Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       posvx - posvx: factor and solve, expert

SYNOPSIS

   Functions
       subroutine cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
           ferr, berr, work, rwork, info)
            CPOSVX computes the solution to system of linear equations A * X = B for PO matrices
       subroutine dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
           ferr, berr, work, iwork, info)
            DPOSVX computes the solution to system of linear equations A * X = B for PO matrices
       subroutine sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
           ferr, berr, work, iwork, info)
            SPOSVX computes the solution to system of linear equations A * X = B for PO matrices
       subroutine zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
           ferr, berr, work, rwork, info)
            ZPOSVX computes the solution to system of linear equations A * X = B for PO matrices

Detailed Description

Function Documentation

   subroutine cposvx (character fact, character uplo, integer n, integer nrhs, complex,
       dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf,
       character equed, real, dimension( * ) s, complex, dimension( ldb, * ) b, integer ldb,
       complex, dimension( ldx, * ) x, integer ldx, real rcond, real, dimension( * ) ferr, real,
       dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer
       info)
        CPOSVX computes the solution to system of linear equations A * X = B for PO matrices

       Purpose:

            CPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
            compute the solution to a complex system of linear equations
               A * X = B,
            where A is an N-by-N Hermitian positive definite matrix and X and B
            are N-by-NRHS matrices.

            Error bounds on the solution and a condition estimate are also
            provided.

       Description:

            The following steps are performed:

            1. If FACT = 'E', real scaling factors are computed to equilibrate
               the system:
                  diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
               Whether or not the system will be equilibrated depends on the
               scaling of the matrix A, but if equilibration is used, A is
               overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

            2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
               factor the matrix A (after equilibration if FACT = 'E') as
                  A = U**H* U,  if UPLO = 'U', or
                  A = L * L**H,  if UPLO = 'L',
               where U is an upper triangular matrix and L is a lower triangular
               matrix.

            3. If the leading principal minor of order i is not positive,
               then the routine returns with INFO = i. Otherwise, the factored
               form of A is used to estimate the condition number of the matrix
               A.  If the reciprocal of the condition number is less than machine
               precision, INFO = N+1 is returned as a warning, but the routine
               still goes on to solve for X and compute error bounds as
               described below.

            4. The system of equations is solved for X using the factored form
               of A.

            5. Iterative refinement is applied to improve the computed solution
               matrix and calculate error bounds and backward error estimates
               for it.

            6. If equilibration was used, the matrix X is premultiplied by
               diag(S) so that it solves the original system before
               equilibration.

       Parameters
           FACT

                     FACT is CHARACTER*1
                     Specifies whether or not the factored form of the matrix A is
                     supplied on entry, and if not, whether the matrix A should be
                     equilibrated before it is factored.
                     = 'F':  On entry, AF contains the factored form of A.
                             If EQUED = 'Y', the matrix A has been equilibrated
                             with scaling factors given by S.  A and AF will not
                             be modified.
                     = 'N':  The matrix A will be copied to AF and factored.
                     = 'E':  The matrix A will be equilibrated if necessary, then
                             copied to AF and factored.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The number of linear equations, i.e., the order of the
                     matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the Hermitian matrix A, except if FACT = 'F' and
                     EQUED = 'Y', then A must contain the equilibrated matrix
                     diag(S)*A*diag(S).  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.  A is not modified if
                     FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.

                     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                     diag(S)*A*diag(S).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           AF

                     AF is COMPLEX array, dimension (LDAF,N)
                     If FACT = 'F', then AF is an input argument and on entry
                     contains the triangular factor U or L from the Cholesky
                     factorization A = U**H*U or A = L*L**H, in the same storage
                     format as A.  If EQUED .ne. 'N', then AF is the factored form
                     of the equilibrated matrix diag(S)*A*diag(S).

                     If FACT = 'N', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**H*U or A = L*L**H of the original
                     matrix A.

                     If FACT = 'E', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**H*U or A = L*L**H of the equilibrated
                     matrix A (see the description of A for the form of the
                     equilibrated matrix).

           LDAF

                     LDAF is INTEGER
                     The leading dimension of the array AF.  LDAF >= max(1,N).

           EQUED

                     EQUED is CHARACTER*1
                     Specifies the form of equilibration that was done.
                     = 'N':  No equilibration (always true if FACT = 'N').
                     = 'Y':  Equilibration was done, i.e., A has been replaced by
                             diag(S) * A * diag(S).
                     EQUED is an input argument if FACT = 'F'; otherwise, it is an
                     output argument.

