Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
hptri - {hp,sp}tri: triangular inverse
SYNOPSIS
Functions subroutine chptri (uplo, n, ap, ipiv, work, info) CHPTRI subroutine csptri (uplo, n, ap, ipiv, work, info) CSPTRI subroutine dsptri (uplo, n, ap, ipiv, work, info) DSPTRI subroutine ssptri (uplo, n, ap, ipiv, work, info) SSPTRI subroutine zhptri (uplo, n, ap, ipiv, work, info) ZHPTRI subroutine zsptri (uplo, n, ap, ipiv, work, info) ZSPTRI
Detailed Description
Function Documentation
subroutine chptri (character uplo, integer n, complex, dimension( * ) ap, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info) CHPTRI Purpose: CHPTRI computes the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization A = U*D*U**H or A = L*D*L**H computed by CHPTRF. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H. N N is INTEGER The order of the matrix A. N >= 0. AP AP is COMPLEX array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHPTRF. WORK WORK is COMPLEX array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine csptri (character uplo, integer n, complex, dimension( * ) ap, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer info) CSPTRI Purpose: CSPTRI computes the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N N is INTEGER The order of the matrix A. N >= 0. AP AP is COMPLEX array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSPTRF. WORK WORK is COMPLEX array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine dsptri (character uplo, integer n, double precision, dimension( * ) ap, integer, dimension( * ) ipiv, double precision, dimension( * ) work, integer info) DSPTRI Purpose: DSPTRI computes the inverse of a real symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N N is INTEGER The order of the matrix A. N >= 0. AP AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSPTRF. WORK WORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine ssptri (character uplo, integer n, real, dimension( * ) ap, integer, dimension( * ) ipiv, real, dimension( * ) work, integer info) SSPTRI Purpose: SSPTRI computes the inverse of a real symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by SSPTRF. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N N is INTEGER The order of the matrix A. N >= 0. AP AP is REAL array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by SSPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSPTRF. WORK WORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zhptri (character uplo, integer n, complex*16, dimension( * ) ap, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info) ZHPTRI Purpose: ZHPTRI computes the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H. N N is INTEGER The order of the matrix A. N >= 0. AP AP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHPTRF. WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. subroutine zsptri (character uplo, integer n, complex*16, dimension( * ) ap, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer info) ZSPTRI Purpose: ZSPTRI computes the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N N is INTEGER The order of the matrix A. N >= 0. AP AP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZSPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSPTRF. WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code.