Provided by: gmtsar-core_6.5+ds-2build1_amd64 bug

NAME

       sbas - sbas

DESCRIPTION

       This program is part of GMTSAR.

              USAGE:  sbas  intf.tab scene.tab N S xdim ydim [-atm ni] [-smooth sf] [-wavelength wl] [-incidence
              inc] [-range -rng] [-rms] [-dem]

              input:

       intf.tab
              --  list of unwrapped (filtered) interferograms:

       format:
              unwrap.grd  corr.grd  ref_id  rep_id  B_perp

       scene.tab
              --  list of the SAR scenes in chronological order

       format:
              scene_id   number_of_days

       note:  the number_of_days is relative to a reference date

       N      --  number of the interferograms

       S      --  number of the SAR scenes

       xdim and ydim
              --  dimension of the interferograms

       -smooth sf           --
              smoothing factors, default=0

       -atm ni              --
              number of iterations for atmospheric correction, default=0(skip atm correction)

       -wavelength wl       --
              wavelength of the radar wave (m) default=0.236

       -incidence theta     --
              incidence angle of the radar wave (degree) default=37

       -range rng           --
              range distance from the radar to the center of the interferogram (m) default=866000

       -rms                 --
              output velocity uncertainty grids (mm/yr): rms.grd

       -dem                 --
              output DEM error (m): dem_err.grd

       -mmap                --
              use mmap to allocate disk space for less use of memory

       -robust              --
              only work with -atm turnned on, estimate velocity with records that has atm correction

              output:

       disp_##.grd
              --  cumulative displacement time series (mm) grids

       vel.grd
              --  linear regressed velocity (mm/yr) grids

              example:

              sbas intf.tab scene.tab 88 28 700 1000

       REFERENCES: Berardino P., G. Fornaro, R.  Lanari,  and  E.  Sansosti,  ???A  new  algorithm  for  surface
       deformation  monitoring  based  on small baseline differential SAR interferograms,??? IEEE Trans. Geosci.
       Remote Sensing, vol. 40, pp. 2375???2383, Nov. 2002.

       Schmidt, D. A., and R. B??rgmann 2003, Time-dependent land uplift  and  subsidence  in  the  Santa  Clara
       valley,  California,  from  a  large interferometric synthetic aperture radar data set, J. Geophys. Res.,
       108, 2416, doi:10.1029/2002JB002267, B9.

       Tong, X. and Schmidt, D., 2016. Active movement of the Cascade landslide complex  in  Washington  from  a
       coherence-based InSAR time series method. Remote Sensing of Environment, 186, pp.405-415.

       Tymofyeyeva,  E.  and  Fialko,  Y.,  2015.  Mitigation  of  atmospheric  phase delays in InSAR data, with
       application to the eastern California shear zone. Journal of Geophysical Research: Solid  Earth,  120(8),
       pp.5952-5963.

       Xu,  X.,  Sandwell,  D.  T.,  Tymofyeyeva,  E.,  Gonz??lez-Ortega,  A.,  &  Tong,  X.(2017). Tectonic and
       anthropogenic deformation at the Cerro Prietogeothermal step-over revealed  by  Sentinel-1A  InSAR.  IEEE
       Transactions onGeoscience and Remote Sensing, 55(9), 5284-5292.

              USAGE:  sbas  intf.tab scene.tab N S xdim ydim [-atm ni] [-smooth sf] [-wavelength wl] [-incidence
              inc] [-range -rng] [-rms] [-dem]

              input:

       intf.tab
              --  list of unwrapped (filtered) interferograms:

       format:
              unwrap.grd  corr.grd  ref_id  rep_id  B_perp

       scene.tab
              --  list of the SAR scenes in chronological order

       format:
              scene_id   number_of_days

       note:  the number_of_days is relative to a reference date

       N      --  number of the interferograms

       S      --  number of the SAR scenes

       xdim and ydim
              --  dimension of the interferograms

       -smooth sf           --
              smoothing factors, default=0

       -atm ni              --
              number of iterations for atmospheric correction, default=0(skip atm correction)

       -wavelength wl       --
              wavelength of the radar wave (m) default=0.236

       -incidence theta     --
              incidence angle of the radar wave (degree) default=37

       -range rng           --
              range distance from the radar to the center of the interferogram (m) default=866000

       -rms                 --
              output velocity uncertainty grids (mm/yr): rms.grd

       -dem                 --
              output DEM error (m): dem_err.grd

       -mmap                --
              use mmap to allocate disk space for less use of memory

       -robust              --
              only work with -atm turnned on, estimate velocity with records that has atm correction

              output:

       disp_##.grd
              --  cumulative displacement time series (mm) grids

       vel.grd
              --  linear regressed velocity (mm/yr) grids

              example:

              sbas intf.tab scene.tab 88 28 700 1000

       REFERENCES: Berardino P., G. Fornaro, R.  Lanari,  and  E.  Sansosti,  ???A  new  algorithm  for  surface
       deformation  monitoring  based  on small baseline differential SAR interferograms,??? IEEE Trans. Geosci.
       Remote Sensing, vol. 40, pp. 2375???2383, Nov. 2002.

       Schmidt, D. A., and R. B??rgmann 2003, Time-dependent land uplift  and  subsidence  in  the  Santa  Clara
       valley,  California,  from  a  large interferometric synthetic aperture radar data set, J. Geophys. Res.,
       108, 2416, doi:10.1029/2002JB002267, B9.

       Tong, X. and Schmidt, D., 2016. Active movement of the Cascade landslide complex  in  Washington  from  a
       coherence-based InSAR time series method. Remote Sensing of Environment, 186, pp.405-415.

       Tymofyeyeva,  E.  and  Fialko,  Y.,  2015.  Mitigation  of  atmospheric  phase delays in InSAR data, with
       application to the eastern California shear zone. Journal of Geophysical Research: Solid  Earth,  120(8),
       pp.5952-5963.

       Xu,  X.,  Sandwell,  D.  T.,  Tymofyeyeva,  E.,  Gonz??lez-Ortega,  A.,  &  Tong,  X.(2017). Tectonic and
       anthropogenic deformation at the Cerro Prietogeothermal step-over revealed  by  Sentinel-1A  InSAR.  IEEE
       Transactions onGeoscience and Remote Sensing, 55(9), 5284-5292.