Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       largv - largv: generate vector of plane rotations

SYNOPSIS

   Functions
       subroutine clargv (n, x, incx, y, incy, c, incc)
           CLARGV generates a vector of plane rotations with real cosines and complex sines.
       subroutine dlargv (n, x, incx, y, incy, c, incc)
           DLARGV generates a vector of plane rotations with real cosines and real sines.
       subroutine slargv (n, x, incx, y, incy, c, incc)
           SLARGV generates a vector of plane rotations with real cosines and real sines.
       subroutine zlargv (n, x, incx, y, incy, c, incc)
           ZLARGV generates a vector of plane rotations with real cosines and complex sines.

Detailed Description

Function Documentation

   subroutine clargv (integer n, complex, dimension( * ) x, integer incx, complex, dimension( * )
       y, integer incy, real, dimension( * ) c, integer incc)
       CLARGV generates a vector of plane rotations with real cosines and complex sines.

       Purpose:

            CLARGV generates a vector of complex plane rotations with real
            cosines, determined by elements of the complex vectors x and y.
            For i = 1,2,...,n

               (        c(i)   s(i) ) ( x(i) ) = ( r(i) )
               ( -conjg(s(i))  c(i) ) ( y(i) ) = (   0  )

               where c(i)**2 + ABS(s(i))**2 = 1

            The following conventions are used (these are the same as in CLARTG,
            but differ from the BLAS1 routine CROTG):
               If y(i)=0, then c(i)=1 and s(i)=0.
               If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.

       Parameters
           N

                     N is INTEGER
                     The number of plane rotations to be generated.

           X

                     X is COMPLEX array, dimension (1+(N-1)*INCX)
                     On entry, the vector x.
                     On exit, x(i) is overwritten by r(i), for i = 1,...,n.

           INCX

                     INCX is INTEGER
                     The increment between elements of X. INCX > 0.

           Y

                     Y is COMPLEX array, dimension (1+(N-1)*INCY)
                     On entry, the vector y.
                     On exit, the sines of the plane rotations.

           INCY

                     INCY is INTEGER
                     The increment between elements of Y. INCY > 0.

           C

                     C is REAL array, dimension (1+(N-1)*INCC)
                     The cosines of the plane rotations.

           INCC

                     INCC is INTEGER
                     The increment between elements of C. INCC > 0.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel

             This version has a few statements commented out for thread safety
             (machine parameters are computed on each entry). 10 feb 03, SJH.

   subroutine dlargv (integer n, double precision, dimension( * ) x, integer incx, double
       precision, dimension( * ) y, integer incy, double precision, dimension( * ) c, integer
       incc)
       DLARGV generates a vector of plane rotations with real cosines and real sines.

       Purpose:

            DLARGV generates a vector of real plane rotations, determined by
            elements of the real vectors x and y. For i = 1,2,...,n

               (  c(i)  s(i) ) ( x(i) ) = ( a(i) )
               ( -s(i)  c(i) ) ( y(i) ) = (   0  )

       Parameters
           N

                     N is INTEGER
                     The number of plane rotations to be generated.

           X

                     X is DOUBLE PRECISION array,
                                    dimension (1+(N-1)*INCX)
                     On entry, the vector x.
                     On exit, x(i) is overwritten by a(i), for i = 1,...,n.

           INCX

                     INCX is INTEGER
                     The increment between elements of X. INCX > 0.

           Y

                     Y is DOUBLE PRECISION array,
                                    dimension (1+(N-1)*INCY)
                     On entry, the vector y.
                     On exit, the sines of the plane rotations.

           INCY

                     INCY is INTEGER
                     The increment between elements of Y. INCY > 0.

           C

                     C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
                     The cosines of the plane rotations.

           INCC

                     INCC is INTEGER
                     The increment between elements of C. INCC > 0.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine slargv (integer n, real, dimension( * ) x, integer incx, real, dimension( * ) y,
       integer incy, real, dimension( * ) c, integer incc)
       SLARGV generates a vector of plane rotations with real cosines and real sines.

       Purpose:

            SLARGV generates a vector of real plane rotations, determined by
            elements of the real vectors x and y. For i = 1,2,...,n

               (  c(i)  s(i) ) ( x(i) ) = ( a(i) )
               ( -s(i)  c(i) ) ( y(i) ) = (   0  )

       Parameters
           N

                     N is INTEGER
                     The number of plane rotations to be generated.

           X

                     X is REAL array,
                                    dimension (1+(N-1)*INCX)
                     On entry, the vector x.
                     On exit, x(i) is overwritten by a(i), for i = 1,...,n.

           INCX

                     INCX is INTEGER
                     The increment between elements of X. INCX > 0.

           Y

                     Y is REAL array,
                                    dimension (1+(N-1)*INCY)
                     On entry, the vector y.
                     On exit, the sines of the plane rotations.

           INCY

                     INCY is INTEGER
                     The increment between elements of Y. INCY > 0.

           C

                     C is REAL array, dimension (1+(N-1)*INCC)
                     The cosines of the plane rotations.

           INCC

                     INCC is INTEGER
                     The increment between elements of C. INCC > 0.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zlargv (integer n, complex*16, dimension( * ) x, integer incx, complex*16,
       dimension( * ) y, integer incy, double precision, dimension( * ) c, integer incc)
       ZLARGV generates a vector of plane rotations with real cosines and complex sines.

       Purpose:

            ZLARGV generates a vector of complex plane rotations with real
            cosines, determined by elements of the complex vectors x and y.
            For i = 1,2,...,n

               (        c(i)   s(i) ) ( x(i) ) = ( r(i) )
               ( -conjg(s(i))  c(i) ) ( y(i) ) = (   0  )

               where c(i)**2 + ABS(s(i))**2 = 1

            The following conventions are used (these are the same as in ZLARTG,
            but differ from the BLAS1 routine ZROTG):
               If y(i)=0, then c(i)=1 and s(i)=0.
               If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.

       Parameters
           N

                     N is INTEGER
                     The number of plane rotations to be generated.

           X

                     X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
                     On entry, the vector x.
                     On exit, x(i) is overwritten by r(i), for i = 1,...,n.

           INCX

                     INCX is INTEGER
                     The increment between elements of X. INCX > 0.

           Y

                     Y is COMPLEX*16 array, dimension (1+(N-1)*INCY)
                     On entry, the vector y.
                     On exit, the sines of the plane rotations.

           INCY

                     INCY is INTEGER
                     The increment between elements of Y. INCY > 0.

           C

                     C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
                     The cosines of the plane rotations.

           INCC

                     INCC is INTEGER
                     The increment between elements of C. INCC > 0.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel

             This version has a few statements commented out for thread safety
             (machine parameters are computed on each entry). 10 feb 03, SJH.

Author

       Generated automatically by Doxygen for LAPACK from the source code.