Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       gsvj0 - gsvj0: step in gesvj

SYNOPSIS

   Functions
       subroutine cgsvj0 (jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
           lwork, info)
           CGSVJ0 pre-processor for the routine cgesvj.
       subroutine dgsvj0 (jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
           lwork, info)
           DGSVJ0 pre-processor for the routine dgesvj.
       subroutine sgsvj0 (jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
           lwork, info)
           SGSVJ0 pre-processor for the routine sgesvj.
       subroutine zgsvj0 (jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
           lwork, info)
            ZGSVJ0 pre-processor for the routine zgesvj.

Detailed Description

Function Documentation

   subroutine cgsvj0 (character*1 jobv, integer m, integer n, complex, dimension( lda, * ) a,
       integer lda, complex, dimension( n ) d, real, dimension( n ) sva, integer mv, complex,
       dimension( ldv, * ) v, integer ldv, real eps, real sfmin, real tol, integer nsweep,
       complex, dimension( lwork ) work, integer lwork, integer info)
       CGSVJ0 pre-processor for the routine cgesvj.

       Purpose:

            CGSVJ0 is called from CGESVJ as a pre-processor and that is its main
            purpose. It applies Jacobi rotations in the same way as CGESVJ does, but
            it does not check convergence (stopping criterion). Few tuning
            parameters (marked by [TP]) are available for the implementer.

       Parameters
           JOBV

                     JOBV is CHARACTER*1
                     Specifies whether the output from this procedure is used
                     to compute the matrix V:
                     = 'V': the product of the Jacobi rotations is accumulated
                            by postmultiplying the N-by-N array V.
                           (See the description of V.)
                     = 'A': the product of the Jacobi rotations is accumulated
                            by postmultiplying the MV-by-N array V.
                           (See the descriptions of MV and V.)
                     = 'N': the Jacobi rotations are not accumulated.

           M

                     M is INTEGER
                     The number of rows of the input matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the input matrix A.
                     M >= N >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, M-by-N matrix A, such that A*diag(D) represents
                     the input matrix.
                     On exit,
                     A_onexit * diag(D_onexit) represents the input matrix A*diag(D)
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of D, TOL and NSWEEP.)

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is COMPLEX array, dimension (N)
                     The array D accumulates the scaling factors from the complex scaled
                     Jacobi rotations.
                     On entry, A*diag(D) represents the input matrix.
                     On exit, A_onexit*diag(D_onexit) represents the input matrix
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of A, TOL and NSWEEP.)

           SVA

                     SVA is REAL array, dimension (N)
                     On entry, SVA contains the Euclidean norms of the columns of
                     the matrix A*diag(D).
                     On exit, SVA contains the Euclidean norms of the columns of
                     the matrix A_onexit*diag(D_onexit).

           MV

                     MV is INTEGER
                     If JOBV = 'A', then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then MV is not referenced.

           V

                     V is COMPLEX array, dimension (LDV,N)
                     If JOBV = 'V' then N rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'A' then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then V is not referenced.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V,  LDV >= 1.
                     If JOBV = 'V', LDV >= N.
                     If JOBV = 'A', LDV >= MV.

           EPS

                     EPS is REAL
                     EPS = SLAMCH('Epsilon')

           SFMIN

                     SFMIN is REAL
                     SFMIN = SLAMCH('Safe Minimum')

           TOL

                     TOL is REAL
                     TOL is the threshold for Jacobi rotations. For a pair
                     A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
                     applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.

           NSWEEP

                     NSWEEP is INTEGER
                     NSWEEP is the number of sweeps of Jacobi rotations to be
                     performed.

           WORK

                     WORK is COMPLEX array, dimension (LWORK)

           LWORK

                     LWORK is INTEGER
                     LWORK is the dimension of WORK. LWORK >= M.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, then the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:
           CGSVJ0 is used just to enable CGESVJ to call a simplified version of itself to work on
           a submatrix of the original matrix.

       Contributor:
           Zlatko Drmac (Zagreb, Croatia)

       Bugs, Examples and Comments:
           Please report all bugs and send interesting test examples and comments to
           drmac@math.hr. Thank you.

   subroutine dgsvj0 (character*1 jobv, integer m, integer n, double precision, dimension( lda, *
       ) a, integer lda, double precision, dimension( n ) d, double precision, dimension( n )
       sva, integer mv, double precision, dimension( ldv, * ) v, integer ldv, double precision
       eps, double precision sfmin, double precision tol, integer nsweep, double precision,
       dimension( lwork ) work, integer lwork, integer info)
       DGSVJ0 pre-processor for the routine dgesvj.

       Purpose:

            DGSVJ0 is called from DGESVJ as a pre-processor and that is its main
            purpose. It applies Jacobi rotations in the same way as DGESVJ does, but
            it does not check convergence (stopping criterion). Few tuning
            parameters (marked by [TP]) are available for the implementer.

