Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       gbtrs - gbtrs: triangular solve using factor

SYNOPSIS

   Functions
       subroutine cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
           CGBTRS
       subroutine dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
           DGBTRS
       subroutine sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
           SGBTRS
       subroutine zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
           ZGBTRS

Detailed Description

Function Documentation

   subroutine cgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, complex,
       dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, complex, dimension(
       ldb, * ) b, integer ldb, integer info)
       CGBTRS

       Purpose:

            CGBTRS solves a system of linear equations
               A * X = B,  A**T * X = B,  or  A**H * X = B
            with a general band matrix A using the LU factorization computed
            by CGBTRF.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations.
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           AB

                     AB is COMPLEX array, dimension (LDAB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by CGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= N, row i of the matrix was
                     interchanged with row IPIV(i).

           B

                     B is COMPLEX array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, double
       precision, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, double
       precision, dimension( ldb, * ) b, integer ldb, integer info)
       DGBTRS

       Purpose:

            DGBTRS solves a system of linear equations
               A * X = B  or  A**T * X = B
            with a general band matrix A using the LU factorization computed
            by DGBTRF.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations.
                     = 'N':  A * X = B  (No transpose)
                     = 'T':  A**T* X = B  (Transpose)
                     = 'C':  A**T* X = B  (Conjugate transpose = Transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           AB

                     AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by DGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= N, row i of the matrix was
                     interchanged with row IPIV(i).

           B

                     B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs, real,
       dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, real, dimension( ldb,
       * ) b, integer ldb, integer info)
       SGBTRS

       Purpose:

            SGBTRS solves a system of linear equations
               A * X = B  or  A**T * X = B
            with a general band matrix A using the LU factorization computed
            by SGBTRF.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations.
                     = 'N':  A * X = B  (No transpose)
                     = 'T':  A**T* X = B  (Transpose)
                     = 'C':  A**T* X = B  (Conjugate transpose = Transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           AB

                     AB is REAL array, dimension (LDAB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by SGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= N, row i of the matrix was
                     interchanged with row IPIV(i).

           B

                     B is REAL array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zgbtrs (character trans, integer n, integer kl, integer ku, integer nrhs,
       complex*16, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv,
       complex*16, dimension( ldb, * ) b, integer ldb, integer info)
       ZGBTRS

       Purpose:

            ZGBTRS solves a system of linear equations
               A * X = B,  A**T * X = B,  or  A**H * X = B
            with a general band matrix A using the LU factorization computed
            by ZGBTRF.

       Parameters
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations.
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrix B.  NRHS >= 0.

           AB

                     AB is COMPLEX*16 array, dimension (LDAB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by ZGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices; for 1 <= i <= N, row i of the matrix was
                     interchanged with row IPIV(i).

           B

                     B is COMPLEX*16 array, dimension (LDB,NRHS)
                     On entry, the right hand side matrix B.
                     On exit, the solution matrix X.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.