Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       ggglm - ggglm: Gauss-Markov linear model

SYNOPSIS

   Functions
       subroutine cggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
           CGGGLM
       subroutine dggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
           DGGGLM
       subroutine sggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
           SGGGLM
       subroutine zggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
           ZGGGLM

Detailed Description

Function Documentation

   subroutine cggglm (integer n, integer m, integer p, complex, dimension( lda, * ) a, integer
       lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) d, complex,
       dimension( * ) x, complex, dimension( * ) y, complex, dimension( * ) work, integer lwork,
       integer info)
       CGGGLM

       Purpose:

            CGGGLM solves a general Gauss-Markov linear model (GLM) problem:

                    minimize || y ||_2   subject to   d = A*x + B*y
                        x

            where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
            given N-vector. It is assumed that M <= N <= M+P, and

                       rank(A) = M    and    rank( A B ) = N.

            Under these assumptions, the constrained equation is always
            consistent, and there is a unique solution x and a minimal 2-norm
            solution y, which is obtained using a generalized QR factorization
            of the matrices (A, B) given by

               A = Q*(R),   B = Q*T*Z.
                     (0)

            In particular, if matrix B is square nonsingular, then the problem
            GLM is equivalent to the following weighted linear least squares
            problem

                         minimize || inv(B)*(d-A*x) ||_2
                             x

            where inv(B) denotes the inverse of B.

       Parameters
           N

                     N is INTEGER
                     The number of rows of the matrices A and B.  N >= 0.

           M

                     M is INTEGER
                     The number of columns of the matrix A.  0 <= M <= N.

           P

                     P is INTEGER
                     The number of columns of the matrix B.  P >= N-M.

           A

                     A is COMPLEX array, dimension (LDA,M)
                     On entry, the N-by-M matrix A.
                     On exit, the upper triangular part of the array A contains
                     the M-by-M upper triangular matrix R.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,N).

           B

                     B is COMPLEX array, dimension (LDB,P)
                     On entry, the N-by-P matrix B.
                     On exit, if N <= P, the upper triangle of the subarray
                     B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
                     if N > P, the elements on and above the (N-P)th subdiagonal
                     contain the N-by-P upper trapezoidal matrix T.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B. LDB >= max(1,N).

           D

                     D is COMPLEX array, dimension (N)
                     On entry, D is the left hand side of the GLM equation.
                     On exit, D is destroyed.

           X

                     X is COMPLEX array, dimension (M)

           Y

                     Y is COMPLEX array, dimension (P)

                     On exit, X and Y are the solutions of the GLM problem.

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N+M+P).
                     For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
                     where NB is an upper bound for the optimal blocksizes for
                     CGEQRF, CGERQF, CUNMQR and CUNMRQ.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     = 1:  the upper triangular factor R associated with A in the
                           generalized QR factorization of the pair (A, B) is
                           singular, so that rank(A) < M; the least squares
                           solution could not be computed.
                     = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
                           factor T associated with B in the generalized QR
                           factorization of the pair (A, B) is singular, so that
                           rank( A B ) < N; the least squares solution could not
                           be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dggglm (integer n, integer m, integer p, double precision, dimension( lda, * ) a,
       integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision,
       dimension( * ) d, double precision, dimension( * ) x, double precision, dimension( * ) y,
       double precision, dimension( * ) work, integer lwork, integer info)
       DGGGLM

       Purpose:

            DGGGLM solves a general Gauss-Markov linear model (GLM) problem:

                    minimize || y ||_2   subject to   d = A*x + B*y
                        x

            where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
            given N-vector. It is assumed that M <= N <= M+P, and

                       rank(A) = M    and    rank( A B ) = N.

            Under these assumptions, the constrained equation is always
            consistent, and there is a unique solution x and a minimal 2-norm
            solution y, which is obtained using a generalized QR factorization
            of the matrices (A, B) given by

               A = Q*(R),   B = Q*T*Z.
                     (0)

            In particular, if matrix B is square nonsingular, then the problem
            GLM is equivalent to the following weighted linear least squares
            problem

                         minimize || inv(B)*(d-A*x) ||_2
                             x

            where inv(B) denotes the inverse of B.

       Parameters
           N

                     N is INTEGER
                     The number of rows of the matrices A and B.  N >= 0.

           M

                     M is INTEGER
                     The number of columns of the matrix A.  0 <= M <= N.

           P

                     P is INTEGER
                     The number of columns of the matrix B.  P >= N-M.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,M)
                     On entry, the N-by-M matrix A.
                     On exit, the upper triangular part of the array A contains
                     the M-by-M upper triangular matrix R.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,N).

           B

                     B is DOUBLE PRECISION array, dimension (LDB,P)
                     On entry, the N-by-P matrix B.
                     On exit, if N <= P, the upper triangle of the subarray
                     B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
                     if N > P, the elements on and above the (N-P)th subdiagonal
                     contain the N-by-P upper trapezoidal matrix T.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B. LDB >= max(1,N).

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     On entry, D is the left hand side of the GLM equation.
                     On exit, D is destroyed.

