Provided by: python3-ffcx_0.9.0-2_all bug

NAME

       fenicsformcompilerx - FEniCS Form Compiler X Documentation

       The  is  an  experimental  version  of  the  FEniCS  Form  Compiler.  It is developed at ‐
       https://github.com/FEniCS/ffcx.

                    ┌────────────────────────────┬──────────────────────────────────┐
                    │ffcx                        │ FEniCS Form Compiler (FFCx).     │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.__main__               │ Run ffcx on a UFL file.          │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.analysis               │ Compiler stage 1: Analysis.      │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.compiler               │ Main interface  for  compilation │
                    │                            │ of forms.                        │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.element_interface      │ Finite element interface.        │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.formatting             │ Compiler     stage    5:    Code │
                    │                            │ formatting.                      │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.main                   │ Command-line interface to FFCx.  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.naming                 │ Naming.                          │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.codegeneration         │ FFCx code generation.            │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.options                │ Options.                         │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.ir.representation      │ Compiler    stage    2:     Code │
                    │                            │ representation.                  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.ir.representationutils │ Utility  functions for some code │
                    │                            │ shared between representations.  │
                    └────────────────────────────┴──────────────────────────────────┘

FFCX

       FEniCS Form Compiler (FFCx).

       FFCx compiles finite element variational forms into C code.

       ffcx.get_options(priority_options:   dict[str,   dtype[Any]   |   None   |   type[Any]   |
       _SupportsDType[dtype[Any]]   |   str  |  tuple[Any,  int]  |  tuple[Any,  SupportsIndex  |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any] | int | float] |  None
       =   None)   ->   dict[str,   int   |   float   |   dtype[Any]   |   None   |  type[Any]  |
       _SupportsDType[dtype[Any]]  |  str  |  tuple[Any,  int]  |  tuple[Any,   SupportsIndex   |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any]]
              Return (a copy of) the merged option values for FFCX.

              Parameters
                     priority_options – take priority over all other option values (see notes)

              Returns
                     merged option values

              NOTE:
                 This  function  sets  the  log  level  from  the  merged  option values prior to
                 returning.

                 The ffcx_options.json files are cached on the first call.  Subsequent  calls  to
                 this function use this cache.

                 Priority ordering of options from highest to lowest is:

                 • priority_options (API and command line options)

                 • $PWD/ffcx_options.json (local options)

                 • $XDG_CONFIG_HOME/ffcx/ffcx_options.json (user options)

                 • FFCX_DEFAULT_OPTIONS in ffcx.options

                 XDG_CONFIG_HOME is ~/.config/ if the environment variable is not set.

                 Example ffcx_options.json file:
                     { “epsilon”: 1e-7 }

FFCX.__MAIN__

       Run ffcx on a UFL file.

       ffcx.__main__.main(args=None)
              Run ffcx on a UFL file.

FFCX.ANALYSIS

       Compiler stage 1: Analysis.

       This   module  implements  the  analysis/preprocessing  of  variational  forms,  including
       automatic selection of elements, degrees and form representation type.

       Functions

                      ┌─────────────────────────────────┬────────────────────────┐
                      │analyze_ufl_objects(ufl_objects, │ Analyze ufl object(s). │
                      │scalar_type)                     │                        │
                      └─────────────────────────────────┴────────────────────────┘
       Classes

                                  ┌──────────────────────┬───────────┐
                                  │UFLData(form_data,    │ UFL data. │
                                  │unique_elements, ...) │           │
                                  └──────────────────────┴───────────┘
       class   ffcx.analysis.UFLData(form_data:   tuple[ufl.algorithms.formdata.FormData,   ...],
       unique_elements:               list[basix.ufl._ElementBase],              element_numbers:
       dict[basix.ufl._ElementBase,               int],               unique_coordinate_elements:
       list[basix.ufl._ElementBase],          expressions:         list[tuple[ufl.core.expr.Expr,
       npt.NDArray[np.float64], ufl.core.expr.Expr]])
              Bases: NamedTuple

              UFL data.

              Create  new  instance  of  UFLData(form_data,   unique_elements,   element_numbers,
              unique_coordinate_elements, expressions)

              element_numbers: dict[_ElementBase, int]
                     Alias for field number 2

              expressions: list[tuple[Expr, ndarray[Any, dtype[float64]], Expr]]
                     Alias for field number 4

              form_data: tuple[FormData, ...]
                     Alias for field number 0

              unique_coordinate_elements: list[_ElementBase]
                     Alias for field number 3

              unique_elements: list[_ElementBase]
                     Alias for field number 1

       ffcx.analysis.analyze_ufl_objects(ufl_objects:  list[Form | AbstractFiniteElement | Mesh |
       tuple[Expr, ndarray[Any, dtype[floating]]]], scalar_type: dtype[Any] | None | type[Any]  |
       _SupportsDType[dtype[Any]]   |   str  |  tuple[Any,  int]  |  tuple[Any,  SupportsIndex  |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any]) -> UFLData
              Analyze ufl object(s).

