Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       potrf2 - potrf2: triangular factor panel, recursive?

SYNOPSIS

   Functions
       recursive subroutine cpotrf2 (uplo, n, a, lda, info)
           CPOTRF2
       recursive subroutine dpotrf2 (uplo, n, a, lda, info)
           DPOTRF2
       recursive subroutine spotrf2 (uplo, n, a, lda, info)
           SPOTRF2
       recursive subroutine zpotrf2 (uplo, n, a, lda, info)
           ZPOTRF2

Detailed Description

Function Documentation

   recursive subroutine cpotrf2 (character uplo, integer n, complex, dimension( lda, * ) a,
       integer lda, integer info)
       CPOTRF2

       Purpose:

            CPOTRF2 computes the Cholesky factorization of a Hermitian
            positive definite matrix A using the recursive algorithm.

            The factorization has the form
               A = U**H * U,  if UPLO = 'U', or
               A = L  * L**H,  if UPLO = 'L',
            where U is an upper triangular matrix and L is lower triangular.

            This is the recursive version of the algorithm. It divides
            the matrix into four submatrices:

                   [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
               A = [ -----|----- ]  with n1 = n/2
                   [  A21 | A22  ]       n2 = n-n1

            The subroutine calls itself to factor A11. Update and scale A21
            or A12, update A22 then calls itself to factor A22.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.

                     On exit, if INFO = 0, the factor U or L from the Cholesky
                     factorization A = U**H*U or A = L*L**H.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the leading principal minor of order i
                           is not positive, and the factorization could not be
                           completed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   recursive subroutine dpotrf2 (character uplo, integer n, double precision, dimension( lda, * )
       a, integer lda, integer info)
       DPOTRF2

       Purpose:

            DPOTRF2 computes the Cholesky factorization of a real symmetric
            positive definite matrix A using the recursive algorithm.

            The factorization has the form
               A = U**T * U,  if UPLO = 'U', or
               A = L  * L**T,  if UPLO = 'L',
            where U is an upper triangular matrix and L is lower triangular.

            This is the recursive version of the algorithm. It divides
            the matrix into four submatrices:

                   [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
               A = [ -----|----- ]  with n1 = n/2
                   [  A21 | A22  ]       n2 = n-n1

            The subroutine calls itself to factor A11. Update and scale A21
            or A12, update A22 then calls itself to factor A22.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.

                     On exit, if INFO = 0, the factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the leading principal minor of order i
                           is not positive, and the factorization could not be
                           completed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   recursive subroutine spotrf2 (character uplo, integer n, real, dimension( lda, * ) a, integer
       lda, integer info)
       SPOTRF2

       Purpose:

            SPOTRF2 computes the Cholesky factorization of a real symmetric
            positive definite matrix A using the recursive algorithm.

            The factorization has the form
               A = U**T * U,  if UPLO = 'U', or
               A = L  * L**T,  if UPLO = 'L',
            where U is an upper triangular matrix and L is lower triangular.

            This is the recursive version of the algorithm. It divides
            the matrix into four submatrices:

                   [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
               A = [ -----|----- ]  with n1 = n/2
                   [  A21 | A22  ]       n2 = n-n1

            The subroutine calls itself to factor A11. Update and scale A21
            or A12, update A22 then call itself to factor A22.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.

                     On exit, if INFO = 0, the factor U or L from the Cholesky
                     factorization A = U**T*U or A = L*L**T.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the leading principal minor of order i
                           is not positive, and the factorization could not be
                           completed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   recursive subroutine zpotrf2 (character uplo, integer n, complex*16, dimension( lda, * ) a,
       integer lda, integer info)
       ZPOTRF2

       Purpose:

            ZPOTRF2 computes the Cholesky factorization of a Hermitian
            positive definite matrix A using the recursive algorithm.

            The factorization has the form
               A = U**H * U,  if UPLO = 'U', or
               A = L  * L**H,  if UPLO = 'L',
            where U is an upper triangular matrix and L is lower triangular.

            This is the recursive version of the algorithm. It divides
            the matrix into four submatrices:

                   [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
               A = [ -----|----- ]  with n1 = n/2
                   [  A21 | A22  ]       n2 = n-n1

            The subroutine calls itself to factor A11. Update and scale A21
            or A12, update A22 then call itself to factor A22.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     N-by-N upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading N-by-N lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.

                     On exit, if INFO = 0, the factor U or L from the Cholesky
                     factorization A = U**H*U or A = L*L**H.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the leading principal minor of order i
                           is not positive, and the factorization could not be
                           completed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.