Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
la_herpvgrw - la_herpvgrw: reciprocal pivot growth
SYNOPSIS
Functions real function cla_herpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work) CLA_HERPVGRW real function cla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work) CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. double precision function dla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work) DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. real function sla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work) SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. double precision function zla_herpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work) ZLA_HERPVGRW double precision function zla_syrpvgrw (uplo, n, info, a, lda, af, ldaf, ipiv, work) ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
Detailed Description
Function Documentation
real function cla_herpvgrw (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work) CLA_HERPVGRW Purpose: CLA_HERPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. INFO INFO is INTEGER The value of INFO returned from SSYTRF, .i.e., the pivot in column INFO is exactly 0. A A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is COMPLEX array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHETRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF. WORK WORK is REAL array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. real function cla_syrpvgrw (character*1 uplo, integer n, integer info, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work) CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. Purpose: CLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. INFO INFO is INTEGER The value of INFO returned from CSYTRF, .i.e., the pivot in column INFO is exactly 0. A A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is COMPLEX array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSYTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSYTRF. WORK WORK is REAL array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. double precision function dla_syrpvgrw (character*1 uplo, integer n, integer info, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work) DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. Purpose: DLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. INFO INFO is INTEGER The value of INFO returned from DSYTRF, .i.e., the pivot in column INFO is exactly 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is DOUBLE PRECISION array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSYTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSYTRF. WORK WORK is DOUBLE PRECISION array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. real function sla_syrpvgrw (character*1 uplo, integer n, integer info, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) work) SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. Purpose: SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. INFO INFO is INTEGER The value of INFO returned from SSYTRF, .i.e., the pivot in column INFO is exactly 0. A A is REAL array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is REAL array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by SSYTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF. WORK WORK is REAL array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. double precision function zla_herpvgrw (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work) ZLA_HERPVGRW Purpose: ZLA_HERPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. INFO INFO is INTEGER The value of INFO returned from ZHETRF, .i.e., the pivot in column INFO is exactly 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF. WORK WORK is DOUBLE PRECISION array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. double precision function zla_syrpvgrw (character*1 uplo, integer n, integer info, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) work) ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. Purpose: ZLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. INFO INFO is INTEGER The value of INFO returned from ZSYTRF, .i.e., the pivot in column INFO is exactly 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZSYTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSYTRF. WORK WORK is DOUBLE PRECISION array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.