              Parametersufl_objects – UFL objects

                     • scalar_type – Scalar type that should be used for the analysis

              Returns
                     form_datas: Form_data objects unique_elements: Unique  elements  across  all
                     forms  and  expressions  element_numbers:  Mapping to unique numbers for all
                     elements unique_coordinate_elements: Unique coordinate elements  across  all
                     forms   and   expressions   expressions:   List  of  all  expressions  after
                     post-processing, with its evaluation points
                        and the original expression

              Return type
                     A data structure holding

FFCX.COMPILER

       Main interface for compilation of forms.

       Breaks the compilation into several sequential stages.  The output of each  stage  is  the
       input of the next stage.

   Compiler stages
       0.  Language, parsing

           • Input:  Python code or .ufl file

           • Output: UFL form

           This  stage  consists  of parsing and expressing a form in the UFL form language. This
           stage is handled by UFL.

       1.  Analysis

           • Input:  UFL form

           • Output: Preprocessed UFL form and FormData (metadata)

           This stage preprocesses the UFL form and extracts form metadata. It may  also  perform
           simplifications on the form.

       2.  Code representation

           • Input:  Preprocessed UFL form and FormData (metadata)

           • Output: Intermediate Representation (IR)

           This  stage examines the input and generates all data needed for code generation. This
           includes generation of finite element basis functions, extraction of data for  mapping
           of degrees of freedom and possible precomputation of integrals. Most of the complexity
           of compilation is handled in this stage.

           The IR is stored as a dictionary, mapping names of UFC functions to  data  needed  for
           generation of the corresponding code.

       3.  Code generation

           • Input:  Intermediate Representation (IR)

           • Output: C code

           This  stage  examines  the IR and generates the actual C code for the body of each UFC
           function.

           The code is stored as  a  dictionary,  mapping  names  of  UFC  functions  to  strings
           containing the C code of the body of each function.

       4.  Code formatting

           • Input:  C code

           • Output: C code files

           This stage examines the generated C++ code and formats it according to the UFC format,
           generating as output one or more .h/.c files conforming to the UFC format.

       Functions

                 ┌─────────────────────────────────┬──────────────────────────────────┐
                 │compile_ufl_objects(ufl_objects, │ Generate  UFC  code  for a given │
                 │options[, ...])                  │ UFL objects.                     │
                 └─────────────────────────────────┴──────────────────────────────────┘
       ffcx.compiler.analyze_ufl_objects(ufl_objects: list[Form | AbstractFiniteElement | Mesh  |
       tuple[Expr,  ndarray[Any, dtype[floating]]]], scalar_type: dtype[Any] | None | type[Any] |
       _SupportsDType[dtype[Any]]  |  str  |  tuple[Any,  int]  |  tuple[Any,   SupportsIndex   |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any]) -> UFLData
              Analyze ufl object(s).

              Parametersufl_objects – UFL objects

                     • scalar_type – Scalar type that should be used for the analysis

              Returns
                     form_datas:  Form_data  objects  unique_elements: Unique elements across all
                     forms and expressions element_numbers: Mapping to  unique  numbers  for  all
                     elements  unique_coordinate_elements:  Unique coordinate elements across all
                     forms  and  expressions  expressions:  List   of   all   expressions   after
                     post-processing, with its evaluation points
                        and the original expression

              Return type
                     A data structure holding

       ffcx.compiler.compile_ufl_objects(ufl_objects: list[Any], options: dict[str, int | float |
       dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]]  |  str  |  tuple[Any,  int]  |
       tuple[Any,  SupportsIndex | Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any,
       Any]], object_names: dict[int, str] | None = None, prefix: str | None =  None,  visualise:
       bool = False) -> tuple[str, str]
              Generate UFC code for a given UFL objects.

              Parametersufl_objects  –  Objects to be compiled. Accepts elements, forms, integrals
                       or coordinate mappings.