           S

                     S is REAL array, dimension (N)
                     The scale factors for A; not accessed if EQUED = 'N'.  S is
                     an input argument if FACT = 'F'; otherwise, S is an output
                     argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                     must be positive.

           B

                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the N-by-NRHS righthand side matrix B.
                     On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                     B is overwritten by diag(S) * B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is COMPLEX array, dimension (LDX,NRHS)
                     If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                     the original system of equations.  Note that if EQUED = 'Y',
                     A and B are modified on exit, and the solution to the
                     equilibrated system is inv(diag(S))*X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           RCOND

                     RCOND is REAL
                     The estimate of the reciprocal condition number of the matrix
                     A after equilibration (if done).  If RCOND is less than the
                     machine precision (in particular, if RCOND = 0), the matrix
                     is singular to working precision.  This condition is
                     indicated by a return code of INFO > 0.

           FERR

                     FERR is REAL array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is REAL array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is COMPLEX array, dimension (2*N)

           RWORK

                     RWORK is REAL array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, and i is
                           <= N:  the leading principal minor of order i of A
                                  is not positive, so the factorization could not
                                  be completed, and the solution has not been
                                  computed. RCOND = 0 is returned.
                           = N+1: U is nonsingular, but RCOND is less than machine
                                  precision, meaning that the matrix is singular
                                  to working precision.  Nevertheless, the
                                  solution and error bounds are computed because
                                  there are a number of situations where the
                                  computed solution can be more accurate than the
                                  value of RCOND would suggest.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dposvx (character fact, character uplo, integer n, integer nrhs, double precision,
       dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer
       ldaf, character equed, double precision, dimension( * ) s, double precision, dimension(
       ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double
       precision rcond, double precision, dimension( * ) ferr, double precision, dimension( * )
       berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)
        DPOSVX computes the solution to system of linear equations A * X = B for PO matrices

       Purpose:

            DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
            compute the solution to a real system of linear equations
               A * X = B,
            where A is an N-by-N symmetric positive definite matrix and X and B
            are N-by-NRHS matrices.

            Error bounds on the solution and a condition estimate are also
            provided.

       Description:

            The following steps are performed:

            1. If FACT = 'E', real scaling factors are computed to equilibrate
               the system:
                  diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
               Whether or not the system will be equilibrated depends on the
               scaling of the matrix A, but if equilibration is used, A is
               overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

            2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
               factor the matrix A (after equilibration if FACT = 'E') as
                  A = U**T* U,  if UPLO = 'U', or
                  A = L * L**T,  if UPLO = 'L',
               where U is an upper triangular matrix and L is a lower triangular
               matrix.

            3. If the leading principal minor of order i is not positive,
               then the routine returns with INFO = i. Otherwise, the factored
               form of A is used to estimate the condition number of the matrix
               A.  If the reciprocal of the condition number is less than machine
               precision, INFO = N+1 is returned as a warning, but the routine
               still goes on to solve for X and compute error bounds as
               described below.

            4. The system of equations is solved for X using the factored form
               of A.

            5. Iterative refinement is applied to improve the computed solution
               matrix and calculate error bounds and backward error estimates
               for it.

            6. If equilibration was used, the matrix X is premultiplied by
               diag(S) so that it solves the original system before
               equilibration.

       Parameters
           FACT

                     FACT is CHARACTER*1
                     Specifies whether or not the factored form of the matrix A is
                     supplied on entry, and if not, whether the matrix A should be
                     equilibrated before it is factored.
                     = 'F':  On entry, AF contains the factored form of A.
                             If EQUED = 'Y', the matrix A has been equilibrated
                             with scaling factors given by S.  A and AF will not
                             be modified.
                     = 'N':  The matrix A will be copied to AF and factored.
                     = 'E':  The matrix A will be equilibrated if necessary, then
                             copied to AF and factored.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The number of linear equations, i.e., the order of the
                     matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the symmetric matrix A, except if FACT = 'F' and
                     EQUED = 'Y', then A must contain the equilibrated matrix
                     diag(S)*A*diag(S).  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.  A is not modified if
                     FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.

                     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                     diag(S)*A*diag(S).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           AF

                     AF is DOUBLE PRECISION array, dimension (LDAF,N)
                     If FACT = 'F', then AF is an input argument and on entry
                     contains the triangular factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T, in the same storage
                     format as A.  If EQUED .ne. 'N', then AF is the factored form
                     of the equilibrated matrix diag(S)*A*diag(S).

