Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
lasq1 - lasq1: dqds step
SYNOPSIS
Functions subroutine dlasq1 (n, d, e, work, info) DLASQ1 computes the singular values of a real square bidiagonal matrix. Used by sbdsqr. subroutine slasq1 (n, d, e, work, info) SLASQ1 computes the singular values of a real square bidiagonal matrix. Used by sbdsqr.
Detailed Description
Function Documentation
subroutine dlasq1 (integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( * ) work, integer info) DLASQ1 computes the singular values of a real square bidiagonal matrix. Used by sbdsqr. Purpose: DLASQ1 computes the singular values of a real N-by-N bidiagonal matrix with diagonal D and off-diagonal E. The singular values are computed to high relative accuracy, in the absence of denormalization, underflow and overflow. The algorithm was first presented in 'Accurate singular values and differential qd algorithms' by K. V. Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, 1994, and the present implementation is described in 'An implementation of the dqds Algorithm (Positive Case)', LAPACK Working Note. Parameters N N is INTEGER The number of rows and columns in the matrix. N >= 0. D D is DOUBLE PRECISION array, dimension (N) On entry, D contains the diagonal elements of the bidiagonal matrix whose SVD is desired. On normal exit, D contains the singular values in decreasing order. E E is DOUBLE PRECISION array, dimension (N) On entry, elements E(1:N-1) contain the off-diagonal elements of the bidiagonal matrix whose SVD is desired. On exit, E is overwritten. WORK WORK is DOUBLE PRECISION array, dimension (4*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: the algorithm failed = 1, a split was marked by a positive value in E = 2, current block of Z not diagonalized after 100*N iterations (in inner while loop) On exit D and E represent a matrix with the same singular values which the calling subroutine could use to finish the computation, or even feed back into DLASQ1 = 3, termination criterion of outer while loop not met (program created more than N unreduced blocks) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine slasq1 (integer n, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) work, integer info) SLASQ1 computes the singular values of a real square bidiagonal matrix. Used by sbdsqr. Purpose: SLASQ1 computes the singular values of a real N-by-N bidiagonal matrix with diagonal D and off-diagonal E. The singular values are computed to high relative accuracy, in the absence of denormalization, underflow and overflow. The algorithm was first presented in 'Accurate singular values and differential qd algorithms' by K. V. Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, 1994, and the present implementation is described in 'An implementation of the dqds Algorithm (Positive Case)', LAPACK Working Note. Parameters N N is INTEGER The number of rows and columns in the matrix. N >= 0. D D is REAL array, dimension (N) On entry, D contains the diagonal elements of the bidiagonal matrix whose SVD is desired. On normal exit, D contains the singular values in decreasing order. E E is REAL array, dimension (N) On entry, elements E(1:N-1) contain the off-diagonal elements of the bidiagonal matrix whose SVD is desired. On exit, E is overwritten. WORK WORK is REAL array, dimension (4*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: the algorithm failed = 1, a split was marked by a positive value in E = 2, current block of Z not diagonalized after 100*N iterations (in inner while loop) On exit D and E represent a matrix with the same singular values which the calling subroutine could use to finish the computation, or even feed back into SLASQ1 = 3, termination criterion of outer while loop not met (program created more than N unreduced blocks) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.