Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       larre - larre: step in stemr

SYNOPSIS

   Functions
       subroutine dlarre (range, n, vl, vu, il, iu, d, e, e2, rtol1, rtol2, spltol, nsplit,
           isplit, m, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info)
           DLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and
           for each unreduced block Ti, finds base representations and eigenvalues.
       subroutine slarre (range, n, vl, vu, il, iu, d, e, e2, rtol1, rtol2, spltol, nsplit,
           isplit, m, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info)
           SLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and
           for each unreduced block Ti, finds base representations and eigenvalues.

Detailed Description

Function Documentation

   subroutine dlarre (character range, integer n, double precision vl, double precision vu,
       integer il, integer iu, double precision, dimension( * ) d, double precision, dimension( *
       ) e, double precision, dimension( * ) e2, double precision rtol1, double precision rtol2,
       double precision spltol, integer nsplit, integer, dimension( * ) isplit, integer m, double
       precision, dimension( * ) w, double precision, dimension( * ) werr, double precision,
       dimension( * ) wgap, integer, dimension( * ) iblock, integer, dimension( * ) indexw,
       double precision, dimension( * ) gers, double precision pivmin, double precision,
       dimension( * ) work, integer, dimension( * ) iwork, integer info)
       DLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for
       each unreduced block Ti, finds base representations and eigenvalues.

       Purpose:

            To find the desired eigenvalues of a given real symmetric
            tridiagonal matrix T, DLARRE sets any 'small' off-diagonal
            elements to zero, and for each unreduced block T_i, it finds
            (a) a suitable shift at one end of the block's spectrum,
            (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
            (c) eigenvalues of each L_i D_i L_i^T.
            The representations and eigenvalues found are then used by
            DSTEMR to compute the eigenvectors of T.
            The accuracy varies depending on whether bisection is used to
            find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to
            compute all and then discard any unwanted one.
            As an added benefit, DLARRE also outputs the n
            Gerschgorin intervals for the matrices L_i D_i L_i^T.

       Parameters
           RANGE

                     RANGE is CHARACTER*1
                     = 'A': ('All')   all eigenvalues will be found.
                     = 'V': ('Value') all eigenvalues in the half-open interval
                                      (VL, VU] will be found.
                     = 'I': ('Index') the IL-th through IU-th eigenvalues (of the
                                      entire matrix) will be found.

           N

                     N is INTEGER
                     The order of the matrix. N > 0.

           VL

                     VL is DOUBLE PRECISION
                     If RANGE='V', the lower bound for the eigenvalues.
                     Eigenvalues less than or equal to VL, or greater than VU,
                     will not be returned.  VL < VU.
                     If RANGE='I' or ='A', DLARRE computes bounds on the desired
                     part of the spectrum.

           VU

                     VU is DOUBLE PRECISION
                     If RANGE='V', the upper bound for the eigenvalues.
                     Eigenvalues less than or equal to VL, or greater than VU,
                     will not be returned.  VL < VU.
                     If RANGE='I' or ='A', DLARRE computes bounds on the desired
                     part of the spectrum.

           IL

                     IL is INTEGER
                     If RANGE='I', the index of the
                     smallest eigenvalue to be returned.
                     1 <= IL <= IU <= N.

           IU

                     IU is INTEGER
                     If RANGE='I', the index of the
                     largest eigenvalue to be returned.
                     1 <= IL <= IU <= N.

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     On entry, the N diagonal elements of the tridiagonal
                     matrix T.
                     On exit, the N diagonal elements of the diagonal
                     matrices D_i.

           E

                     E is DOUBLE PRECISION array, dimension (N)
                     On entry, the first (N-1) entries contain the subdiagonal
                     elements of the tridiagonal matrix T; E(N) need not be set.
                     On exit, E contains the subdiagonal elements of the unit
                     bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
                     1 <= I <= NSPLIT, contain the base points sigma_i on output.

           E2

                     E2 is DOUBLE PRECISION array, dimension (N)
                     On entry, the first (N-1) entries contain the SQUARES of the
                     subdiagonal elements of the tridiagonal matrix T;
                     E2(N) need not be set.
                     On exit, the entries E2( ISPLIT( I ) ),
                     1 <= I <= NSPLIT, have been set to zero

           RTOL1

                     RTOL1 is DOUBLE PRECISION

           RTOL2

                     RTOL2 is DOUBLE PRECISION
                      Parameters for bisection.
                      An interval [LEFT,RIGHT] has converged if
                      RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )

           SPLTOL

                     SPLTOL is DOUBLE PRECISION
                     The threshold for splitting.

           NSPLIT

                     NSPLIT is INTEGER
                     The number of blocks T splits into. 1 <= NSPLIT <= N.

           ISPLIT

                     ISPLIT is INTEGER array, dimension (N)
                     The splitting points, at which T breaks up into blocks.
                     The first block consists of rows/columns 1 to ISPLIT(1),
                     the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
                     etc., and the NSPLIT-th consists of rows/columns
                     ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.

