Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
potri - potri: triangular inverse
SYNOPSIS
Functions subroutine cpotri (uplo, n, a, lda, info) CPOTRI subroutine dpotri (uplo, n, a, lda, info) DPOTRI subroutine spotri (uplo, n, a, lda, info) SPOTRI subroutine zpotri (uplo, n, a, lda, info) ZPOTRI
Detailed Description
Function Documentation
subroutine cpotri (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer info) CPOTRI Purpose: CPOTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by CPOTRF. On exit, the upper or lower triangle of the (Hermitian) inverse of A, overwriting the input factor U or L. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dpotri (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer info) DPOTRI Purpose: DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine spotri (character uplo, integer n, real, dimension( lda, * ) a, integer lda, integer info) SPOTRI Purpose: SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by SPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zpotri (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer info) ZPOTRI Purpose: ZPOTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. On exit, the upper or lower triangle of the (Hermitian) inverse of A, overwriting the input factor U or L. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.