                     • object_names – Map from object Python id to object name

                     • prefix – Prefix

                     • options – Options

                     • visualise – Toggle visualisation

       ffcx.compiler.compute_ir(analysis: UFLData, object_names:  dict[int,  str],  prefix:  str,
       options:  dict[str,  dtype[Any]  |  None  | type[Any] | _SupportsDType[dtype[Any]] | str |
       tuple[Any, int] |  tuple[Any,  SupportsIndex  |  Sequence[SupportsIndex]]  |  list[Any]  |
       _DTypeDict | tuple[Any, Any] | int | float], visualise: bool) -> DataIR
              Compute intermediate representation.

       ffcx.compiler.format_code(code: CodeBlocks) -> tuple[str, str]
              Format  given  code  in UFC format. Returns two strings with header and source file
              contents.

       ffcx.compiler.generate_code(ir: DataIR, options: dict[str, int | float | dtype[Any] | None
       |   type[Any]   |   _SupportsDType[dtype[Any]]  |  str  |  tuple[Any,  int]  |  tuple[Any,
       SupportsIndex | Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any,  Any]])  ->
       CodeBlocks
              Generate code blocks from intermediate representation.

       ffcx.compiler.time() -> floating-point number
              Return  the  current time in seconds since the Epoch.  Fractions of a second may be
              present if the system clock provides them.

FFCX.ELEMENT_INTERFACE

       Finite element interface.

       Functions

                 ┌──────────────────────────────────┬──────────────────────────────────┐
                 │basix_index(indices)              │ Get  the  Basix   index   of   a │
                 │                                  │ derivative.                      │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │create_quadrature(cellname,       │ Create a quadrature rule.        │
                 │degree, rule, ...)                │                                  │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │map_facet_points(points,  facet,  │ Map   points  from  a  reference │
                 │cellname)                         │ facet to a physical facet.       │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │reference_cell_vertices(cellname) │ Get  the vertices of a reference │
                 │                                  │ cell.                            │
                 └──────────────────────────────────┴──────────────────────────────────┘
       ffcx.element_interface.basix_index(indices: tuple[int]) -> int
              Get the Basix index of a derivative.

       ffcx.element_interface.create_quadrature(cellname: str, degree: int, rule: str,  elements:
       list[_ElementBase])      ->      tuple[Buffer      |      _SupportsArray[dtype[Any]]     |
       _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes |
       _NestedSequence[bool   |   int   |   float   |   complex   |   str   |  bytes],  Buffer  |
       _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool  |  int  |
       float  |  complex  |  str  |  bytes | _NestedSequence[bool | int | float | complex | str |
       bytes]]
              Create a quadrature rule.

       ffcx.element_interface.map_facet_points(points: ndarray[Any, dtype[float64]], facet:  int,
       cellname: str) -> ndarray[Any, dtype[float64]]
              Map points from a reference facet to a physical facet.

       ffcx.element_interface.reference_cell_vertices(cellname:      str)     ->     ndarray[Any,
       dtype[float64]]
              Get the vertices of a reference cell.

FFCX.FORMATTING

       Compiler stage 5: Code formatting.

       This module implements the formatting of UFC code from a given dictionary of generated C++
       code for the body of each UFC function.

       It relies on templates for UFC code available as part of the module ufcx_utils.

       Functions

                 ┌─────────────────────────────────┬──────────────────────────────────┐
                 │format_code(code)                │ Format given code in UFC format. │
                 ├─────────────────────────────────┼──────────────────────────────────┤
                 │write_code(code_h,       code_c, │ Write code to files.             │
                 │prefix, output_dir)              │                                  │
                 └─────────────────────────────────┴──────────────────────────────────┘
       class    ffcx.formatting.CodeBlocks(file_pre:    list[tuple[str,     str]],     integrals:
       list[tuple[str,  str]],  forms: list[tuple[str, str]], expressions: list[tuple[str, str]],
       file_post: list[tuple[str, str]])
              Bases: NamedTuple

              Storage of code blocks of the form (declaration, implementation).

              Blocks for integrals, forms and expressions, and start and end of file output

              Create  new  instance  of  CodeBlocks(file_pre,  integrals,   forms,   expressions,
              file_post)

              expressions: list[tuple[str, str]]
                     Alias for field number 3

              file_post: list[tuple[str, str]]
                     Alias for field number 4

              file_pre: list[tuple[str, str]]
                     Alias for field number 0

              forms: list[tuple[str, str]]
                     Alias for field number 2

              integrals: list[tuple[str, str]]
                     Alias for field number 1

       ffcx.formatting.format_code(code: CodeBlocks) -> tuple[str, str]
              Format  given  code  in UFC format. Returns two strings with header and source file
              contents.

       ffcx.formatting.write_code(code_h, code_c, prefix, output_dir)
              Write code to files.

FFCX.MAIN

       Command-line interface to FFCx.

       Parse command-line arguments and generate code from input UFL form files.

