Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       hpgv - {hp,sp}gv: eig, QR iteration

SYNOPSIS

   Functions
       subroutine chpgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)
           CHPGV
       subroutine dspgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
           DSPGV
       subroutine sspgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
           SSPGV
       subroutine zhpgv (itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)
           ZHPGV

Detailed Description

Function Documentation

   subroutine chpgv (integer itype, character jobz, character uplo, integer n, complex,
       dimension( * ) ap, complex, dimension( * ) bp, real, dimension( * ) w, complex, dimension(
       ldz, * ) z, integer ldz, complex, dimension( * ) work, real, dimension( * ) rwork, integer
       info)
       CHPGV

       Purpose:

            CHPGV computes all the eigenvalues and, optionally, the eigenvectors
            of a complex generalized Hermitian-definite eigenproblem, of the form
            A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
            Here A and B are assumed to be Hermitian, stored in packed format,
            and B is also positive definite.

       Parameters
           ITYPE

                     ITYPE is INTEGER
                     Specifies the problem type to be solved:
                     = 1:  A*x = (lambda)*B*x
                     = 2:  A*B*x = (lambda)*x
                     = 3:  B*A*x = (lambda)*x

           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N

                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           AP

                     AP is COMPLEX array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the contents of AP are destroyed.

           BP

                     BP is COMPLEX array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     B, packed columnwise in a linear array.  The j-th column of B
                     is stored in the array BP as follows:
                     if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

                     On exit, the triangular factor U or L from the Cholesky
                     factorization B = U**H*U or B = L*L**H, in the same storage
                     format as B.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is COMPLEX array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     eigenvectors.  The eigenvectors are normalized as follows:
                     if ITYPE = 1 or 2, Z**H*B*Z = I;
                     if ITYPE = 3, Z**H*inv(B)*Z = I.
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is COMPLEX array, dimension (max(1, 2*N-1))

           RWORK

                     RWORK is REAL array, dimension (max(1, 3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  CPPTRF or CHPEV returned an error code:
                        <= N:  if INFO = i, CHPEV failed to converge;
                               i off-diagonal elements of an intermediate
                               tridiagonal form did not convergeto zero;
                        > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                               principal minor of order i of B is not positive.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dspgv (integer itype, character jobz, character uplo, integer n, double precision,
       dimension( * ) ap, double precision, dimension( * ) bp, double precision, dimension( * )
       w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * )
       work, integer info)
       DSPGV

       Purpose:

            DSPGV computes all the eigenvalues and, optionally, the eigenvectors
            of a real generalized symmetric-definite eigenproblem, of the form
            A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
            Here A and B are assumed to be symmetric, stored in packed format,
            and B is also positive definite.

       Parameters
           ITYPE

                     ITYPE is INTEGER
                     Specifies the problem type to be solved:
                     = 1:  A*x = (lambda)*B*x
                     = 2:  A*B*x = (lambda)*x
                     = 3:  B*A*x = (lambda)*x

           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N

                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           AP

                     AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the contents of AP are destroyed.

           BP

                     BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     B, packed columnwise in a linear array.  The j-th column of B
                     is stored in the array BP as follows:
                     if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

                     On exit, the triangular factor U or L from the Cholesky
                     factorization B = U**T*U or B = L*L**T, in the same storage
                     format as B.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is DOUBLE PRECISION array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     eigenvectors.  The eigenvectors are normalized as follows:
                     if ITYPE = 1 or 2, Z**T*B*Z = I;
                     if ITYPE = 3, Z**T*inv(B)*Z = I.
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (3*N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  DPPTRF or DSPEV returned an error code:
                        <= N:  if INFO = i, DSPEV failed to converge;
                               i off-diagonal elements of an intermediate
                               tridiagonal form did not converge to zero.
                        > N:   if INFO = n + i, for 1 <= i <= n, then the leading
                               principal minor of order i of B is not positive.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sspgv (integer itype, character jobz, character uplo, integer n, real, dimension( *
       ) ap, real, dimension( * ) bp, real, dimension( * ) w, real, dimension( ldz, * ) z,
       integer ldz, real, dimension( * ) work, integer info)
       SSPGV

       Purpose:

            SSPGV computes all the eigenvalues and, optionally, the eigenvectors
            of a real generalized symmetric-definite eigenproblem, of the form
            A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
            Here A and B are assumed to be symmetric, stored in packed format,
            and B is also positive definite.

       Parameters
           ITYPE

                     ITYPE is INTEGER
                     Specifies the problem type to be solved:
                     = 1:  A*x = (lambda)*B*x
                     = 2:  A*B*x = (lambda)*x
                     = 3:  B*A*x = (lambda)*x

           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N

                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           AP

                     AP is REAL array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the contents of AP are destroyed.

           BP

                     BP is REAL array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     B, packed columnwise in a linear array.  The j-th column of B
                     is stored in the array BP as follows:
                     if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

                     On exit, the triangular factor U or L from the Cholesky
                     factorization B = U**T*U or B = L*L**T, in the same storage
                     format as B.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is REAL array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     eigenvectors.  The eigenvectors are normalized as follows:
                     if ITYPE = 1 or 2, Z**T*B*Z = I;
                     if ITYPE = 3, Z**T*inv(B)*Z = I.
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is REAL array, dimension (3*N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  SPPTRF or SSPEV returned an error code:
                        <= N:  if INFO = i, SSPEV failed to converge;
                               i off-diagonal elements of an intermediate
                               tridiagonal form did not converge to zero.
                        > N:   if INFO = n + i, for 1 <= i <= n, then the leading
                               principal minor of order i of B is not positive.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zhpgv (integer itype, character jobz, character uplo, integer n, complex*16,
       dimension( * ) ap, complex*16, dimension( * ) bp, double precision, dimension( * ) w,
       complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, double
       precision, dimension( * ) rwork, integer info)
       ZHPGV

       Purpose:

            ZHPGV computes all the eigenvalues and, optionally, the eigenvectors
            of a complex generalized Hermitian-definite eigenproblem, of the form
            A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
            Here A and B are assumed to be Hermitian, stored in packed format,
            and B is also positive definite.

       Parameters
           ITYPE

                     ITYPE is INTEGER
                     Specifies the problem type to be solved:
                     = 1:  A*x = (lambda)*B*x
                     = 2:  A*B*x = (lambda)*x
                     = 3:  B*A*x = (lambda)*x

           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N

                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           AP

                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the contents of AP are destroyed.

           BP

                     BP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     B, packed columnwise in a linear array.  The j-th column of B
                     is stored in the array BP as follows:
                     if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

                     On exit, the triangular factor U or L from the Cholesky
                     factorization B = U**H*U or B = L*L**H, in the same storage
                     format as B.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is COMPLEX*16 array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     eigenvectors.  The eigenvectors are normalized as follows:
                     if ITYPE = 1 or 2, Z**H*B*Z = I;
                     if ITYPE = 3, Z**H*inv(B)*Z = I.
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is COMPLEX*16 array, dimension (max(1, 2*N-1))

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  ZPPTRF or ZHPEV returned an error code:
                        <= N:  if INFO = i, ZHPEV failed to converge;
                               i off-diagonal elements of an intermediate
                               tridiagonal form did not convergeto zero;
                        > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                               principal minor of order i of B is not positive.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.