       Parameters
           JOBV

                     JOBV is CHARACTER*1
                     Specifies whether the output from this procedure is used
                     to compute the matrix V:
                     = 'V': the product of the Jacobi rotations is accumulated
                            by postmultiplying the N-by-N array V.
                           (See the description of V.)
                     = 'A': the product of the Jacobi rotations is accumulated
                            by postmultiplying the MV-by-N array V.
                           (See the descriptions of MV and V.)
                     = 'N': the Jacobi rotations are not accumulated.

           M

                     M is INTEGER
                     The number of rows of the input matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the input matrix A.
                     M >= N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, M-by-N matrix A, such that A*diag(D) represents
                     the input matrix.
                     On exit,
                     A_onexit * D_onexit represents the input matrix A*diag(D)
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of D, TOL and NSWEEP.)

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The array D accumulates the scaling factors from the fast scaled
                     Jacobi rotations.
                     On entry, A*diag(D) represents the input matrix.
                     On exit, A_onexit*diag(D_onexit) represents the input matrix
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of A, TOL and NSWEEP.)

           SVA

                     SVA is DOUBLE PRECISION array, dimension (N)
                     On entry, SVA contains the Euclidean norms of the columns of
                     the matrix A*diag(D).
                     On exit, SVA contains the Euclidean norms of the columns of
                     the matrix onexit*diag(D_onexit).

           MV

                     MV is INTEGER
                     If JOBV = 'A', then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then MV is not referenced.

           V

                     V is DOUBLE PRECISION array, dimension (LDV,N)
                     If JOBV = 'V' then N rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'A' then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then V is not referenced.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V,  LDV >= 1.
                     If JOBV = 'V', LDV >= N.
                     If JOBV = 'A', LDV >= MV.

           EPS

                     EPS is DOUBLE PRECISION
                     EPS = DLAMCH('Epsilon')

           SFMIN

                     SFMIN is DOUBLE PRECISION
                     SFMIN = DLAMCH('Safe Minimum')

           TOL

                     TOL is DOUBLE PRECISION
                     TOL is the threshold for Jacobi rotations. For a pair
                     A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
                     applied only if DABS(COS(angle(A(:,p),A(:,q)))) > TOL.

           NSWEEP

                     NSWEEP is INTEGER
                     NSWEEP is the number of sweeps of Jacobi rotations to be
                     performed.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (LWORK)

           LWORK

                     LWORK is INTEGER
                     LWORK is the dimension of WORK. LWORK >= M.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, then the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:
           DGSVJ0 is used just to enable DGESVJ to call a simplified version of itself to work on
           a submatrix of the original matrix.

       Contributors:
           Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)

       Bugs, Examples and Comments:
           Please report all bugs and send interesting test examples and comments to
           drmac@math.hr. Thank you.

   subroutine sgsvj0 (character*1 jobv, integer m, integer n, real, dimension( lda, * ) a,
       integer lda, real, dimension( n ) d, real, dimension( n ) sva, integer mv, real,
       dimension( ldv, * ) v, integer ldv, real eps, real sfmin, real tol, integer nsweep, real,
       dimension( lwork ) work, integer lwork, integer info)
       SGSVJ0 pre-processor for the routine sgesvj.

       Purpose:

            SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
            purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
            it does not check convergence (stopping criterion). Few tuning
            parameters (marked by [TP]) are available for the implementer.

       Parameters
           JOBV

                     JOBV is CHARACTER*1
                     Specifies whether the output from this procedure is used
                     to compute the matrix V:
                     = 'V': the product of the Jacobi rotations is accumulated
                            by postmultiplying the N-by-N array V.
                           (See the description of V.)
                     = 'A': the product of the Jacobi rotations is accumulated
                            by postmultiplying the MV-by-N array V.
                           (See the descriptions of MV and V.)
                     = 'N': the Jacobi rotations are not accumulated.

           M

                     M is INTEGER
                     The number of rows of the input matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the input matrix A.
                     M >= N >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, M-by-N matrix A, such that A*diag(D) represents
                     the input matrix.
                     On exit,
                     A_onexit * D_onexit represents the input matrix A*diag(D)
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of D, TOL and NSWEEP.)

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is REAL array, dimension (N)
                     The array D accumulates the scaling factors from the fast scaled
                     Jacobi rotations.
                     On entry, A*diag(D) represents the input matrix.
                     On exit, A_onexit*diag(D_onexit) represents the input matrix
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of A, TOL and NSWEEP.)

           SVA

                     SVA is REAL array, dimension (N)
                     On entry, SVA contains the Euclidean norms of the columns of
                     the matrix A*diag(D).
                     On exit, SVA contains the Euclidean norms of the columns of
                     the matrix onexit*diag(D_onexit).

           MV

                     MV is INTEGER
                     If JOBV = 'A', then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then MV is not referenced.

           V

                     V is REAL array, dimension (LDV,N)
                     If JOBV = 'V' then N rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'A' then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then V is not referenced.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V,  LDV >= 1.
                     If JOBV = 'V', LDV >= N.
                     If JOBV = 'A', LDV >= MV.