       Functions

                                ┌─────────────┬─────────────────────────┐
                                │main([args]) │ Run ffcx on a UFL file. │
                                └─────────────┴─────────────────────────┘
       ffcx.main.arg_type
              alias of int

       ffcx.main.get_options(priority_options:  dict[str,  dtype[Any]  |  None  |   type[Any]   |
       _SupportsDType[dtype[Any]]   |   str  |  tuple[Any,  int]  |  tuple[Any,  SupportsIndex  |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any] | int | float] |  None
       =   None)   ->   dict[str,   int   |   float   |   dtype[Any]   |   None   |  type[Any]  |
       _SupportsDType[dtype[Any]]  |  str  |  tuple[Any,  int]  |  tuple[Any,   SupportsIndex   |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any]]
              Return (a copy of) the merged option values for FFCX.

              Parameters
                     priority_options – take priority over all other option values (see notes)

              Returns
                     merged option values

              NOTE:
                 This  function  sets  the  log  level  from  the  merged  option values prior to
                 returning.

                 The ffcx_options.json files are cached on the first call.  Subsequent  calls  to
                 this function use this cache.

                 Priority ordering of options from highest to lowest is:

                 • priority_options (API and command line options)

                 • $PWD/ffcx_options.json (local options)

                 • $XDG_CONFIG_HOME/ffcx/ffcx_options.json (user options)

                 • FFCX_DEFAULT_OPTIONS in ffcx.options

                 XDG_CONFIG_HOME is ~/.config/ if the environment variable is not set.

                 Example ffcx_options.json file:
                     { “epsilon”: 1e-7 }

       ffcx.main.main(args=None)
              Run ffcx on a UFL file.

FFCX.NAMING

       Naming.

       Functions

                     ┌───────────────────────────────┬─────────────────────────────┐
                     │compute_signature(ufl_objects, │ Compute the signature hash. │
                     │tag)                           │                             │
                     ├───────────────────────────────┼─────────────────────────────┤
                     │expression_name(expression,    │ Get expression name.        │
                     │prefix)                        │                             │
                     ├───────────────────────────────┼─────────────────────────────┤
                     │form_name(original_form,       │ Get form name.              │
                     │form_id, prefix)               │                             │
                     ├───────────────────────────────┼─────────────────────────────┤
                     │integral_name(original_form,   │ Get integral name.          │
                     │integral_type, ...)            │                             │
                     └───────────────────────────────┴─────────────────────────────┘
       ffcx.naming.compute_signature(ufl_objects:    list[Form    |    tuple[Expr,   ndarray[Any,
       dtype[float64]]]], tag: str) -> str
              Compute the signature hash.

              Based on the UFL type of the objects and an additional optional ‘tag’.

       ffcx.naming.expression_name(expression:   tuple[Expr,   ndarray[Any,    dtype[floating]]],
       prefix: str) -> str
              Get expression name.

       ffcx.naming.form_name(original_form: Form, form_id: int, prefix: str) -> str
              Get form name.

       ffcx.naming.integral_name(original_form:   Form,   integral_type:   str,   form_id:   int,
       subdomain_id: tuple[int, ...] | tuple[str], prefix: str) -> str
              Get integral name.

FFCX.CODEGENERATION

       FFCx code generation.

       Functions

                        ┌───────────────────┬──────────────────────────────────┐
                        │get_include_path() │ Return location of  UFCx  header │
                        │                   │ files.                           │
                        ├───────────────────┼──────────────────────────────────┤
                        │get_signature()    │ Return   SHA-1   hash   of   the │
                        │                   │ contents of ufcx.h.              │
                        └───────────────────┴──────────────────────────────────┘
       ffcx.codegeneration.get_include_path()
              Return location of UFCx header files.

       ffcx.codegeneration.get_signature()
              Return SHA-1 hash of the contents of ufcx.h.

              In this implementation, the value is computed on import.

FFCX.OPTIONS

       Options.

       Functions

                  ┌────────────────────────────────┬──────────────────────────────────┐
                  │get_options([priority_options]) │ Return (a copy  of)  the  merged │
                  │                                │ option values for FFCX.          │
                  └────────────────────────────────┴──────────────────────────────────┘
       class ffcx.options.Path(*args, **kwargs)
              Bases: PurePath

              PurePath subclass that can make system calls.

              Path  represents  a  filesystem path but unlike PurePath, also offers methods to do
              system calls on path objects. Depending on your system, instantiating a  Path  will
              return  either  a  PosixPath  or  a  WindowsPath object. You can also instantiate a
              PosixPath or WindowsPath directly, but cannot instantiate a WindowsPath on a  POSIX
              system or vice versa.

              Construct  a PurePath from one or several strings and or existing PurePath objects.
              The strings and path objects are combined so as  to  yield  a  canonicalized  path,
              which is incorporated into the new PurePath object.

              absolute()
                     Return  an  absolute  version of this path by prepending the current working
                     directory. No normalization or symlink resolution is performed.

