Provided by: openssl_3.0.13-0ubuntu3.5_amd64 bug

NAME

       EVP_KDF-HKDF - The HKDF EVP_KDF implementation

DESCRIPTION

       Support for computing the HKDF KDF through the EVP_KDF API.

       The EVP_KDF-HKDF algorithm implements the HKDF key derivation function.  HKDF follows the "extract-then-
       expand" paradigm, where the KDF logically consists of two modules. The first stage takes the input keying
       material and "extracts" from it a fixed-length pseudorandom key K. The second stage "expands" the key K
       into several additional pseudorandom keys (the output of the KDF).

   Identity
       "HKDF" is the name for this implementation; it can be used with the EVP_KDF_fetch() function.

   Supported parameters
       The supported parameters are:

       "properties" (OSSL_KDF_PARAM_PROPERTIES) <UTF8 string>
       "digest" (OSSL_KDF_PARAM_DIGEST) <UTF8 string>
       "key" (OSSL_KDF_PARAM_KEY) <octet string>
       "salt" (OSSL_KDF_PARAM_SALT) <octet string>
           These parameters work as described in "PARAMETERS" in EVP_KDF(3).

       "info" (OSSL_KDF_PARAM_INFO) <octet string>
           This parameter sets the info value.  The length of the context info buffer cannot exceed 1024 bytes;
           this should be more than enough for any normal use of HKDF.

       "mode" (OSSL_KDF_PARAM_MODE) <UTF8 string> or <integer>
           This parameter sets the mode for the HKDF operation.  There are three modes that are currently
           defined:

           "EXTRACT_AND_EXPAND" or EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND
               This is the default mode.  Calling EVP_KDF_derive(3) on an EVP_KDF_CTX set up for HKDF will
               perform an extract followed by an expand operation in one go.  The derived key returned will be
               the result after the expand operation. The intermediate fixed-length pseudorandom key K is not
               returned.

               In this mode the digest, key, salt and info values must be set before a key is derived otherwise
               an error will occur.

           "EXTRACT_ONLY" or EVP_KDF_HKDF_MODE_EXTRACT_ONLY
               In this mode calling EVP_KDF_derive(3) will just perform the extract operation. The value
               returned will be the intermediate fixed-length pseudorandom key K.  The keylen parameter must
               match the size of K, which can be looked up by calling EVP_KDF_CTX_get_kdf_size() after setting
               the mode and digest.

               The digest, key and salt values must be set before a key is derived otherwise an error will
               occur.

           "EXPAND_ONLY" or EVP_KDF_HKDF_MODE_EXPAND_ONLY
               In this mode calling EVP_KDF_derive(3) will just perform the expand operation. The input key
               should be set to the intermediate fixed-length pseudorandom key K returned from a previous
               extract operation.

               The digest, key and info values must be set before a key is derived otherwise an error will
               occur.

NOTES

       A context for HKDF can be obtained by calling:

        EVP_KDF *kdf = EVP_KDF_fetch(NULL, "HKDF", NULL);
        EVP_KDF_CTX *kctx = EVP_KDF_CTX_new(kdf);

       The output length of an HKDF expand operation is specified via the keylen parameter to the
       EVP_KDF_derive(3) function.  When using EVP_KDF_HKDF_MODE_EXTRACT_ONLY the keylen parameter must equal
       the size of the intermediate fixed-length pseudorandom key otherwise an error will occur.  For that mode,
       the fixed output size can be looked up by calling EVP_KDF_CTX_get_kdf_size() after setting the mode and
       digest on the EVP_KDF_CTX.

EXAMPLES

       This example derives 10 bytes using SHA-256 with the secret key "secret", salt value "salt" and info
       value "label":

        EVP_KDF *kdf;
        EVP_KDF_CTX *kctx;
        unsigned char out[10];
        OSSL_PARAM params[5], *p = params;

        kdf = EVP_KDF_fetch(NULL, "HKDF", NULL);
        kctx = EVP_KDF_CTX_new(kdf);
        EVP_KDF_free(kdf);

        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
                                                SN_sha256, strlen(SN_sha256));
        *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY,
                                                 "secret", (size_t)6);
        *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_INFO,
                                                 "label", (size_t)5);
        *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SALT,
                                                 "salt", (size_t)4);
        *p = OSSL_PARAM_construct_end();
        if (EVP_KDF_derive(kctx, out, sizeof(out), params) <= 0) {
            error("EVP_KDF_derive");
        }

        EVP_KDF_CTX_free(kctx);

CONFORMING TO

       RFC 5869

SEE ALSO

       EVP_KDF(3), EVP_KDF_CTX_new(3), EVP_KDF_CTX_free(3), EVP_KDF_CTX_get_kdf_size(3),
       EVP_KDF_CTX_set_params(3), EVP_KDF_derive(3), "PARAMETERS" in EVP_KDF(3), EVP_KDF-TLS13_KDF(7)

HISTORY

       This functionality was added in OpenSSL 3.0.

COPYRIGHT

       Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the Apache License 2.0 (the "License").  You may not use this file except in compliance
       with the License.  You can obtain a copy in the file LICENSE in the source distribution or at
       <https://www.openssl.org/source/license.html>.