Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
lanht - lan{ht,st}: Hermitian/symmetric matrix, tridiagonal
SYNOPSIS
Functions real function clanht (norm, n, d, e) CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix. double precision function dlanst (norm, n, d, e) DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. real function slanst (norm, n, d, e) SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. double precision function zlanht (norm, n, d, e) ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
Detailed Description
Function Documentation
real function clanht (character norm, integer n, real, dimension( * ) d, complex, dimension( * ) e) CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix. Purpose: CLANHT returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix A. Returns CLANHT CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters NORM NORM is CHARACTER*1 Specifies the value to be returned in CLANHT as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, CLANHT is set to zero. D D is REAL array, dimension (N) The diagonal elements of A. E E is COMPLEX array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. double precision function dlanst (character norm, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e) DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. Purpose: DLANST returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A. Returns DLANST DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters NORM NORM is CHARACTER*1 Specifies the value to be returned in DLANST as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, DLANST is set to zero. D D is DOUBLE PRECISION array, dimension (N) The diagonal elements of A. E E is DOUBLE PRECISION array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. real function slanst (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e) SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. Purpose: SLANST returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A. Returns SLANST SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters NORM NORM is CHARACTER*1 Specifies the value to be returned in SLANST as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANST is set to zero. D D is REAL array, dimension (N) The diagonal elements of A. E E is REAL array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. double precision function zlanht (character norm, integer n, double precision, dimension( * ) d, complex*16, dimension( * ) e) ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix. Purpose: ZLANHT returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix A. Returns ZLANHT ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters NORM NORM is CHARACTER*1 Specifies the value to be returned in ZLANHT as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, ZLANHT is set to zero. D D is DOUBLE PRECISION array, dimension (N) The diagonal elements of A. E E is COMPLEX*16 array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.