Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       gbrfs - gbrfs: iterative refinement

SYNOPSIS

   Functions
       subroutine cgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
           ferr, berr, work, rwork, info)
           CGBRFS
       subroutine dgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
           ferr, berr, work, iwork, info)
           DGBRFS
       subroutine sgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
           ferr, berr, work, iwork, info)
           SGBRFS
       subroutine zgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
           ferr, berr, work, rwork, info)
           ZGBRFS

Detailed Description

Function Documentation

   subroutine cgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, complex,
       dimension( ldab, * ) ab, integer ldab, complex, dimension( ldafb, * ) afb, integer ldafb,
       integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex,
       dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr,
       complex, dimension( * ) work, real, dimension( * ) rwork, integer info)
       CGBRFS

       Purpose:

            CGBRFS improves the computed solution to a system of linear
            equations when the coefficient matrix is banded, and provides
            error bounds and backward error estimates for the solution.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations:
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           AB

                     AB is COMPLEX array, dimension (LDAB,N)
                     The original band matrix A, stored in rows 1 to KL+KU+1.
                     The j-th column of A is stored in the j-th column of the
                     array AB as follows:
                     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KL+KU+1.

           AFB

                     AFB is COMPLEX array, dimension (LDAFB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by CGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAFB

                     LDAFB is INTEGER
                     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices from CGBTRF; for 1<=i<=N, row i of the
                     matrix was interchanged with row IPIV(i).

           B

                     B is COMPLEX array, dimension (LDB,NRHS)
                     The right hand side matrix B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is COMPLEX array, dimension (LDX,NRHS)
                     On entry, the solution matrix X, as computed by CGBTRS.
                     On exit, the improved solution matrix X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           FERR

                     FERR is REAL array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is REAL array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is COMPLEX array, dimension (2*N)

           RWORK

                     RWORK is REAL array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Internal Parameters:

             ITMAX is the maximum number of steps of iterative refinement.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, double
       precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldafb, * )
       afb, integer ldafb, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b,
       integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision,
       dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( *
       ) work, integer, dimension( * ) iwork, integer info)
       DGBRFS

       Purpose:

            DGBRFS improves the computed solution to a system of linear
            equations when the coefficient matrix is banded, and provides
            error bounds and backward error estimates for the solution.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations:
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose = Transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           AB

                     AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     The original band matrix A, stored in rows 1 to KL+KU+1.
                     The j-th column of A is stored in the j-th column of the
                     array AB as follows:
                     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KL+KU+1.

           AFB

                     AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by DGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAFB

                     LDAFB is INTEGER
                     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices from DGBTRF; for 1<=i<=N, row i of the
                     matrix was interchanged with row IPIV(i).

           B

                     B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     The right hand side matrix B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                     On entry, the solution matrix X, as computed by DGBTRS.
                     On exit, the improved solution matrix X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           FERR

                     FERR is DOUBLE PRECISION array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is DOUBLE PRECISION array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (3*N)

           IWORK

                     IWORK is INTEGER array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Internal Parameters:

             ITMAX is the maximum number of steps of iterative refinement.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, real,
       dimension( ldab, * ) ab, integer ldab, real, dimension( ldafb, * ) afb, integer ldafb,
       integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension(
       ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real,
       dimension( * ) work, integer, dimension( * ) iwork, integer info)
       SGBRFS

       Purpose:

            SGBRFS improves the computed solution to a system of linear
            equations when the coefficient matrix is banded, and provides
            error bounds and backward error estimates for the solution.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations:
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose = Transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           AB

                     AB is REAL array, dimension (LDAB,N)
                     The original band matrix A, stored in rows 1 to KL+KU+1.
                     The j-th column of A is stored in the j-th column of the
                     array AB as follows:
                     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KL+KU+1.

           AFB

                     AFB is REAL array, dimension (LDAFB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by SGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAFB

                     LDAFB is INTEGER
                     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices from SGBTRF; for 1<=i<=N, row i of the
                     matrix was interchanged with row IPIV(i).

           B

                     B is REAL array, dimension (LDB,NRHS)
                     The right hand side matrix B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is REAL array, dimension (LDX,NRHS)
                     On entry, the solution matrix X, as computed by SGBTRS.
                     On exit, the improved solution matrix X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           FERR

                     FERR is REAL array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is REAL array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is REAL array, dimension (3*N)

           IWORK

                     IWORK is INTEGER array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Internal Parameters:

             ITMAX is the maximum number of steps of iterative refinement.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs,
       complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldafb, * ) afb,
       integer ldafb, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer
       ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * )
       ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double
       precision, dimension( * ) rwork, integer info)
       ZGBRFS

       Purpose:

            ZGBRFS improves the computed solution to a system of linear
            equations when the coefficient matrix is banded, and provides
            error bounds and backward error estimates for the solution.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations:
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           AB

                     AB is COMPLEX*16 array, dimension (LDAB,N)
                     The original band matrix A, stored in rows 1 to KL+KU+1.
                     The j-th column of A is stored in the j-th column of the
                     array AB as follows:
                     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KL+KU+1.

           AFB

                     AFB is COMPLEX*16 array, dimension (LDAFB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by ZGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAFB

                     LDAFB is INTEGER
                     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
                     matrix was interchanged with row IPIV(i).

           B

                     B is COMPLEX*16 array, dimension (LDB,NRHS)
                     The right hand side matrix B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is COMPLEX*16 array, dimension (LDX,NRHS)
                     On entry, the solution matrix X, as computed by ZGBTRS.
                     On exit, the improved solution matrix X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           FERR

                     FERR is DOUBLE PRECISION array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is DOUBLE PRECISION array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is COMPLEX*16 array, dimension (2*N)

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Internal Parameters:

             ITMAX is the maximum number of steps of iterative refinement.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.