           EPS

                     EPS is REAL
                     EPS = SLAMCH('Epsilon')

           SFMIN

                     SFMIN is REAL
                     SFMIN = SLAMCH('Safe Minimum')

           TOL

                     TOL is REAL
                     TOL is the threshold for Jacobi rotations. For a pair
                     A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
                     applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.

           NSWEEP

                     NSWEEP is INTEGER
                     NSWEEP is the number of sweeps of Jacobi rotations to be
                     performed.

           WORK

                     WORK is REAL array, dimension (LWORK)

           LWORK

                     LWORK is INTEGER
                     LWORK is the dimension of WORK. LWORK >= M.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, then the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:
           SGSVJ0 is used just to enable SGESVJ to call a simplified version of itself to work on
           a submatrix of the original matrix.

       Contributors:
           Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)

       Bugs, Examples and Comments:
           Please report all bugs and send interesting test examples and comments to
           drmac@math.hr. Thank you.

   subroutine zgsvj0 (character*1 jobv, integer m, integer n, complex*16, dimension( lda, * ) a,
       integer lda, complex*16, dimension( n ) d, double precision, dimension( n ) sva, integer
       mv, complex*16, dimension( ldv, * ) v, integer ldv, double precision eps, double precision
       sfmin, double precision tol, integer nsweep, complex*16, dimension( lwork ) work, integer
       lwork, integer info)
        ZGSVJ0 pre-processor for the routine zgesvj.

       Purpose:

            ZGSVJ0 is called from ZGESVJ as a pre-processor and that is its main
            purpose. It applies Jacobi rotations in the same way as ZGESVJ does, but
            it does not check convergence (stopping criterion). Few tuning
            parameters (marked by [TP]) are available for the implementer.

       Parameters
           JOBV

                     JOBV is CHARACTER*1
                     Specifies whether the output from this procedure is used
                     to compute the matrix V:
                     = 'V': the product of the Jacobi rotations is accumulated
                            by postmultiplying the N-by-N array V.
                           (See the description of V.)
                     = 'A': the product of the Jacobi rotations is accumulated
                            by postmultiplying the MV-by-N array V.
                           (See the descriptions of MV and V.)
                     = 'N': the Jacobi rotations are not accumulated.

           M

                     M is INTEGER
                     The number of rows of the input matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the input matrix A.
                     M >= N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, M-by-N matrix A, such that A*diag(D) represents
                     the input matrix.
                     On exit,
                     A_onexit * diag(D_onexit) represents the input matrix A*diag(D)
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of D, TOL and NSWEEP.)

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           D

                     D is COMPLEX*16 array, dimension (N)
                     The array D accumulates the scaling factors from the complex scaled
                     Jacobi rotations.
                     On entry, A*diag(D) represents the input matrix.
                     On exit, A_onexit*diag(D_onexit) represents the input matrix
                     post-multiplied by a sequence of Jacobi rotations, where the
                     rotation threshold and the total number of sweeps are given in
                     TOL and NSWEEP, respectively.
                     (See the descriptions of A, TOL and NSWEEP.)

           SVA

                     SVA is DOUBLE PRECISION array, dimension (N)
                     On entry, SVA contains the Euclidean norms of the columns of
                     the matrix A*diag(D).
                     On exit, SVA contains the Euclidean norms of the columns of
                     the matrix A_onexit*diag(D_onexit).

           MV

                     MV is INTEGER
                     If JOBV = 'A', then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then MV is not referenced.

           V

                     V is COMPLEX*16 array, dimension (LDV,N)
                     If JOBV = 'V' then N rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'A' then MV rows of V are post-multiplied by a
                                      sequence of Jacobi rotations.
                     If JOBV = 'N',   then V is not referenced.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V,  LDV >= 1.
                     If JOBV = 'V', LDV >= N.
                     If JOBV = 'A', LDV >= MV.

           EPS

                     EPS is DOUBLE PRECISION
                     EPS = DLAMCH('Epsilon')

           SFMIN

                     SFMIN is DOUBLE PRECISION
                     SFMIN = DLAMCH('Safe Minimum')

           TOL

                     TOL is DOUBLE PRECISION
                     TOL is the threshold for Jacobi rotations. For a pair
                     A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
                     applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.

           NSWEEP

                     NSWEEP is INTEGER
                     NSWEEP is the number of sweeps of Jacobi rotations to be
                     performed.

           WORK

                     WORK is COMPLEX*16 array, dimension (LWORK)

           LWORK

                     LWORK is INTEGER
                     LWORK is the dimension of WORK. LWORK >= M.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, then the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:
           ZGSVJ0 is used just to enable ZGESVJ to call a simplified version of itself to work on
           a submatrix of the original matrix.

       Contributor: Zlatko Drmac (Zagreb, Croatia)

       Bugs, Examples and Comments:
           Please report all bugs and send interesting test examples and comments to
           drmac@math.hr. Thank you.

Author

       Generated automatically by Doxygen for LAPACK from the source code.