB AB is REAL array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1. AFB AFB is REAL array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by SGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. LDAFB LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. IPIV IPIV is INTEGER array, dimension (N) The pivot indices from SGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B B is REAL array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is REAL array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by SGBTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is REAL array, dimension (3*N) IWORK IWORK is INTEGER array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info) ZGBRFS Purpose: ZGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution. Parameters TRANS TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) N N is INTEGER The order of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AB AB is COMPLEX*16 array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1. AFB AFB is COMPLEX*16 array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by ZGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. LDAFB LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. IPIV IPIV is INTEGER array, dimension (N) The pivot indices from ZGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZGBTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is COMPLEX*16 array, dimension (2*N) RWORK RWORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.