           M

                     M is INTEGER
                     The total number of eigenvalues (of all L_i D_i L_i^T)
                     found.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     The first M elements contain the eigenvalues. The
                     eigenvalues of each of the blocks, L_i D_i L_i^T, are
                     sorted in ascending order ( DLARRE may use the
                     remaining N-M elements as workspace).

           WERR

                     WERR is DOUBLE PRECISION array, dimension (N)
                     The error bound on the corresponding eigenvalue in W.

           WGAP

                     WGAP is DOUBLE PRECISION array, dimension (N)
                     The separation from the right neighbor eigenvalue in W.
                     The gap is only with respect to the eigenvalues of the same block
                     as each block has its own representation tree.
                     Exception: at the right end of a block we store the left gap

           IBLOCK

                     IBLOCK is INTEGER array, dimension (N)
                     The indices of the blocks (submatrices) associated with the
                     corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
                     W(i) belongs to the first block from the top, =2 if W(i)
                     belongs to the second block, etc.

           INDEXW

                     INDEXW is INTEGER array, dimension (N)
                     The indices of the eigenvalues within each block (submatrix);
                     for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
                     i-th eigenvalue W(i) is the 10-th eigenvalue in block 2

           GERS

                     GERS is DOUBLE PRECISION array, dimension (2*N)
                     The N Gerschgorin intervals (the i-th Gerschgorin interval
                     is (GERS(2*i-1), GERS(2*i)).

           PIVMIN

                     PIVMIN is DOUBLE PRECISION
                     The minimum pivot in the Sturm sequence for T.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (6*N)
                     Workspace.

           IWORK

                     IWORK is INTEGER array, dimension (5*N)
                     Workspace.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     > 0:  A problem occurred in DLARRE.
                     < 0:  One of the called subroutines signaled an internal problem.
                           Needs inspection of the corresponding parameter IINFO
                           for further information.

                     =-1:  Problem in DLARRD.
                     = 2:  No base representation could be found in MAXTRY iterations.
                           Increasing MAXTRY and recompilation might be a remedy.
                     =-3:  Problem in DLARRB when computing the refined root
                           representation for DLASQ2.
                     =-4:  Problem in DLARRB when preforming bisection on the
                           desired part of the spectrum.
                     =-5:  Problem in DLASQ2.
                     =-6:  Problem in DLASQ2.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The base representations are required to suffer very little
             element growth and consequently define all their eigenvalues to
             high relative accuracy.

       Contributors:
           Beresford Parlett, University of California, Berkeley, USA
            Jim Demmel, University of California, Berkeley, USA
            Inderjit Dhillon, University of Texas, Austin, USA
            Osni Marques, LBNL/NERSC, USA
            Christof Voemel, University of California, Berkeley, USA

   subroutine slarre (character range, integer n, real vl, real vu, integer il, integer iu, real,
       dimension( * ) d, real, dimension( * ) e, real, dimension( * ) e2, real rtol1, real rtol2,
       real spltol, integer nsplit, integer, dimension( * ) isplit, integer m, real, dimension( *
       ) w, real, dimension( * ) werr, real, dimension( * ) wgap, integer, dimension( * ) iblock,
       integer, dimension( * ) indexw, real, dimension( * ) gers, real pivmin, real, dimension( *
       ) work, integer, dimension( * ) iwork, integer info)
       SLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for
       each unreduced block Ti, finds base representations and eigenvalues.

       Purpose:

            To find the desired eigenvalues of a given real symmetric
            tridiagonal matrix T, SLARRE sets any 'small' off-diagonal
            elements to zero, and for each unreduced block T_i, it finds
            (a) a suitable shift at one end of the block's spectrum,
            (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
            (c) eigenvalues of each L_i D_i L_i^T.
            The representations and eigenvalues found are then used by
            SSTEMR to compute the eigenvectors of T.
            The accuracy varies depending on whether bisection is used to
            find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to
            compute all and then discard any unwanted one.
            As an added benefit, SLARRE also outputs the n
            Gerschgorin intervals for the matrices L_i D_i L_i^T.

       Parameters
           RANGE

                     RANGE is CHARACTER*1
                     = 'A': ('All')   all eigenvalues will be found.
                     = 'V': ('Value') all eigenvalues in the half-open interval
                                      (VL, VU] will be found.
                     = 'I': ('Index') the IL-th through IU-th eigenvalues (of the
                                      entire matrix) will be found.

           N

                     N is INTEGER
                     The order of the matrix. N > 0.

           VL

                     VL is REAL
                     If RANGE='V', the lower bound for the eigenvalues.
                     Eigenvalues less than or equal to VL, or greater than VU,
                     will not be returned.  VL < VU.
                     If RANGE='I' or ='A', SLARRE computes bounds on the desired
                     part of the spectrum.

