Provided by: liblapack-doc_3.12.0-3build1.1_all
NAME
hetri_3 - {he,sy}tri_3: inverse
SYNOPSIS
Functions subroutine chetri_3 (uplo, n, a, lda, e, ipiv, work, lwork, info) CHETRI_3 subroutine csytri_3 (uplo, n, a, lda, e, ipiv, work, lwork, info) CSYTRI_3 subroutine dsytri_3 (uplo, n, a, lda, e, ipiv, work, lwork, info) DSYTRI_3 subroutine ssytri_3 (uplo, n, a, lda, e, ipiv, work, lwork, info) SSYTRI_3 subroutine zhetri_3 (uplo, n, a, lda, e, ipiv, work, lwork, info) ZHETRI_3 subroutine zsytri_3 (uplo, n, a, lda, e, ipiv, work, lwork, info) ZSYTRI_3
Detailed Description
Function Documentation
subroutine chetri_3 (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer lwork, integer info) CHETRI_3 Purpose: CHETRI_3 computes the inverse of a complex Hermitian indefinite matrix A using the factorization computed by CHETRF_RK or CHETRF_BK: A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**H (or L**H) is the conjugate of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. CHETRI_3 sets the leading dimension of the workspace before calling CHETRI_3X that actually computes the inverse. This is the blocked version of the algorithm, calling Level 3 BLAS. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, diagonal of the block diagonal matrix D and factors U or L as computed by CHETRF_RK and CHETRF_BK: a) ONLY diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, if INFO = 0, the Hermitian inverse of the original matrix. If UPLO = 'U': the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; If UPLO = 'L': the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). E E is COMPLEX array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF_RK or CHETRF_BK. WORK WORK is COMPLEX array, dimension (N+NB+1)*(NB+3). On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= (N+NB+1)*(NB+3). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley subroutine csytri_3 (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer lwork, integer info) CSYTRI_3 Purpose: CSYTRI_3 computes the inverse of a complex symmetric indefinite matrix A using the factorization computed by CSYTRF_RK or CSYTRF_BK: A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**T (or L**T) is the transpose of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. CSYTRI_3 sets the leading dimension of the workspace before calling CSYTRI_3X that actually computes the inverse. This is the blocked version of the algorithm, calling Level 3 BLAS. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, diagonal of the block diagonal matrix D and factors U or L as computed by CSYTRF_RK and CSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, if INFO = 0, the symmetric inverse of the original matrix. If UPLO = 'U': the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; If UPLO = 'L': the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). E E is COMPLEX array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSYTRF_RK or CSYTRF_BK. WORK WORK is COMPLEX array, dimension (N+NB+1)*(NB+3). On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= (N+NB+1)*(NB+3). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley subroutine dsytri_3 (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) e, integer, dimension( * ) ipiv, double precision, dimension( * ) work, integer lwork, integer info) DSYTRI_3 Purpose: DSYTRI_3 computes the inverse of a real symmetric indefinite matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK: A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**T (or L**T) is the transpose of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. DSYTRI_3 sets the leading dimension of the workspace before calling DSYTRI_3X that actually computes the inverse. This is the blocked version of the algorithm, calling Level 3 BLAS. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, diagonal of the block diagonal matrix D and factors U or L as computed by DSYTRF_RK and DSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, if INFO = 0, the symmetric inverse of the original matrix. If UPLO = 'U': the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; If UPLO = 'L': the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). E E is DOUBLE PRECISION array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSYTRF_RK or DSYTRF_BK. WORK WORK is DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3). On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= (N+NB+1)*(NB+3). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley subroutine ssytri_3 (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) e, integer, dimension( * ) ipiv, real, dimension( * ) work, integer lwork, integer info) SSYTRI_3 Purpose: SSYTRI_3 computes the inverse of a real symmetric indefinite matrix A using the factorization computed by SSYTRF_RK or SSYTRF_BK: A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**T (or L**T) is the transpose of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. SSYTRI_3 sets the leading dimension of the workspace before calling SSYTRI_3X that actually computes the inverse. This is the blocked version of the algorithm, calling Level 3 BLAS. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, diagonal of the block diagonal matrix D and factors U or L as computed by SSYTRF_RK and SSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, if INFO = 0, the symmetric inverse of the original matrix. If UPLO = 'U': the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; If UPLO = 'L': the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). E E is REAL array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF_RK or SSYTRF_BK. WORK WORK is REAL array, dimension (N+NB+1)*(NB+3). On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= (N+NB+1)*(NB+3). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley subroutine zhetri_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer lwork, integer info) ZHETRI_3 Purpose: ZHETRI_3 computes the inverse of a complex Hermitian indefinite matrix A using the factorization computed by ZHETRF_RK or ZHETRF_BK: A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**H (or L**H) is the conjugate of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. ZHETRI_3 sets the leading dimension of the workspace before calling ZHETRI_3X that actually computes the inverse. This is the blocked version of the algorithm, calling Level 3 BLAS. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, diagonal of the block diagonal matrix D and factors U or L as computed by ZHETRF_RK and ZHETRF_BK: a) ONLY diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, if INFO = 0, the Hermitian inverse of the original matrix. If UPLO = 'U': the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; If UPLO = 'L': the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). E E is COMPLEX*16 array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF_RK or ZHETRF_BK. WORK WORK is COMPLEX*16 array, dimension (N+NB+1)*(NB+3). On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= (N+NB+1)*(NB+3). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley subroutine zsytri_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer lwork, integer info) ZSYTRI_3 Purpose: ZSYTRI_3 computes the inverse of a complex symmetric indefinite matrix A using the factorization computed by ZSYTRF_RK or ZSYTRF_BK: A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**T (or L**T) is the transpose of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. ZSYTRI_3 sets the leading dimension of the workspace before calling ZSYTRI_3X that actually computes the inverse. This is the blocked version of the algorithm, calling Level 3 BLAS. Parameters UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, diagonal of the block diagonal matrix D and factors U or L as computed by ZSYTRF_RK and ZSYTRF_BK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. On exit, if INFO = 0, the symmetric inverse of the original matrix. If UPLO = 'U': the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; If UPLO = 'L': the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). E E is COMPLEX*16 array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSYTRF_RK or ZSYTRF_BK. WORK WORK is COMPLEX*16 array, dimension (N+NB+1)*(NB+3). On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of WORK. LWORK >= (N+NB+1)*(NB+3). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: November 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley
Author
Generated automatically by Doxygen for LAPACK from the source code.