                     Use resolve() to get the canonical path to a file.

              chmod(mode, *, follow_symlinks=True)
                     Change the permissions of the path, like os.chmod().

              classmethod cwd()
                     Return a new path pointing to the current working directory.

              exists(*, follow_symlinks=True)
                     Whether this path exists.

                     This method normally follows symlinks; to check whether  a  symlink  exists,
                     add the argument follow_symlinks=False.

              expanduser()
                     Return  a  new  path  with  expanded  ~ and ~user constructs (as returned by
                     os.path.expanduser)

              glob(pattern, *, case_sensitive=None)
                     Iterate over this subtree  and  yield  all  existing  files  (of  any  kind,
                     including directories) matching the given relative pattern.

              group()
                     Return the group name of the file gid.

              hardlink_to(target)
                     Make this path a hard link pointing to the same file as target.

                     Note the order of arguments (self, target) is the reverse of os.link’s.

              classmethod home()
                     Return  a  new  path  pointing  to the user’s home directory (as returned by
                     os.path.expanduser(‘~’)).

              is_block_device()
                     Whether this path is a block device.

              is_char_device()
                     Whether this path is a character device.

              is_dir()
                     Whether this path is a directory.

              is_fifo()
                     Whether this path is a FIFO.

              is_file()
                     Whether this path is a regular file (also  True  for  symlinks  pointing  to
                     regular files).

              is_junction()
                     Whether this path is a junction.

              is_mount()
                     Check if this path is a mount point

              is_socket()
                     Whether this path is a socket.

              is_symlink()
                     Whether this path is a symbolic link.

              iterdir()
                     Yield path objects of the directory contents.

                     The children are yielded in arbitrary order, and the special entries ‘.’ and
                     ‘..’ are not included.

              lchmod(mode)
                     Like chmod(), except  if  the  path  points  to  a  symlink,  the  symlink’s
                     permissions are changed, rather than its target’s.

              lstat()
                     Like  stat(),  except  if the path points to a symlink, the symlink’s status
                     information is returned, rather than its target’s.

              mkdir(mode=511, parents=False, exist_ok=False)
                     Create a new directory at this given path.

              open(mode='r', buffering=-1, encoding=None, errors=None, newline=None)
                     Open the file pointed to by this path and  return  a  file  object,  as  the
                     built-in open() function does.

              owner()
                     Return the login name of the file owner.

              read_bytes()
                     Open the file in bytes mode, read it, and close the file.

              read_text(encoding=None, errors=None)
                     Open the file in text mode, read it, and close the file.

              readlink()
                     Return the path to which the symbolic link points.

              rename(target)
                     Rename this path to the target path.

                     The  target path may be absolute or relative. Relative paths are interpreted
                     relative to the current working directory, not the  directory  of  the  Path
                     object.

                     Returns the new Path instance pointing to the target path.

              replace(target)
                     Rename this path to the target path, overwriting if that path exists.

                     The  target path may be absolute or relative. Relative paths are interpreted
                     relative to the current working directory, not the  directory  of  the  Path
                     object.

                     Returns the new Path instance pointing to the target path.

              resolve(strict=False)
                     Make  the  path  absolute,  resolving  all  symlinks  on  the  way  and also
                     normalizing it.

              rglob(pattern, *, case_sensitive=None)
                     Recursively yield all existing files (of any  kind,  including  directories)
                     matching the given relative pattern, anywhere in this subtree.

              rmdir()
                     Remove this directory.  The directory must be empty.

              samefile(other_path)
                     Return  whether  other_path  is the same or not as this file (as returned by
                     os.path.samefile()).

              stat(*, follow_symlinks=True)
                     Return the result of the stat() system call on  this  path,  like  os.stat()
                     does.

              symlink_to(target, target_is_directory=False)
                     Make  this  path  a  symlink pointing to the target path.  Note the order of
                     arguments (link, target) is the reverse of os.symlink.

              touch(mode=438, exist_ok=True)
                     Create this file with the given access mode, if it doesn’t exist.

              unlink(missing_ok=False)
                     Remove this file or link.  If the path is a directory, use rmdir() instead.

              walk(top_down=True, on_error=None, follow_symlinks=False)
                     Walk the directory tree from this directory, similar to os.walk().

              write_bytes(data)
                     Open the file in bytes mode, write to it, and close the file.

              write_text(data, encoding=None, errors=None, newline=None)
                     Open the file in text mode, write to it, and close the file.

       ffcx.options.get_options(priority_options: dict[str,  dtype[Any]  |  None  |  type[Any]  |
       _SupportsDType[dtype[Any]]   |   str  |  tuple[Any,  int]  |  tuple[Any,  SupportsIndex  |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any] | int | float] |  None
       =   None)   ->   dict[str,   int   |   float   |   dtype[Any]   |   None   |  type[Any]  |
       _SupportsDType[dtype[Any]]  |  str  |  tuple[Any,  int]  |  tuple[Any,   SupportsIndex   |
       Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any]]
              Return (a copy of) the merged option values for FFCX.

