Provided by: liblapack-doc_3.12.0-3build1.1_all bug

NAME

       unml2 - {un,or}ml2: multiply by Q, level 2, step in unmlq

SYNOPSIS

   Functions
       subroutine cunml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
           CUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization
           determined by cgelqf (unblocked algorithm).
       subroutine dorml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
           DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization
           determined by sgelqf (unblocked algorithm).
       subroutine sorml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
           SORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization
           determined by sgelqf (unblocked algorithm).
       subroutine zunml2 (side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
           ZUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization
           determined by cgelqf (unblocked algorithm).

Detailed Description

Function Documentation

   subroutine cunml2 (character side, character trans, integer m, integer n, integer k, complex,
       dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc,
       * ) c, integer ldc, complex, dimension( * ) work, integer info)
       CUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization
       determined by cgelqf (unblocked algorithm).

       Purpose:

            CUNML2 overwrites the general complex m-by-n matrix C with

                  Q * C  if SIDE = 'L' and TRANS = 'N', or

                  Q**H* C  if SIDE = 'L' and TRANS = 'C', or

                  C * Q  if SIDE = 'R' and TRANS = 'N', or

                  C * Q**H if SIDE = 'R' and TRANS = 'C',

            where Q is a complex unitary matrix defined as the product of k
            elementary reflectors

                  Q = H(k)**H . . . H(2)**H H(1)**H

            as returned by CGELQF. Q is of order m if SIDE = 'L' and of order n
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**H from the Left
                     = 'R': apply Q or Q**H from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply Q  (No transpose)
                     = 'C': apply Q**H (Conjugate transpose)

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is COMPLEX array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     CGELQF in the first k rows of its array argument A.
                     A is modified by the routine but restored on exit.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is COMPLEX array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by CGELQF.

           C

                     C is COMPLEX array, dimension (LDC,N)
                     On entry, the m-by-n matrix C.
                     On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is COMPLEX array, dimension
                                              (N) if SIDE = 'L',
                                              (M) if SIDE = 'R'

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dorml2 (character side, character trans, integer m, integer n, integer k, double
       precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau,
       double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * )
       work, integer info)
       DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization
       determined by sgelqf (unblocked algorithm).

       Purpose:

            DORML2 overwrites the general real m by n matrix C with

                  Q * C  if SIDE = 'L' and TRANS = 'N', or

                  Q**T* C  if SIDE = 'L' and TRANS = 'T', or

                  C * Q  if SIDE = 'R' and TRANS = 'N', or

                  C * Q**T if SIDE = 'R' and TRANS = 'T',

            where Q is a real orthogonal matrix defined as the product of k
            elementary reflectors

                  Q = H(k) . . . H(2) H(1)

            as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**T from the Left
                     = 'R': apply Q or Q**T from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply Q  (No transpose)
                     = 'T': apply Q**T (Transpose)

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is DOUBLE PRECISION array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     DGELQF in the first k rows of its array argument A.
                     A is modified by the routine but restored on exit.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is DOUBLE PRECISION array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by DGELQF.

           C

                     C is DOUBLE PRECISION array, dimension (LDC,N)
                     On entry, the m by n matrix C.
                     On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is DOUBLE PRECISION array, dimension
                                              (N) if SIDE = 'L',
                                              (M) if SIDE = 'R'

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sorml2 (character side, character trans, integer m, integer n, integer k, real,
       dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c,
       integer ldc, real, dimension( * ) work, integer info)
       SORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization
       determined by sgelqf (unblocked algorithm).

       Purpose:

            SORML2 overwrites the general real m by n matrix C with

                  Q * C  if SIDE = 'L' and TRANS = 'N', or

                  Q**T* C  if SIDE = 'L' and TRANS = 'T', or

                  C * Q  if SIDE = 'R' and TRANS = 'N', or

                  C * Q**T if SIDE = 'R' and TRANS = 'T',

            where Q is a real orthogonal matrix defined as the product of k
            elementary reflectors

                  Q = H(k) . . . H(2) H(1)

            as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**T from the Left
                     = 'R': apply Q or Q**T from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply Q  (No transpose)
                     = 'T': apply Q**T (Transpose)

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is REAL array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     SGELQF in the first k rows of its array argument A.
                     A is modified by the routine but restored on exit.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is REAL array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by SGELQF.

           C

                     C is REAL array, dimension (LDC,N)
                     On entry, the m by n matrix C.
                     On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is REAL array, dimension
                                              (N) if SIDE = 'L',
                                              (M) if SIDE = 'R'

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zunml2 (character side, character trans, integer m, integer n, integer k,
       complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau,
       complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer
       info)
       ZUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization
       determined by cgelqf (unblocked algorithm).

       Purpose:

            ZUNML2 overwrites the general complex m-by-n matrix C with

                  Q * C  if SIDE = 'L' and TRANS = 'N', or

                  Q**H* C  if SIDE = 'L' and TRANS = 'C', or

                  C * Q  if SIDE = 'R' and TRANS = 'N', or

                  C * Q**H if SIDE = 'R' and TRANS = 'C',

            where Q is a complex unitary matrix defined as the product of k
            elementary reflectors

                  Q = H(k)**H . . . H(2)**H H(1)**H

            as returned by ZGELQF. Q is of order m if SIDE = 'L' and of order n
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**H from the Left
                     = 'R': apply Q or Q**H from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply Q  (No transpose)
                     = 'C': apply Q**H (Conjugate transpose)

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is COMPLEX*16 array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     ZGELQF in the first k rows of its array argument A.
                     A is modified by the routine but restored on exit.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is COMPLEX*16 array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by ZGELQF.

           C

                     C is COMPLEX*16 array, dimension (LDC,N)
                     On entry, the m-by-n matrix C.
                     On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is COMPLEX*16 array, dimension
                                              (N) if SIDE = 'L',
                                              (M) if SIDE = 'R'

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.