                     If FACT = 'N', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T of the original
                     matrix A.

                     If FACT = 'E', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T of the equilibrated
                     matrix A (see the description of A for the form of the
                     equilibrated matrix).

           LDAF

                     LDAF is INTEGER
                     The leading dimension of the array AF.  LDAF >= max(1,N).

           EQUED

                     EQUED is CHARACTER*1
                     Specifies the form of equilibration that was done.
                     = 'N':  No equilibration (always true if FACT = 'N').
                     = 'Y':  Equilibration was done, i.e., A has been replaced by
                             diag(S) * A * diag(S).
                     EQUED is an input argument if FACT = 'F'; otherwise, it is an
                     output argument.

           S

                     S is DOUBLE PRECISION array, dimension (N)
                     The scale factors for A; not accessed if EQUED = 'N'.  S is
                     an input argument if FACT = 'F'; otherwise, S is an output
                     argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                     must be positive.

           B

                     B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     On entry, the N-by-NRHS right hand side matrix B.
                     On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                     B is overwritten by diag(S) * B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                     If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                     the original system of equations.  Note that if EQUED = 'Y',
                     A and B are modified on exit, and the solution to the
                     equilibrated system is inv(diag(S))*X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           RCOND

                     RCOND is DOUBLE PRECISION
                     The estimate of the reciprocal condition number of the matrix
                     A after equilibration (if done).  If RCOND is less than the
                     machine precision (in particular, if RCOND = 0), the matrix
                     is singular to working precision.  This condition is
                     indicated by a return code of INFO > 0.

           FERR

                     FERR is DOUBLE PRECISION array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is DOUBLE PRECISION array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (3*N)

           IWORK

                     IWORK is INTEGER array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, and i is
                           <= N:  the leading principal minor of order i of A
                                  is not positive, so the factorization could not
                                  be completed, and the solution has not been
                                  computed. RCOND = 0 is returned.
                           = N+1: U is nonsingular, but RCOND is less than machine
                                  precision, meaning that the matrix is singular
                                  to working precision.  Nevertheless, the
                                  solution and error bounds are computed because
                                  there are a number of situations where the
                                  computed solution can be more accurate than the
                                  value of RCOND would suggest.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sposvx (character fact, character uplo, integer n, integer nrhs, real, dimension(
       lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, character equed,
       real, dimension( * ) s, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, *
       ) x, integer ldx, real rcond, real, dimension( * ) ferr, real, dimension( * ) berr, real,
       dimension( * ) work, integer, dimension( * ) iwork, integer info)
        SPOSVX computes the solution to system of linear equations A * X = B for PO matrices

       Purpose:

            SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
            compute the solution to a real system of linear equations
               A * X = B,
            where A is an N-by-N symmetric positive definite matrix and X and B
            are N-by-NRHS matrices.

            Error bounds on the solution and a condition estimate are also
            provided.

       Description:

            The following steps are performed:

            1. If FACT = 'E', real scaling factors are computed to equilibrate
               the system:
                  diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
               Whether or not the system will be equilibrated depends on the
               scaling of the matrix A, but if equilibration is used, A is
               overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

            2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
               factor the matrix A (after equilibration if FACT = 'E') as
                  A = U**T* U,  if UPLO = 'U', or
                  A = L * L**T,  if UPLO = 'L',
               where U is an upper triangular matrix and L is a lower triangular
               matrix.

            3. If the leading principal minor of order i is not positive,
               then the routine returns with INFO = i. Otherwise, the factored
               form of A is used to estimate the condition number of the matrix
               A.  If the reciprocal of the condition number is less than machine
               precision, INFO = N+1 is returned as a warning, but the routine
               still goes on to solve for X and compute error bounds as
               described below.

            4. The system of equations is solved for X using the factored form
               of A.

            5. Iterative refinement is applied to improve the computed solution
               matrix and calculate error bounds and backward error estimates
               for it.

            6. If equilibration was used, the matrix X is premultiplied by
               diag(S) so that it solves the original system before
               equilibration.