              Parameters
                     priority_options – take priority over all other option values (see notes)

              Returns
                     merged option values

              NOTE:
                 This  function  sets  the  log  level  from  the  merged  option values prior to
                 returning.

                 The ffcx_options.json files are cached on the first call.  Subsequent  calls  to
                 this function use this cache.

                 Priority ordering of options from highest to lowest is:

                 • priority_options (API and command line options)

                 • $PWD/ffcx_options.json (local options)

                 • $XDG_CONFIG_HOME/ffcx/ffcx_options.json (user options)

                 • FFCX_DEFAULT_OPTIONS in ffcx.options

                 XDG_CONFIG_HOME is ~/.config/ if the environment variable is not set.

                 Example ffcx_options.json file:
                     { “epsilon”: 1e-7 }

FFCX.IR.REPRESENTATION

       Compiler stage 2: Code representation.

       Module  computes  intermediate representations of forms. For each UFC function, we extract
       the data needed for code generation at a later stage.

       The representation should conform strictly to the naming and order of  functions  in  UFC.
       Thus,  for  code  generation  of  the function “foo”, one should only need to use the data
       stored in the intermediate representation under the key “foo”.

       Functions

                    ┌───────────────────────────┬──────────────────────────────────┐
                    │compute_ir(analysis,       │ Compute             intermediate │
                    │object_names, prefix, ...) │ representation.                  │
                    └───────────────────────────┴──────────────────────────────────┘
       Classes

                 ┌──────────────────────────────────┬──────────────────────────────────┐
                 │CommonExpressionIR(integral_type, │ Common-ground for IntegralIR and │
                 │...)                              │ ExpressionIR.                    │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │DataIR(integrals,          forms, │ Intermediate  representation  of │
                 │expressions)                      │ data.                            │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │ExpressionIR(expression, ...)     │ Intermediate representation of a │
                 │                                  │ DOLFINx Expression.              │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │FormIR(id, name, signature, rank, │ Intermediate representation of a │
                 │...)                              │ form.                            │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │IntegralIR(expression, rank, ...) │ Intermediate  representation  of │
                 │                                  │ an integral.                     │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │QuadratureIR(cell_shape,  points, │ Intermediate representation of a │
                 │weights)                          │ quadrature rule.                 │
                 └──────────────────────────────────┴──────────────────────────────────┘
       class  ffcx.ir.representation.CommonExpressionIR(integral_type:  str,  entity_type:   str,
       tensor_shape:     list[int],     coefficient_numbering:     dict[ufl.Coefficient,    int],
       coefficient_offsets:      dict[ufl.Coefficient,      int],      original_constant_offsets:
       dict[ufl.Constant,     int],     unique_tables:     dict[str,    npt.NDArray[np.float64]],
       unique_table_types: dict[str, str],  integrand:  dict[QuadratureRule,  dict],  name:  str,
       needs_facet_permutations: bool, shape: list[int])
              Bases: NamedTuple

              Common-ground for IntegralIR and ExpressionIR.

              Create new instance of CommonExpressionIR(integral_type, entity_type, tensor_shape,
              coefficient_numbering,       coefficient_offsets,        original_constant_offsets,
              unique_tables,   unique_table_types,   integrand,  name,  needs_facet_permutations,
              shape)

              coefficient_numbering: dict[Coefficient, int]
                     Alias for field number 3

              coefficient_offsets: dict[Coefficient, int]
                     Alias for field number 4

              entity_type: str
                     Alias for field number 1

              integral_type: str
                     Alias for field number 0

              integrand: dict[QuadratureRule, dict]
                     Alias for field number 8

              name: str
                     Alias for field number 9

              needs_facet_permutations: bool
                     Alias for field number 10

              original_constant_offsets: dict[Constant, int]
                     Alias for field number 5

              shape: list[int]
                     Alias for field number 11

              tensor_shape: list[int]
                     Alias for field number 2

              unique_table_types: dict[str, str]
                     Alias for field number 7

              unique_tables: dict[str, ndarray[Any, dtype[float64]]]
                     Alias for field number 6

       class  ffcx.ir.representation.DataIR(integrals:  list[IntegralIR],  forms:   list[FormIR],
       expressions: list[ExpressionIR])
              Bases: NamedTuple

              Intermediate representation of data.

              Create new instance of DataIR(integrals, forms, expressions)

              expressions: list[ExpressionIR]
                     Alias for field number 2

              forms: list[FormIR]
                     Alias for field number 1

              integrals: list[IntegralIR]
                     Alias for field number 0

       class          ffcx.ir.representation.ExpressionIR(expression:         CommonExpressionIR,
       original_coefficient_positions: list[int], coefficient_names:  list[str],  constant_names:
       list[str], name_from_uflfile: str)
              Bases: NamedTuple

              Intermediate representation of a DOLFINx Expression.