           VU

                     VU is REAL
                     If RANGE='V', the upper bound for the eigenvalues.
                     Eigenvalues less than or equal to VL, or greater than VU,
                     will not be returned.  VL < VU.
                     If RANGE='I' or ='A', SLARRE computes bounds on the desired
                     part of the spectrum.

           IL

                     IL is INTEGER
                     If RANGE='I', the index of the
                     smallest eigenvalue to be returned.
                     1 <= IL <= IU <= N.

           IU

                     IU is INTEGER
                     If RANGE='I', the index of the
                     largest eigenvalue to be returned.
                     1 <= IL <= IU <= N.

           D

                     D is REAL array, dimension (N)
                     On entry, the N diagonal elements of the tridiagonal
                     matrix T.
                     On exit, the N diagonal elements of the diagonal
                     matrices D_i.

           E

                     E is REAL array, dimension (N)
                     On entry, the first (N-1) entries contain the subdiagonal
                     elements of the tridiagonal matrix T; E(N) need not be set.
                     On exit, E contains the subdiagonal elements of the unit
                     bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
                     1 <= I <= NSPLIT, contain the base points sigma_i on output.

           E2

                     E2 is REAL array, dimension (N)
                     On entry, the first (N-1) entries contain the SQUARES of the
                     subdiagonal elements of the tridiagonal matrix T;
                     E2(N) need not be set.
                     On exit, the entries E2( ISPLIT( I ) ),
                     1 <= I <= NSPLIT, have been set to zero

           RTOL1

                     RTOL1 is REAL

           RTOL2

                     RTOL2 is REAL
                      Parameters for bisection.
                      An interval [LEFT,RIGHT] has converged if
                      RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )

           SPLTOL

                     SPLTOL is REAL
                     The threshold for splitting.

           NSPLIT

                     NSPLIT is INTEGER
                     The number of blocks T splits into. 1 <= NSPLIT <= N.

           ISPLIT

                     ISPLIT is INTEGER array, dimension (N)
                     The splitting points, at which T breaks up into blocks.
                     The first block consists of rows/columns 1 to ISPLIT(1),
                     the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
                     etc., and the NSPLIT-th consists of rows/columns
                     ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.

           M

                     M is INTEGER
                     The total number of eigenvalues (of all L_i D_i L_i^T)
                     found.

           W

                     W is REAL array, dimension (N)
                     The first M elements contain the eigenvalues. The
                     eigenvalues of each of the blocks, L_i D_i L_i^T, are
                     sorted in ascending order ( SLARRE may use the
                     remaining N-M elements as workspace).

           WERR

                     WERR is REAL array, dimension (N)
                     The error bound on the corresponding eigenvalue in W.

           WGAP

                     WGAP is REAL array, dimension (N)
                     The separation from the right neighbor eigenvalue in W.
                     The gap is only with respect to the eigenvalues of the same block
                     as each block has its own representation tree.
                     Exception: at the right end of a block we store the left gap

           IBLOCK

                     IBLOCK is INTEGER array, dimension (N)
                     The indices of the blocks (submatrices) associated with the
                     corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
                     W(i) belongs to the first block from the top, =2 if W(i)
                     belongs to the second block, etc.

           INDEXW

                     INDEXW is INTEGER array, dimension (N)
                     The indices of the eigenvalues within each block (submatrix);
                     for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
                     i-th eigenvalue W(i) is the 10-th eigenvalue in block 2

           GERS

                     GERS is REAL array, dimension (2*N)
                     The N Gerschgorin intervals (the i-th Gerschgorin interval
                     is (GERS(2*i-1), GERS(2*i)).

           PIVMIN

                     PIVMIN is REAL
                     The minimum pivot in the Sturm sequence for T.

           WORK

                     WORK is REAL array, dimension (6*N)
                     Workspace.

           IWORK

                     IWORK is INTEGER array, dimension (5*N)
                     Workspace.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     > 0:  A problem occurred in SLARRE.
                     < 0:  One of the called subroutines signaled an internal problem.
                           Needs inspection of the corresponding parameter IINFO
                           for further information.

                     =-1:  Problem in SLARRD.
                     = 2:  No base representation could be found in MAXTRY iterations.
                           Increasing MAXTRY and recompilation might be a remedy.
                     =-3:  Problem in SLARRB when computing the refined root
                           representation for SLASQ2.
                     =-4:  Problem in SLARRB when preforming bisection on the
                           desired part of the spectrum.
                     =-5:  Problem in SLASQ2.
                     =-6:  Problem in SLASQ2.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The base representations are required to suffer very little
             element growth and consequently define all their eigenvalues to
             high relative accuracy.

       Contributors:
           Beresford Parlett, University of California, Berkeley, USA
            Jim Demmel, University of California, Berkeley, USA
            Inderjit Dhillon, University of Texas, Austin, USA
            Osni Marques, LBNL/NERSC, USA
            Christof Voemel, University of California, Berkeley, USA

Author

       Generated automatically by Doxygen for LAPACK from the source code.