Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       larra - larra: step in stemr

SYNOPSIS

   Functions
       subroutine dlarra (n, d, e, e2, spltol, tnrm, nsplit, isplit, info)
           DLARRA computes the splitting points with the specified threshold.
       subroutine slarra (n, d, e, e2, spltol, tnrm, nsplit, isplit, info)
           SLARRA computes the splitting points with the specified threshold.

Detailed Description

Function Documentation

   subroutine dlarra (integer n, double precision, dimension( * ) d, double precision, dimension(
       * ) e, double precision, dimension( * ) e2, double precision spltol, double precision
       tnrm, integer nsplit, integer, dimension( * ) isplit, integer info)
       DLARRA computes the splitting points with the specified threshold.

       Purpose:

            Compute the splitting points with threshold SPLTOL.
            DLARRA sets any 'small' off-diagonal elements to zero.

       Parameters
           N

                     N is INTEGER
                     The order of the matrix. N > 0.

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     On entry, the N diagonal elements of the tridiagonal
                     matrix T.

           E

                     E is DOUBLE PRECISION array, dimension (N)
                     On entry, the first (N-1) entries contain the subdiagonal
                     elements of the tridiagonal matrix T; E(N) need not be set.
                     On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT,
                     are set to zero, the other entries of E are untouched.

           E2

                     E2 is DOUBLE PRECISION array, dimension (N)
                     On entry, the first (N-1) entries contain the SQUARES of the
                     subdiagonal elements of the tridiagonal matrix T;
                     E2(N) need not be set.
                     On exit, the entries E2( ISPLIT( I ) ),
                     1 <= I <= NSPLIT, have been set to zero

           SPLTOL

                     SPLTOL is DOUBLE PRECISION
                     The threshold for splitting. Two criteria can be used:
                     SPLTOL<0 : criterion based on absolute off-diagonal value
                     SPLTOL>0 : criterion that preserves relative accuracy

           TNRM

                     TNRM is DOUBLE PRECISION
                     The norm of the matrix.

           NSPLIT

                     NSPLIT is INTEGER
                     The number of blocks T splits into. 1 <= NSPLIT <= N.

           ISPLIT

                     ISPLIT is INTEGER array, dimension (N)
                     The splitting points, at which T breaks up into blocks.
                     The first block consists of rows/columns 1 to ISPLIT(1),
                     the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
                     etc., and the NSPLIT-th consists of rows/columns
                     ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Beresford Parlett, University of California, Berkeley, USA
            Jim Demmel, University of California, Berkeley, USA
            Inderjit Dhillon, University of Texas, Austin, USA
            Osni Marques, LBNL/NERSC, USA
            Christof Voemel, University of California, Berkeley, USA

   subroutine slarra (integer n, real, dimension( * ) d, real, dimension( * ) e, real, dimension(
       * ) e2, real spltol, real tnrm, integer nsplit, integer, dimension( * ) isplit, integer
       info)
       SLARRA computes the splitting points with the specified threshold.

       Purpose:

            Compute the splitting points with threshold SPLTOL.
            SLARRA sets any 'small' off-diagonal elements to zero.

       Parameters
           N

                     N is INTEGER
                     The order of the matrix. N > 0.

           D

                     D is REAL array, dimension (N)
                     On entry, the N diagonal elements of the tridiagonal
                     matrix T.

           E

                     E is REAL array, dimension (N)
                     On entry, the first (N-1) entries contain the subdiagonal
                     elements of the tridiagonal matrix T; E(N) need not be set.
                     On exit, the entries E( ISPLIT( I ) ), 1 <= I <= NSPLIT,
                     are set to zero, the other entries of E are untouched.

           E2

                     E2 is REAL array, dimension (N)
                     On entry, the first (N-1) entries contain the SQUARES of the
                     subdiagonal elements of the tridiagonal matrix T;
                     E2(N) need not be set.
                     On exit, the entries E2( ISPLIT( I ) ),
                     1 <= I <= NSPLIT, have been set to zero

           SPLTOL

                     SPLTOL is REAL
                     The threshold for splitting. Two criteria can be used:
                     SPLTOL<0 : criterion based on absolute off-diagonal value
                     SPLTOL>0 : criterion that preserves relative accuracy

           TNRM

                     TNRM is REAL
                     The norm of the matrix.

           NSPLIT

                     NSPLIT is INTEGER
                     The number of blocks T splits into. 1 <= NSPLIT <= N.

           ISPLIT

                     ISPLIT is INTEGER array, dimension (N)
                     The splitting points, at which T breaks up into blocks.
                     The first block consists of rows/columns 1 to ISPLIT(1),
                     the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
                     etc., and the NSPLIT-th consists of rows/columns
                     ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Beresford Parlett, University of California, Berkeley, USA
            Jim Demmel, University of California, Berkeley, USA
            Inderjit Dhillon, University of Texas, Austin, USA
            Osni Marques, LBNL/NERSC, USA
            Christof Voemel, University of California, Berkeley, USA

Author

       Generated automatically by Doxygen for LAPACK from the source code.