       Parameters
           FACT

                     FACT is CHARACTER*1
                     Specifies whether or not the factored form of the matrix A is
                     supplied on entry, and if not, whether the matrix A should be
                     equilibrated before it is factored.
                     = 'F':  On entry, AF contains the factored form of A.
                             If EQUED = 'Y', the matrix A has been equilibrated
                             with scaling factors given by S.  A and AF will not
                             be modified.
                     = 'N':  The matrix A will be copied to AF and factored.
                     = 'E':  The matrix A will be equilibrated if necessary, then
                             copied to AF and factored.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The number of linear equations, i.e., the order of the
                     matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the symmetric matrix A, except if FACT = 'F' and
                     EQUED = 'Y', then A must contain the equilibrated matrix
                     diag(S)*A*diag(S).  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.  A is not modified if
                     FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.

                     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                     diag(S)*A*diag(S).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           AF

                     AF is REAL array, dimension (LDAF,N)
                     If FACT = 'F', then AF is an input argument and on entry
                     contains the triangular factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T, in the same storage
                     format as A.  If EQUED .ne. 'N', then AF is the factored form
                     of the equilibrated matrix diag(S)*A*diag(S).

                     If FACT = 'N', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T of the original
                     matrix A.

                     If FACT = 'E', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T of the equilibrated
                     matrix A (see the description of A for the form of the
                     equilibrated matrix).

           LDAF

                     LDAF is INTEGER
                     The leading dimension of the array AF.  LDAF >= max(1,N).

           EQUED

                     EQUED is CHARACTER*1
                     Specifies the form of equilibration that was done.
                     = 'N':  No equilibration (always true if FACT = 'N').
                     = 'Y':  Equilibration was done, i.e., A has been replaced by
                             diag(S) * A * diag(S).
                     EQUED is an input argument if FACT = 'F'; otherwise, it is an
                     output argument.

           S

                     S is REAL array, dimension (N)
                     The scale factors for A; not accessed if EQUED = 'N'.  S is
                     an input argument if FACT = 'F'; otherwise, S is an output
                     argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                     must be positive.

           B

                     B is REAL array, dimension (LDB,NRHS)
                     On entry, the N-by-NRHS right hand side matrix B.
                     On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                     B is overwritten by diag(S) * B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is REAL array, dimension (LDX,NRHS)
                     If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                     the original system of equations.  Note that if EQUED = 'Y',
                     A and B are modified on exit, and the solution to the
                     equilibrated system is inv(diag(S))*X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           RCOND

                     RCOND is REAL
                     The estimate of the reciprocal condition number of the matrix
                     A after equilibration (if done).  If RCOND is less than the
                     machine precision (in particular, if RCOND = 0), the matrix
                     is singular to working precision.  This condition is
                     indicated by a return code of INFO > 0.

           FERR

                     FERR is REAL array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is REAL array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is REAL array, dimension (3*N)

           IWORK

                     IWORK is INTEGER array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, and i is
                           <= N:  the leading principal minor of order i of A
                                  is not positive, so the factorization could not
                                  be completed, and the solution has not been
                                  computed. RCOND = 0 is returned.
                           = N+1: U is nonsingular, but RCOND is less than machine
                                  precision, meaning that the matrix is singular
                                  to working precision.  Nevertheless, the
                                  solution and error bounds are computed because
                                  there are a number of situations where the
                                  computed solution can be more accurate than the
                                  value of RCOND would suggest.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zposvx (character fact, character uplo, integer n, integer nrhs, complex*16,
       dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf,
       character equed, double precision, dimension( * ) s, complex*16, dimension( ldb, * ) b,
       integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision rcond,
       double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16,
       dimension( * ) work, double precision, dimension( * ) rwork, integer info)
        ZPOSVX computes the solution to system of linear equations A * X = B for PO matrices

       Purpose:

            ZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
            compute the solution to a complex system of linear equations
               A * X = B,
            where A is an N-by-N Hermitian positive definite matrix and X and B
            are N-by-NRHS matrices.

            Error bounds on the solution and a condition estimate are also
            provided.

       Description:

            The following steps are performed:

            1. If FACT = 'E', real scaling factors are computed to equilibrate
               the system:
                  diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
               Whether or not the system will be equilibrated depends on the
               scaling of the matrix A, but if equilibration is used, A is
               overwritten by diag(S)*A*diag(S) and B by diag(S)*B.

            2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
               factor the matrix A (after equilibration if FACT = 'E') as
                  A = U**H* U,  if UPLO = 'U', or
                  A = L * L**H,  if UPLO = 'L',
               where U is an upper triangular matrix and L is a lower triangular
               matrix.

