Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
tgevc - tgevc: eigvec of pair of matrices
SYNOPSIS
Functions subroutine ctgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, rwork, info) CTGEVC subroutine dtgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, info) DTGEVC subroutine stgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, info) STGEVC subroutine ztgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, rwork, info) ZTGEVC
Detailed Description
Function Documentation
subroutine ctgevc (character side, character howmny, logical, dimension( * ) select, integer n, complex, dimension( lds, * ) s, integer lds, complex, dimension( ldp, * ) p, integer ldp, complex, dimension( ldvl, * ) vl, integer ldvl, complex, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, complex, dimension( * ) work, real, dimension( * ) rwork, integer info) CTGEVC Purpose: CTGEVC computes some or all of the right and/or left eigenvectors of a pair of complex matrices (S,P), where S and P are upper triangular. Matrix pairs of this type are produced by the generalized Schur factorization of a complex matrix pair (A,B): A = Q*S*Z**H, B = Q*P*Z**H as computed by CGGHRD + CHGEQZ. The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are defined by: S*x = w*P*x, (y**H)*S = w*(y**H)*P, where y**H denotes the conjugate transpose of y. The eigenvalues are not input to this routine, but are computed directly from the diagonal elements of S and P. This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the products Z*X and/or Q*Y, where Z and Q are input matrices. If Q and Z are the unitary factors from the generalized Schur factorization of a matrix pair (A,B), then Z*X and Q*Y are the matrices of right and left eigenvectors of (A,B). Parameters SIDE SIDE is CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. HOWMNY HOWMNY is CHARACTER*1 = 'A': compute all right and/or left eigenvectors; = 'B': compute all right and/or left eigenvectors, backtransformed by the matrices in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, specified by the logical array SELECT. SELECT SELECT is LOGICAL array, dimension (N) If HOWMNY='S', SELECT specifies the eigenvectors to be computed. The eigenvector corresponding to the j-th eigenvalue is computed if SELECT(j) = .TRUE.. Not referenced if HOWMNY = 'A' or 'B'. N N is INTEGER The order of the matrices S and P. N >= 0. S S is COMPLEX array, dimension (LDS,N) The upper triangular matrix S from a generalized Schur factorization, as computed by CHGEQZ. LDS LDS is INTEGER The leading dimension of array S. LDS >= max(1,N). P P is COMPLEX array, dimension (LDP,N) The upper triangular matrix P from a generalized Schur factorization, as computed by CHGEQZ. P must have real diagonal elements. LDP LDP is INTEGER The leading dimension of array P. LDP >= max(1,N). VL VL is COMPLEX array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the unitary matrix Q of left Schur vectors returned by CHGEQZ). On exit, if SIDE = 'L' or 'B', VL contains: if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. Not referenced if SIDE = 'R'. LDVL LDVL is INTEGER The leading dimension of array VL. LDVL >= 1, and if SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N. VR VR is COMPLEX array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Z (usually the unitary matrix Z of right Schur vectors returned by CHGEQZ). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); if HOWMNY = 'B', the matrix Z*X; if HOWMNY = 'S', the right eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. Not referenced if SIDE = 'L'. LDVR LDVR is INTEGER The leading dimension of the array VR. LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. MM MM is INTEGER The number of columns in the arrays VL and/or VR. MM >= M. M M is INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected eigenvector occupies one column. WORK WORK is COMPLEX array, dimension (2*N) RWORK RWORK is REAL array, dimension (2*N) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dtgevc (character side, character howmny, logical, dimension( * ) select, integer n, double precision, dimension( lds, * ) s, integer lds, double precision, dimension( ldp, * ) p, integer ldp, double precision, dimension( ldvl, * ) vl, integer ldvl, double precision, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, double precision, dimension( * ) work, integer info) DTGEVC Purpose: DTGEVC computes some or all of the right and/or left eigenvectors of a pair of real matrices (S,P), where S is a quasi-triangular matrix and P is upper triangular. Matrix pairs of this type are produced by the generalized Schur factorization of a matrix pair (A,B): A = Q*S*Z**T, B = Q*P*Z**T as computed by DGGHRD + DHGEQZ. The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are defined by: S*x = w*P*x, (y**H)*S = w*(y**H)*P, where y**H denotes the conjugate transpose of y. The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks of S and P. This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the products Z*X and/or Q*Y, where Z and Q are input matrices. If Q and Z are the orthogonal factors from the generalized Schur factorization of a matrix pair (A,B), then Z*X and Q*Y are the matrices of right and left eigenvectors of (A,B). Parameters SIDE SIDE is CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. HOWMNY HOWMNY is CHARACTER*1 = 'A': compute all right and/or left eigenvectors; = 'B': compute all right and/or left eigenvectors, backtransformed by the matrices in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, specified by the logical array SELECT. SELECT SELECT is LOGICAL array, dimension (N) If HOWMNY='S', SELECT specifies the eigenvectors to be computed. If w(j) is a real eigenvalue, the corresponding real eigenvector is computed if SELECT(j) is .TRUE.. If w(j) and w(j+1) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either SELECT(j) or SELECT(j+1) is .TRUE., and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to .FALSE.. Not referenced if HOWMNY = 'A' or 'B'. N N is INTEGER The order of the matrices S and P. N >= 0. S S is DOUBLE PRECISION array, dimension (LDS,N) The upper quasi-triangular matrix S from a generalized Schur factorization, as computed by DHGEQZ. LDS LDS is INTEGER The leading dimension of array S. LDS >= max(1,N). P P is DOUBLE PRECISION array, dimension (LDP,N) The upper triangular matrix P from a generalized Schur factorization, as computed by DHGEQZ. 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S must be in positive diagonal form. LDP LDP is INTEGER The leading dimension of array P. LDP >= max(1,N). VL VL is DOUBLE PRECISION array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the orthogonal matrix Q of left Schur vectors returned by DHGEQZ). On exit, if SIDE = 'L' or 'B', VL contains: if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part. Not referenced if SIDE = 'R'. LDVL LDVL is INTEGER The leading dimension of array VL. LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. VR VR is DOUBLE PRECISION array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Z (usually the orthogonal matrix Z of right Schur vectors returned by DHGEQZ). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); if HOWMNY = 'B' or 'b', the matrix Z*X; if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part and the second the imaginary part. Not referenced if SIDE = 'L'. LDVR LDVR is INTEGER The leading dimension of the array VR. LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. MM MM is INTEGER The number of columns in the arrays VL and/or VR. MM >= M. M M is INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected real eigenvector occupies one column and each selected complex eigenvector occupies two columns. WORK WORK is DOUBLE PRECISION array, dimension (6*N) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex eigenvalue. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: Allocation of workspace: ---------- -- --------- WORK( j ) = 1-norm of j-th column of A, above the diagonal WORK( N+j ) = 1-norm of j-th column of B, above the diagonal WORK( 2*N+1:3*N ) = real part of eigenvector WORK( 3*N+1:4*N ) = imaginary part of eigenvector WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector Rowwise vs. columnwise solution methods: ------- -- ---------- -------- ------- Finding a generalized eigenvector consists basically of solving the singular triangular system (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left) Consider finding the i-th right eigenvector (assume all eigenvalues are real). The equation to be solved is: n i 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1 k=j k=j where C = (A - w B) (The components v(i+1:n) are 0.) The 'rowwise' method is: (1) v(i) := 1 for j = i-1,. . .,1: i (2) compute s = - sum C(j,k) v(k) and k=j+1 (3) v(j) := s / C(j,j) Step 2 is sometimes called the 'dot product' step, since it is an inner product between the j-th row and the portion of the eigenvector that has been computed so far. The 'columnwise' method consists basically in doing the sums for all the rows in parallel. As each v(j) is computed, the contribution of v(j) times the j-th column of C is added to the partial sums. Since FORTRAN arrays are stored columnwise, this has the advantage that at each step, the elements of C that are accessed are adjacent to one another, whereas with the rowwise method, the