Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       hptrf - {hp,sp}trf: triangular factor

SYNOPSIS

   Functions
       subroutine chptrf (uplo, n, ap, ipiv, info)
           CHPTRF
       subroutine csptrf (uplo, n, ap, ipiv, info)
           CSPTRF
       subroutine dsptrf (uplo, n, ap, ipiv, info)
           DSPTRF
       subroutine ssptrf (uplo, n, ap, ipiv, info)
           SSPTRF
       subroutine zhptrf (uplo, n, ap, ipiv, info)
           ZHPTRF
       subroutine zsptrf (uplo, n, ap, ipiv, info)
           ZSPTRF

Detailed Description

Function Documentation

   subroutine chptrf (character uplo, integer n, complex, dimension( * ) ap, integer, dimension(
       * ) ipiv, integer info)
       CHPTRF

       Purpose:

            CHPTRF computes the factorization of a complex Hermitian packed
            matrix A using the Bunch-Kaufman diagonal pivoting method:

               A = U*D*U**H  or  A = L*D*L**H

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is Hermitian and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L, stored as a packed triangular
                     matrix overwriting A (see below for further details).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.
                     If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     interchanged and D(k,k) is a 1-by-1 diagonal block.
                     If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             If UPLO = 'U', then A = U*D*U**H, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**H, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

       Contributors:
           J. Lewis, Boeing Computer Services Company

   subroutine csptrf (character uplo, integer n, complex, dimension( * ) ap, integer, dimension(
       * ) ipiv, integer info)
       CSPTRF

       Purpose:

            CSPTRF computes the factorization of a complex symmetric matrix A
            stored in packed format using the Bunch-Kaufman diagonal pivoting
            method:

               A = U*D*U**T  or  A = L*D*L**T

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is symmetric and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L, stored as a packed triangular
                     matrix overwriting A (see below for further details).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.
                     If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     interchanged and D(k,k) is a 1-by-1 diagonal block.
                     If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             5-96 - Based on modifications by J. Lewis, Boeing Computer Services
                    Company

             If UPLO = 'U', then A = U*D*U**T, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**T, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

   subroutine dsptrf (character uplo, integer n, double precision, dimension( * ) ap, integer,
       dimension( * ) ipiv, integer info)
       DSPTRF

       Purpose:

            DSPTRF computes the factorization of a real symmetric matrix A stored
            in packed format using the Bunch-Kaufman diagonal pivoting method:

               A = U*D*U**T  or  A = L*D*L**T

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is symmetric and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L, stored as a packed triangular
                     matrix overwriting A (see below for further details).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.
                     If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     interchanged and D(k,k) is a 1-by-1 diagonal block.
                     If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             If UPLO = 'U', then A = U*D*U**T, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**T, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

       Contributors:
           J. Lewis, Boeing Computer Services Company

   subroutine ssptrf (character uplo, integer n, real, dimension( * ) ap, integer, dimension( * )
       ipiv, integer info)
       SSPTRF

       Purpose:

            SSPTRF computes the factorization of a real symmetric matrix A stored
            in packed format using the Bunch-Kaufman diagonal pivoting method:

               A = U*D*U**T  or  A = L*D*L**T

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is symmetric and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is REAL array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L, stored as a packed triangular
                     matrix overwriting A (see below for further details).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.
                     If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     interchanged and D(k,k) is a 1-by-1 diagonal block.
                     If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             5-96 - Based on modifications by J. Lewis, Boeing Computer Services
                    Company

             If UPLO = 'U', then A = U*D*U**T, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**T, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

   subroutine zhptrf (character uplo, integer n, complex*16, dimension( * ) ap, integer,
       dimension( * ) ipiv, integer info)
       ZHPTRF

       Purpose:

            ZHPTRF computes the factorization of a complex Hermitian packed
            matrix A using the Bunch-Kaufman diagonal pivoting method:

               A = U*D*U**H  or  A = L*D*L**H

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is Hermitian and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L, stored as a packed triangular
                     matrix overwriting A (see below for further details).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.
                     If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     interchanged and D(k,k) is a 1-by-1 diagonal block.
                     If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             If UPLO = 'U', then A = U*D*U**H, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**H, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

       Contributors:
           J. Lewis, Boeing Computer Services Company

   subroutine zsptrf (character uplo, integer n, complex*16, dimension( * ) ap, integer,
       dimension( * ) ipiv, integer info)
       ZSPTRF

       Purpose:

            ZSPTRF computes the factorization of a complex symmetric matrix A
            stored in packed format using the Bunch-Kaufman diagonal pivoting
            method:

               A = U*D*U**T  or  A = L*D*L**T

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is symmetric and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L, stored as a packed triangular
                     matrix overwriting A (see below for further details).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.
                     If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                     interchanged and D(k,k) is a 1-by-1 diagonal block.
                     If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                     columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                     is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                     IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                     interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value
                     > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             5-96 - Based on modifications by J. Lewis, Boeing Computer Services
                    Company

             If UPLO = 'U', then A = U*D*U**T, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**T, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

Author

       Generated automatically by Doxygen for LAPACK from the source code.