              Create  new  instance  of  ExpressionIR(expression, original_coefficient_positions,
              coefficient_names, constant_names, name_from_uflfile)

              coefficient_names: list[str]
                     Alias for field number 2

              constant_names: list[str]
                     Alias for field number 3

              expression: CommonExpressionIR
                     Alias for field number 0

              name_from_uflfile: str
                     Alias for field number 4

              original_coefficient_positions: list[int]
                     Alias for field number 1

       class  ffcx.ir.representation.FormIR(id:  int,  name:  str,  signature:  str,  rank:  int,
       num_coefficients:      int,      num_constants:      int,      name_from_uflfile:     str,
       original_coefficient_positions: list[int], coefficient_names:  list[str],  constant_names:
       list[str],   finite_element_hashes:   list[int],   integral_names:  dict[str,  list[str]],
       subdomain_ids: dict[str, list[int]])
              Bases: NamedTuple

              Intermediate representation of a form.

              Create  new  instance  of  FormIR(id,  name,  signature,  rank,   num_coefficients,
              num_constants,          name_from_uflfile,          original_coefficient_positions,
              coefficient_names,    constant_names,    finite_element_hashes,     integral_names,
              subdomain_ids)

              coefficient_names: list[str]
                     Alias for field number 8

              constant_names: list[str]
                     Alias for field number 9

              finite_element_hashes: list[int]
                     Alias for field number 10

              id: int
                     Alias for field number 0

              integral_names: dict[str, list[str]]
                     Alias for field number 11

              name: str
                     Alias for field number 1

              name_from_uflfile: str
                     Alias for field number 6

              num_coefficients: int
                     Alias for field number 4

              num_constants: int
                     Alias for field number 5

              original_coefficient_positions: list[int]
                     Alias for field number 7

              rank: int
                     Alias for field number 3

              signature: str
                     Alias for field number 2

              subdomain_ids: dict[str, list[int]]
                     Alias for field number 12

       class   ffcx.ir.representation.Integral(integrand,  integral_type,  domain,  subdomain_id,
       metadata, subdomain_data)
              Bases: object

              An integral over a single domain.

              Initialise.

              integral_type()
                     Return the domain type of this integral.

              integrand()
                     Return the integrand expression, which is an Expr instance.

              metadata()
                     Return the compiler metadata this integral has been annotated with.

              reconstruct(integrand=None,  integral_type=None,  domain=None,   subdomain_id=None,
              metadata=None, subdomain_data=None)
                     Construct  a  new  Integral  object  with  some properties replaced with new
                     values.

                     Example

                     <a = Integral instance> b = a.reconstruct(expand_compounds(a.integrand())) c
                     = a.reconstruct(metadata={‘quadrature_degree’:2})

              subdomain_data()
                     Return the domain data of this integral.

              subdomain_id()
                     Return the subdomain id of this integral.

              ufl_domain()
                     Return the integration domain of this integral.

       class   ffcx.ir.representation.IntegralIR(expression:   CommonExpressionIR,   rank:   int,
       enabled_coefficients: list[bool], coordinate_element_hash: str)
              Bases: NamedTuple

              Intermediate representation of an integral.

              Create  new  instance   of   IntegralIR(expression,   rank,   enabled_coefficients,
              coordinate_element_hash)

              coordinate_element_hash: str
                     Alias for field number 3

              enabled_coefficients: list[bool]
                     Alias for field number 2

              expression: CommonExpressionIR
                     Alias for field number 0

              rank: int
                     Alias for field number 1

       class         ffcx.ir.representation.QuadratureIR(cell_shape:         str,         points:
       npt.NDArray[np.float64], weights: npt.NDArray[np.float64])
              Bases: NamedTuple

              Intermediate representation of a quadrature rule.

              Create new instance of QuadratureIR(cell_shape, points, weights)

              cell_shape: str
                     Alias for field number 0

              points: ndarray[Any, dtype[float64]]
                     Alias for field number 1

              weights: ndarray[Any, dtype[float64]]
                     Alias for field number 2

       class ffcx.ir.representation.QuadratureRule(points, weights, tensor_factors=None)
              Bases: object

              A quadrature rule.

              Initialise.

              id()   Return unique deterministic identifier.

