Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       laqp2 - laqp2: step of geqp3

SYNOPSIS

   Functions
       subroutine claqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
           CLAQP2 computes a QR factorization with column pivoting of the matrix block.
       subroutine dlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
           DLAQP2 computes a QR factorization with column pivoting of the matrix block.
       subroutine slaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
           SLAQP2 computes a QR factorization with column pivoting of the matrix block.
       subroutine zlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)
           ZLAQP2 computes a QR factorization with column pivoting of the matrix block.

Detailed Description

Function Documentation

   subroutine claqp2 (integer m, integer n, integer offset, complex, dimension( lda, * ) a,
       integer lda, integer, dimension( * ) jpvt, complex, dimension( * ) tau, real, dimension( *
       ) vn1, real, dimension( * ) vn2, complex, dimension( * ) work)
       CLAQP2 computes a QR factorization with column pivoting of the matrix block.

       Purpose:

            CLAQP2 computes a QR factorization with column pivoting of
            the block A(OFFSET+1:M,1:N).
            The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. N >= 0.

           OFFSET

                     OFFSET is INTEGER
                     The number of rows of the matrix A that must be pivoted
                     but no factorized. OFFSET >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
                     the triangular factor obtained; the elements in block
                     A(OFFSET+1:M,1:N) below the diagonal, together with the
                     array TAU, represent the orthogonal matrix Q as a product of
                     elementary reflectors. Block A(1:OFFSET,1:N) has been
                     accordingly pivoted, but no factorized.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,M).

           JPVT

                     JPVT is INTEGER array, dimension (N)
                     On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     to the front of A*P (a leading column); if JPVT(i) = 0,
                     the i-th column of A is a free column.
                     On exit, if JPVT(i) = k, then the i-th column of A*P
                     was the k-th column of A.

           TAU

                     TAU is COMPLEX array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors.

           VN1

                     VN1 is REAL array, dimension (N)
                     The vector with the partial column norms.

           VN2

                     VN2 is REAL array, dimension (N)
                     The vector with the exact column norms.

           WORK

                     WORK is COMPLEX array, dimension (N)

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer
           Science Dept., Duke University, USA
            Partial column norm updating strategy modified on April 2011 Z. Drmac and Z.
           Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

       References:
           LAPACK Working Note 176

   subroutine dlaqp2 (integer m, integer n, integer offset, double precision, dimension( lda, * )
       a, integer lda, integer, dimension( * ) jpvt, double precision, dimension( * ) tau, double
       precision, dimension( * ) vn1, double precision, dimension( * ) vn2, double precision,
       dimension( * ) work)
       DLAQP2 computes a QR factorization with column pivoting of the matrix block.

       Purpose:

            DLAQP2 computes a QR factorization with column pivoting of
            the block A(OFFSET+1:M,1:N).
            The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. N >= 0.

           OFFSET

                     OFFSET is INTEGER
                     The number of rows of the matrix A that must be pivoted
                     but no factorized. OFFSET >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
                     the triangular factor obtained; the elements in block
                     A(OFFSET+1:M,1:N) below the diagonal, together with the
                     array TAU, represent the orthogonal matrix Q as a product of
                     elementary reflectors. Block A(1:OFFSET,1:N) has been
                     accordingly pivoted, but no factorized.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,M).

           JPVT

                     JPVT is INTEGER array, dimension (N)
                     On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     to the front of A*P (a leading column); if JPVT(i) = 0,
                     the i-th column of A is a free column.
                     On exit, if JPVT(i) = k, then the i-th column of A*P
                     was the k-th column of A.

           TAU

                     TAU is DOUBLE PRECISION array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors.

           VN1

                     VN1 is DOUBLE PRECISION array, dimension (N)
                     The vector with the partial column norms.

           VN2

                     VN2 is DOUBLE PRECISION array, dimension (N)
                     The vector with the exact column norms.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (N)

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer
           Science Dept., Duke University, USA
            Partial column norm updating strategy modified on April 2011 Z. Drmac and Z.
           Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

       References:
           LAPACK Working Note 176

   subroutine slaqp2 (integer m, integer n, integer offset, real, dimension( lda, * ) a, integer
       lda, integer, dimension( * ) jpvt, real, dimension( * ) tau, real, dimension( * ) vn1,
       real, dimension( * ) vn2, real, dimension( * ) work)
       SLAQP2 computes a QR factorization with column pivoting of the matrix block.

       Purpose:

            SLAQP2 computes a QR factorization with column pivoting of
            the block A(OFFSET+1:M,1:N).
            The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. N >= 0.

           OFFSET

                     OFFSET is INTEGER
                     The number of rows of the matrix A that must be pivoted
                     but no factorized. OFFSET >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
                     the triangular factor obtained; the elements in block
                     A(OFFSET+1:M,1:N) below the diagonal, together with the
                     array TAU, represent the orthogonal matrix Q as a product of
                     elementary reflectors. Block A(1:OFFSET,1:N) has been
                     accordingly pivoted, but no factorized.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,M).

           JPVT

                     JPVT is INTEGER array, dimension (N)
                     On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     to the front of A*P (a leading column); if JPVT(i) = 0,
                     the i-th column of A is a free column.
                     On exit, if JPVT(i) = k, then the i-th column of A*P
                     was the k-th column of A.

           TAU

                     TAU is REAL array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors.

           VN1

                     VN1 is REAL array, dimension (N)
                     The vector with the partial column norms.

           VN2

                     VN2 is REAL array, dimension (N)
                     The vector with the exact column norms.

           WORK

                     WORK is REAL array, dimension (N)

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer
           Science Dept., Duke University, USA
            Partial column norm updating strategy modified on April 2011 Z. Drmac and Z.
           Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

       References:
           LAPACK Working Note 176

   subroutine zlaqp2 (integer m, integer n, integer offset, complex*16, dimension( lda, * ) a,
       integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, double
       precision, dimension( * ) vn1, double precision, dimension( * ) vn2, complex*16,
       dimension( * ) work)
       ZLAQP2 computes a QR factorization with column pivoting of the matrix block.

       Purpose:

            ZLAQP2 computes a QR factorization with column pivoting of
            the block A(OFFSET+1:M,1:N).
            The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. N >= 0.

           OFFSET

                     OFFSET is INTEGER
                     The number of rows of the matrix A that must be pivoted
                     but no factorized. OFFSET >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the M-by-N matrix A.
                     On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
                     the triangular factor obtained; the elements in block
                     A(OFFSET+1:M,1:N) below the diagonal, together with the
                     array TAU, represent the orthogonal matrix Q as a product of
                     elementary reflectors. Block A(1:OFFSET,1:N) has been
                     accordingly pivoted, but no factorized.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,M).

           JPVT

                     JPVT is INTEGER array, dimension (N)
                     On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     to the front of A*P (a leading column); if JPVT(i) = 0,
                     the i-th column of A is a free column.
                     On exit, if JPVT(i) = k, then the i-th column of A*P
                     was the k-th column of A.

           TAU

                     TAU is COMPLEX*16 array, dimension (min(M,N))
                     The scalar factors of the elementary reflectors.

           VN1

                     VN1 is DOUBLE PRECISION array, dimension (N)
                     The vector with the partial column norms.

           VN2

                     VN2 is DOUBLE PRECISION array, dimension (N)
                     The vector with the exact column norms.

           WORK

                     WORK is COMPLEX*16 array, dimension (N)

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer
           Science Dept., Duke University, USA
            Partial column norm updating strategy modified on April 2011 Z. Drmac and Z.
           Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.

       References:
           LAPACK Working Note 176

Author

       Generated automatically by Doxygen for LAPACK from the source code.