           X

                     X is DOUBLE PRECISION array, dimension (M)

           Y

                     Y is DOUBLE PRECISION array, dimension (P)

                     On exit, X and Y are the solutions of the GLM problem.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N+M+P).
                     For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
                     where NB is an upper bound for the optimal blocksizes for
                     DGEQRF, SGERQF, DORMQR and SORMRQ.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     = 1:  the upper triangular factor R associated with A in the
                           generalized QR factorization of the pair (A, B) is
                           singular, so that rank(A) < M; the least squares
                           solution could not be computed.
                     = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
                           factor T associated with B in the generalized QR
                           factorization of the pair (A, B) is singular, so that
                           rank( A B ) < N; the least squares solution could not
                           be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sggglm (integer n, integer m, integer p, real, dimension( lda, * ) a, integer lda,
       real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) d, real, dimension( * ) x,
       real, dimension( * ) y, real, dimension( * ) work, integer lwork, integer info)
       SGGGLM

       Purpose:

            SGGGLM solves a general Gauss-Markov linear model (GLM) problem:

                    minimize || y ||_2   subject to   d = A*x + B*y
                        x

            where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
            given N-vector. It is assumed that M <= N <= M+P, and

                       rank(A) = M    and    rank( A B ) = N.

            Under these assumptions, the constrained equation is always
            consistent, and there is a unique solution x and a minimal 2-norm
            solution y, which is obtained using a generalized QR factorization
            of the matrices (A, B) given by

               A = Q*(R),   B = Q*T*Z.
                     (0)

            In particular, if matrix B is square nonsingular, then the problem
            GLM is equivalent to the following weighted linear least squares
            problem

                         minimize || inv(B)*(d-A*x) ||_2
                             x

            where inv(B) denotes the inverse of B.

       Parameters
           N

                     N is INTEGER
                     The number of rows of the matrices A and B.  N >= 0.

           M

                     M is INTEGER
                     The number of columns of the matrix A.  0 <= M <= N.

           P

                     P is INTEGER
                     The number of columns of the matrix B.  P >= N-M.

           A

                     A is REAL array, dimension (LDA,M)
                     On entry, the N-by-M matrix A.
                     On exit, the upper triangular part of the array A contains
                     the M-by-M upper triangular matrix R.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,N).

           B

                     B is REAL array, dimension (LDB,P)
                     On entry, the N-by-P matrix B.
                     On exit, if N <= P, the upper triangle of the subarray
                     B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
                     if N > P, the elements on and above the (N-P)th subdiagonal
                     contain the N-by-P upper trapezoidal matrix T.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B. LDB >= max(1,N).

           D

                     D is REAL array, dimension (N)
                     On entry, D is the left hand side of the GLM equation.
                     On exit, D is destroyed.

           X

                     X is REAL array, dimension (M)

           Y

                     Y is REAL array, dimension (P)

                     On exit, X and Y are the solutions of the GLM problem.

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N+M+P).
                     For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
                     where NB is an upper bound for the optimal blocksizes for
                     SGEQRF, SGERQF, SORMQR and SORMRQ.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     = 1:  the upper triangular factor R associated with A in the
                           generalized QR factorization of the pair (A, B) is
                           singular, so that rank(A) < M; the least squares
                           solution could not be computed.
                     = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
                           factor T associated with B in the generalized QR
                           factorization of the pair (A, B) is singular, so that
                           rank( A B ) < N; the least squares solution could not
                           be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zggglm (integer n, integer m, integer p, complex*16, dimension( lda, * ) a, integer
       lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) d,
       complex*16, dimension( * ) x, complex*16, dimension( * ) y, complex*16, dimension( * )
       work, integer lwork, integer info)
       ZGGGLM

       Purpose:

            ZGGGLM solves a general Gauss-Markov linear model (GLM) problem:

                    minimize || y ||_2   subject to   d = A*x + B*y
                        x

            where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
            given N-vector. It is assumed that M <= N <= M+P, and

                       rank(A) = M    and    rank( A B ) = N.

            Under these assumptions, the constrained equation is always
            consistent, and there is a unique solution x and a minimal 2-norm
            solution y, which is obtained using a generalized QR factorization
            of the matrices (A, B) given by

               A = Q*(R),   B = Q*T*Z.
                     (0)

            In particular, if matrix B is square nonsingular, then the problem
            GLM is equivalent to the following weighted linear least squares
            problem

                         minimize || inv(B)*(d-A*x) ||_2
                             x

            where inv(B) denotes the inverse of B.

       Parameters
           N

                     N is INTEGER
                     The number of rows of the matrices A and B.  N >= 0.

           M

                     M is INTEGER
                     The number of columns of the matrix A.  0 <= M <= N.

           P

                     P is INTEGER
                     The number of columns of the matrix B.  P >= N-M.

           A

                     A is COMPLEX*16 array, dimension (LDA,M)
                     On entry, the N-by-M matrix A.
                     On exit, the upper triangular part of the array A contains
                     the M-by-M upper triangular matrix R.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,N).

           B

                     B is COMPLEX*16 array, dimension (LDB,P)
                     On entry, the N-by-P matrix B.
                     On exit, if N <= P, the upper triangle of the subarray
                     B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
                     if N > P, the elements on and above the (N-P)th subdiagonal
                     contain the N-by-P upper trapezoidal matrix T.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B. LDB >= max(1,N).

           D

                     D is COMPLEX*16 array, dimension (N)
                     On entry, D is the left hand side of the GLM equation.
                     On exit, D is destroyed.

           X

                     X is COMPLEX*16 array, dimension (M)

           Y

                     Y is COMPLEX*16 array, dimension (P)

                     On exit, X and Y are the solutions of the GLM problem.

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK. LWORK >= max(1,N+M+P).
                     For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
                     where NB is an upper bound for the optimal blocksizes for
                     ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     = 1:  the upper triangular factor R associated with A in the
                           generalized QR factorization of the pair (A, B) is
                           singular, so that rank(A) < M; the least squares
                           solution could not be computed.
                     = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
                           factor T associated with B in the generalized QR
                           factorization of the pair (A, B) is singular, so that
                           rank( A B ) < N; the least squares solution could not
                           be computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.