elements accessed at a step are spaced LDS (and LDP) words apart. When finding left eigenvectors, the matrix in question is the transpose of the one in storage, so the rowwise method then actually accesses columns of A and B at each step, and so is the preferred method. subroutine stgevc (character side, character howmny, logical, dimension( * ) select, integer n, real, dimension( lds, * ) s, integer lds, real, dimension( ldp, * ) p, integer ldp, real, dimension( ldvl, * ) vl, integer ldvl, real, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, real, dimension( * ) work, integer info) STGEVC Purpose: STGEVC computes some or all of the right and/or left eigenvectors of a pair of real matrices (S,P), where S is a quasi-triangular matrix and P is upper triangular. Matrix pairs of this type are produced by the generalized Schur factorization of a matrix pair (A,B): A = Q*S*Z**T, B = Q*P*Z**T as computed by SGGHRD + SHGEQZ. The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are defined by: S*x = w*P*x, (y**H)*S = w*(y**H)*P, where y**H denotes the conjugate transpose of y. The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks of S and P. This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the products Z*X and/or Q*Y, where Z and Q are input matrices. If Q and Z are the orthogonal factors from the generalized Schur factorization of a matrix pair (A,B), then Z*X and Q*Y are the matrices of right and left eigenvectors of (A,B). Parameters SIDE SIDE is CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. HOWMNY HOWMNY is CHARACTER*1 = 'A': compute all right and/or left eigenvectors; = 'B': compute all right and/or left eigenvectors, backtransformed by the matrices in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, specified by the logical array SELECT. SELECT SELECT is LOGICAL array, dimension (N) If HOWMNY='S', SELECT specifies the eigenvectors to be computed. If w(j) is a real eigenvalue, the corresponding real eigenvector is computed if SELECT(j) is .TRUE.. If w(j) and w(j+1) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either SELECT(j) or SELECT(j+1) is .TRUE., and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to .FALSE.. Not referenced if HOWMNY = 'A' or 'B'. N N is INTEGER The order of the matrices S and P. N >= 0. S S is REAL array, dimension (LDS,N) The upper quasi-triangular matrix S from a generalized Schur factorization, as computed by SHGEQZ. LDS LDS is INTEGER The leading dimension of array S. LDS >= max(1,N). P P is REAL array, dimension (LDP,N) The upper triangular matrix P from a generalized Schur factorization, as computed by SHGEQZ. 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S must be in positive diagonal form. LDP LDP is INTEGER The leading dimension of array P. LDP >= max(1,N). VL VL is REAL array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the orthogonal matrix Q of left Schur vectors returned by SHGEQZ). On exit, if SIDE = 'L' or 'B', VL contains: if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part. Not referenced if SIDE = 'R'. LDVL LDVL is INTEGER The leading dimension of array VL. LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. VR VR is REAL array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Z (usually the orthogonal matrix Z of right Schur vectors returned by SHGEQZ). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); if HOWMNY = 'B' or 'b', the matrix Z*X; if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part and the second the imaginary part. Not referenced if SIDE = 'L'. LDVR LDVR is INTEGER The leading dimension of the array VR. LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. MM MM is INTEGER The number of columns in the arrays VL and/or VR. MM >= M. M M is INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected real eigenvector occupies one column and each selected complex eigenvector occupies two columns. WORK WORK is REAL array, dimension (6*N) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex eigenvalue. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: Allocation of workspace: ---------- -- --------- WORK( j ) = 1-norm of j-th column of A, above the diagonal WORK( N+j ) = 1-norm of j-th column of B, above the diagonal WORK( 2*N+1:3*N ) = real part of eigenvector WORK( 3*N+1:4*N ) = imaginary part of eigenvector WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector Rowwise vs. columnwise solution methods: ------- -- ---------- -------- ------- Finding a generalized eigenvector consists basically of solving the singular triangular system (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left) Consider finding the i-th right eigenvector (assume all eigenvalues are real). The equation to be solved is: n i 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1 k=j k=j where C = (A - w B) (The components v(i+1:n) are 0.) The 'rowwise' method is: (1) v(i) := 1 for j = i-1,. . .,1: i (2) compute s = - sum C(j,k) v(k) and k=j+1 (3) v(j) := s / C(j,j) Step 2 is sometimes called the 'dot product' step, since it is an inner product between the j-th row and the portion of the eigenvector that has been computed so far. The 'columnwise' method consists basically in doing the sums for all the rows in parallel. As each v(j) is computed, the contribution of v(j) times the j-th column of C is added to the partial sums. Since FORTRAN arrays are stored columnwise, this has the advantage that at each step, the elements of C that are accessed are adjacent to one another, whereas with the rowwise method, the elements accessed at a step are spaced LDS (and LDP) words apart. When finding left eigenvectors, the matrix in question is the transpose of the one in storage, so the rowwise method then actually accesses columns of A and B at each step, and so is the preferred method. subroutine ztgevc (character side, character howmny, logical, dimension( * ) select, integer n, complex*16, dimension( lds, * ) s, integer lds, complex*16, dimension( ldp, * ) p, integer ldp, complex*16, dimension( ldvl, * ) vl, integer ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, integer mm, integer m, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info) ZTGEVC Purpose: ZTGEVC computes some or all of the right and/or left eigenvectors of a pair of complex matrices (S,P), where S and P are upper triangular. Matrix pairs of this type are produced by the generalized Schur factorization of a complex matrix pair (A,B): A = Q*S*Z**H, B = Q*P*Z**H as computed by ZGGHRD + ZHGEQZ. The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are defined by: S*x = w*P*x, (y**H)*S = w*(y**H)*P, where y**H denotes the conjugate transpose of y. The eigenvalues are not input to this routine, but are computed directly from the diagonal elements of S and P. This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the products Z*X and/or Q*Y, where Z and Q are input matrices. If Q and Z are the unitary factors from the generalized Schur factorization of a matrix pair (A,B), then Z*X and Q*Y are the matrices of right and left eigenvectors of (A,B). Parameters SIDE SIDE is CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. HOWMNY HOWMNY is CHARACTER*1 = 'A': compute all right and/or left eigenvectors; = 'B': compute all right and/or left eigenvectors, backtransformed by the matrices in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, specified by the logical array SELECT. SELECT SELECT is LOGICAL array, dimension (N) If HOWMNY='S', SELECT specifies the eigenvectors to be computed. The eigenvector corresponding to the j-th eigenvalue is computed if SELECT(j) = .TRUE.. Not referenced if HOWMNY = 'A' or 'B'. N N is INTEGER The order of the matrices S and P. N >= 0. S S is COMPLEX*16 array, dimension (LDS,N) The upper triangular matrix S from a generalized Schur factorization, as computed by ZHGEQZ. LDS LDS is INTEGER The leading dimension of array S. LDS >= max(1,N). P P is COMPLEX*16 array, dimension (LDP,N) The upper triangular matrix P from a generalized Schur factorization, as computed by ZHGEQZ. P must have real diagonal elements. LDP LDP is INTEGER The leading dimension of array P. LDP >= max(1,N). VL VL is COMPLEX*16 array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the unitary matrix Q of left Schur vectors returned by ZHGEQZ). On exit, if SIDE = 'L' or 'B', VL contains: if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. Not referenced if SIDE = 'R'. LDVL LDVL is INTEGER The leading dimension of array VL. LDVL >= 1, and if SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N. VR VR is COMPLEX*16 array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Z (usually the unitary matrix Z of right Schur vectors returned by ZHGEQZ). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); if HOWMNY = 'B', the matrix Z*X; if HOWMNY = 'S', the right eigenvectors of (S,P) specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. Not referenced if SIDE = 'L'. LDVR LDVR is INTEGER The leading dimension of the array VR. LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. MM MM is INTEGER The number of columns in the arrays VL and/or VR. MM >= M. M M is INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected eigenvector occupies one column. WORK WORK is COMPLEX*16 array, dimension (2*N) RWORK RWORK is DOUBLE PRECISION array, dimension (2*N) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.