            3. If the leading principal minor of order i is not positive,
               then the routine returns with INFO = i. Otherwise, the factored
               form of A is used to estimate the condition number of the matrix
               A.  If the reciprocal of the condition number is less than machine
               precision, INFO = N+1 is returned as a warning, but the routine
               still goes on to solve for X and compute error bounds as
               described below.

            4. The system of equations is solved for X using the factored form
               of A.

            5. Iterative refinement is applied to improve the computed solution
               matrix and calculate error bounds and backward error estimates
               for it.

            6. If equilibration was used, the matrix X is premultiplied by
               diag(S) so that it solves the original system before
               equilibration.

       Parameters
           FACT

                     FACT is CHARACTER*1
                     Specifies whether or not the factored form of the matrix A is
                     supplied on entry, and if not, whether the matrix A should be
                     equilibrated before it is factored.
                     = 'F':  On entry, AF contains the factored form of A.
                             If EQUED = 'Y', the matrix A has been equilibrated
                             with scaling factors given by S.  A and AF will not
                             be modified.
                     = 'N':  The matrix A will be copied to AF and factored.
                     = 'E':  The matrix A will be equilibrated if necessary, then
                             copied to AF and factored.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The number of linear equations, i.e., the order of the
                     matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the Hermitian matrix A, except if FACT = 'F' and
                     EQUED = 'Y', then A must contain the equilibrated matrix
                     diag(S)*A*diag(S).  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.  A is not modified if
                     FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.

                     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                     diag(S)*A*diag(S).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           AF

                     AF is COMPLEX*16 array, dimension (LDAF,N)
                     If FACT = 'F', then AF is an input argument and on entry
                     contains the triangular factor U or L from the Cholesky
                     factorization A = U**H *U or A = L*L**H, in the same storage
                     format as A.  If EQUED .ne. 'N', then AF is the factored form
                     of the equilibrated matrix diag(S)*A*diag(S).

                     If FACT = 'N', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**H *U or A = L*L**H of the original
                     matrix A.

                     If FACT = 'E', then AF is an output argument and on exit
                     returns the triangular factor U or L from the Cholesky
                     factorization A = U**H *U or A = L*L**H of the equilibrated
                     matrix A (see the description of A for the form of the
                     equilibrated matrix).

           LDAF

                     LDAF is INTEGER
                     The leading dimension of the array AF.  LDAF >= max(1,N).

           EQUED

                     EQUED is CHARACTER*1
                     Specifies the form of equilibration that was done.
                     = 'N':  No equilibration (always true if FACT = 'N').
                     = 'Y':  Equilibration was done, i.e., A has been replaced by
                             diag(S) * A * diag(S).
                     EQUED is an input argument if FACT = 'F'; otherwise, it is an
                     output argument.

           S

                     S is DOUBLE PRECISION array, dimension (N)
                     The scale factors for A; not accessed if EQUED = 'N'.  S is
                     an input argument if FACT = 'F'; otherwise, S is an output
                     argument.  If FACT = 'F' and EQUED = 'Y', each element of S
                     must be positive.

           B

                     B is COMPLEX*16 array, dimension (LDB,NRHS)
                     On entry, the N-by-NRHS righthand side matrix B.
                     On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
                     B is overwritten by diag(S) * B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is COMPLEX*16 array, dimension (LDX,NRHS)
                     If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
                     the original system of equations.  Note that if EQUED = 'Y',
                     A and B are modified on exit, and the solution to the
                     equilibrated system is inv(diag(S))*X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           RCOND

                     RCOND is DOUBLE PRECISION
                     The estimate of the reciprocal condition number of the matrix
                     A after equilibration (if done).  If RCOND is less than the
                     machine precision (in particular, if RCOND = 0), the matrix
                     is singular to working precision.  This condition is
                     indicated by a return code of INFO > 0.

           FERR

                     FERR is DOUBLE PRECISION array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is DOUBLE PRECISION array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is COMPLEX*16 array, dimension (2*N)

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, and i is
                           <= N:  the leading principal minor of order i of A
                                  is not positive, so the factorization could not
                                  be completed, and the solution has not been
                                  computed. RCOND = 0 is returned.
                           = N+1: U is nonsingular, but RCOND is less than machine
                                  precision, meaning that the matrix is singular
                                  to working precision.  Nevertheless, the
                                  solution and error bounds are computed because
                                  there are a number of situations where the
                                  computed solution can be more accurate than the
                                  value of RCOND would suggest.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.