                     NOTE:
                        This identifier is used to provide unique names to tables and symbols  in
                        generated code.

       class   ffcx.ir.representation.UFLData(form_data:  tuple[ufl.algorithms.formdata.FormData,
       ...],        unique_elements:        list[basix.ufl._ElementBase],        element_numbers:
       dict[basix.ufl._ElementBase,               int],               unique_coordinate_elements:
       list[basix.ufl._ElementBase],         expressions:          list[tuple[ufl.core.expr.Expr,
       npt.NDArray[np.float64], ufl.core.expr.Expr]])
              Bases: NamedTuple

              UFL data.

              Create   new   instance  of  UFLData(form_data,  unique_elements,  element_numbers,
              unique_coordinate_elements, expressions)

              element_numbers: dict[_ElementBase, int]
                     Alias for field number 2

              expressions: list[tuple[Expr, ndarray[Any, dtype[float64]], Expr]]
                     Alias for field number 4

              form_data: tuple[FormData, ...]
                     Alias for field number 0

              unique_coordinate_elements: list[_ElementBase]
                     Alias for field number 3

              unique_elements: list[_ElementBase]
                     Alias for field number 1

       ffcx.ir.representation.compute_integral_ir(cell, integral_type,  entity_type,  integrands,
       argument_shape, p, visualise)
              Compute intermediate representation for an integral.

       ffcx.ir.representation.compute_ir(analysis: UFLData, object_names: dict[int, str], prefix:
       str, options: dict[str, dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]] | str |
       tuple[Any,  int]  |  tuple[Any,  SupportsIndex  |  Sequence[SupportsIndex]]  | list[Any] |
       _DTypeDict | tuple[Any, Any] | int | float], visualise: bool) -> DataIR
              Compute intermediate representation.

       ffcx.ir.representation.create_quadrature_points_and_weights(integral_type,  cell,  degree,
       rule, elements, use_tensor_product=False)
              Create quadrature rule and return points and weights.

       ffcx.ir.representation.sorted_expr_sum(seq)
              Sorted expr sum.

FFCX.IR.REPRESENTATIONUTILS

       Utility functions for some code shared between representations.

       Functions

            ┌───────────────────────────────────────────┬──────────────────────────────────┐
            │create_quadrature_points_and_weights(...[, │ Create   quadrature   rule   and │
            │...])                                      │ return points and weights.       │
            ├───────────────────────────────────────────┼──────────────────────────────────┤
            │integral_type_to_entity_dim(integral_type, │ Given integral_type  and  domain │
            │tdim)                                      │ tdim,  return  the  tdim  of the │
            │                                           │ integration entity.              │
            ├───────────────────────────────────────────┼──────────────────────────────────┤
            │map_integral_points(points, integral_type, │ Map points from reference entity │
            │...)                                       │ to its parent reference cell.    │
            └───────────────────────────────────────────┴──────────────────────────────────┘
       Classes

                        ┌─────────────────────────────────┬────────────────────┐
                        │QuadratureRule(points, weights[, │ A quadrature rule. │
                        │tensor_factors])                 │                    │
                        └─────────────────────────────────┴────────────────────┘
       class ffcx.ir.representationutils.QuadratureRule(points, weights, tensor_factors=None)
              Bases: object

              A quadrature rule.

              Initialise.

              id()   Return unique deterministic identifier.

                     NOTE:
                        This  identifier is used to provide unique names to tables and symbols in
                        generated code.

       ffcx.ir.representationutils.create_quadrature(cellname:  str,  degree:  int,  rule:   str,
       elements:    list[_ElementBase])    ->   tuple[Buffer   |   _SupportsArray[dtype[Any]]   |
       _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes |
       _NestedSequence[bool   |   int   |   float   |   complex   |   str   |  bytes],  Buffer  |
       _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool  |  int  |
       float  |  complex  |  str  |  bytes | _NestedSequence[bool | int | float | complex | str |
       bytes]]
              Create a quadrature rule.

       ffcx.ir.representationutils.create_quadrature_points_and_weights(integral_type,      cell,
       degree, rule, elements, use_tensor_product=False)
              Create quadrature rule and return points and weights.

       ffcx.ir.representationutils.integral_type_to_entity_dim(integral_type, tdim)
              Given integral_type and domain tdim, return the tdim of the integration entity.

       ffcx.ir.representationutils.map_facet_points(points:  ndarray[Any, dtype[float64]], facet:
       int, cellname: str) -> ndarray[Any, dtype[float64]]
              Map points from a reference facet to a physical facet.

       ffcx.ir.representationutils.map_integral_points(points, integral_type, cell, entity)
              Map points from reference entity to its parent reference cell.

       ffcx.ir.representationutils.reference_cell_vertices(cellname:   str)    ->    ndarray[Any,
       dtype[float64]]
              Get the vertices of a reference cell.

       • IndexModule IndexSearch Page

AUTHOR

       FEniCS Project

COPYRIGHT

       2024, FEniCS Project