Provided by: liblapack-doc_3.12.0-3build1.1_all 

NAME
ppsv - ppsv: factor and solve
SYNOPSIS
Functions
subroutine cppsv (uplo, n, nrhs, ap, b, ldb, info)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
subroutine dppsv (uplo, n, nrhs, ap, b, ldb, info)
DPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
subroutine sppsv (uplo, n, nrhs, ap, b, ldb, info)
SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
subroutine zppsv (uplo, n, nrhs, ap, b, ldb, info)
ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Detailed Description
Function Documentation
subroutine cppsv (character uplo, integer n, integer nrhs, complex, dimension( * ) ap, complex, dimension(
ldb, * ) b, integer ldb, integer info)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Purpose:
CPPSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP
AP is COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H, in the same storage
format as A.
B
B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
subroutine dppsv (character uplo, integer n, integer nrhs, double precision, dimension( * ) ap, double
precision, dimension( ldb, * ) b, integer ldb, integer info)
DPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Purpose:
DPPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP
AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
subroutine sppsv (character uplo, integer n, integer nrhs, real, dimension( * ) ap, real, dimension( ldb, * )
b, integer ldb, integer info)
SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Purpose:
SPPSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP
AP is REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, in the same storage
format as A.
B
B is REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
subroutine zppsv (character uplo, integer n, integer nrhs, complex*16, dimension( * ) ap, complex*16,
dimension( ldb, * ) b, integer ldb, integer info)
ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Purpose:
ZPPSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite matrix stored in
packed format and X and B are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H, in the same storage
format as A.
B
B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
of A is not positive, so the factorization could not
be completed, and the solution has not been computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 Fri Aug 9 2024 02:33:22 ppsv(3)