plucky (3) ibv_create_flow.3.gz

Provided by: libibverbs-dev_55.0-1ubuntu1_amd64 bug

NAME

       ibv_create_flow, ibv_destroy_flow - create or destroy flow steering rules

SYNOPSIS

       #include <infiniband/verbs.h>

       struct ibv_flow *ibv_create_flow(struct ibv_qp *qp,
                                        struct ibv_flow_attr *flow_attr);
       int ibv_destroy_flow(struct ibv_flow *flow_id);

DESCRIPTION

   ibv_create_flow()
       allows  a  user  application  QP  qp  to  be  attached  into  a  specified  flow flow which is defined in
       <infiniband/verbs.h>

       struct ibv_flow_attr {
               uint32_t comp_mask;                     /* Future extendibility */
               enum ibv_flow_attr_type type;           /* Rule type - see below */
               uint16_t size;                          /* Size of command */
               uint16_t priority;                      /* Rule priority - see below */
               uint8_t num_of_specs;                   /* Number of ibv_flow_spec_xxx */
               uint8_t port;                           /* The uplink port number */
               uint32_t flags;                         /* Extra flags for rule - see below */
               /* Following are the optional layers according to user request
                * struct ibv_flow_spec_xxx
                * struct ibv_flow_spec_yyy
                */
       };

       enum ibv_flow_attr_type {
               IBV_FLOW_ATTR_NORMAL          = 0x0,         /* Steering according to rule specifications */
               IBV_FLOW_ATTR_ALL_DEFAULT     = 0x1,         /* Default unicast and multicast rule - receive all Eth traffic which isn't steered to any QP */
               IBV_FLOW_ATTR_MC_DEFAULT      = 0x2,         /* Default multicast rule - receive all Eth multicast traffic which isn't steered to any QP */
               IBV_FLOW_ATTR_SNIFFER         = 0x3,         /* Sniffer rule - receive all port traffic */
       };

       enum ibv_flow_flags {
               IBV_FLOW_ATTR_FLAGS_DONT_TRAP       = 1 << 1,     /* Rule doesn't trap received packets, allowing them to match lower prioritized rules */
               IBV_FLOW_ATTR_FLAGS_EGRESS          = 1 << 2,     /* Match sent packets against EGRESS rules and carry associated actions if required */
       };

       enum ibv_flow_spec_type {
               IBV_FLOW_SPEC_ETH                       = 0x20,   /* Flow specification of L2 header */
               IBV_FLOW_SPEC_IPV4                      = 0x30,   /* Flow specification of IPv4 header */
               IBV_FLOW_SPEC_IPV6                      = 0x31,   /* Flow specification of IPv6 header */
               IBV_FLOW_SPEC_IPV4_EXT                  = 0x32,   /* Extended flow specification of IPv4 */
               IBV_FLOW_SPEC_ESP                       = 0x34,   /* Flow specification of ESP (IPSec) header */
               IBV_FLOW_SPEC_TCP                       = 0x40,   /* Flow specification of TCP header */
               IBV_FLOW_SPEC_UDP                       = 0x41,   /* Flow specification of UDP header */
               IBV_FLOW_SPEC_VXLAN_TUNNEL              = 0x50,   /* Flow specification of VXLAN header */
               IBV_FLOW_SPEC_GRE                       = 0x51,   /* Flow specification of GRE header */
               IBV_FLOW_SPEC_MPLS                      = 0x60,   /* Flow specification of MPLS header */
               IBV_FLOW_SPEC_INNER                     = 0x100,  /* Flag making L2/L3/L4 specifications to be applied on the inner header */
               IBV_FLOW_SPEC_ACTION_TAG                = 0x1000, /* Action tagging matched packet */
               IBV_FLOW_SPEC_ACTION_DROP               = 0x1001, /* Action dropping matched packet */
               IBV_FLOW_SPEC_ACTION_HANDLE             = 0x1002, /* Carry out an action created by ibv_create_flow_action_xxxx verb */
               IBV_FLOW_SPEC_ACTION_COUNT              = 0x1003, /* Action count matched packet with a ibv_counters handle */
       };

       Flow specification general structure:

       struct ibv_flow_spec_xxx {
               enum ibv_flow_spec_type  type;
               uint16_t  size;                  /* Flow specification size = sizeof(struct ibv_flow_spec_xxx) */
               struct ibv_flow_xxx_filter val;
               struct ibv_flow_xxx_filter mask; /* Defines which bits from the filter value are applicable when looking for a match in the incoming packet */
       };

       Each spec struct holds the relevant network layer parameters for matching. To enforce the match, the user sets a mask for each parameter.
       Packets coming from the wire are matched against the flow specification. If a match is found, the associated flow actions are executed on the packet.
       In ingress flows, the QP parameter is treated as another action of scattering the packet to the respected QP.
       If the bit is set in the mask, the corresponding bit in the value should be matched.
       Note that most vendors support either full mask (all "1"s) or zero mask (all "0"s).
       Network parameters in the relevant network structs should be given in network order (big endian).

   Flow domains and priority
       Flow steering defines the concept of domain and priority. Each domain represents an application that  can
       attach  a flow.  Domains are prioritized. A higher priority domain will always supersede a lower priority
       domain when their flow specifications overlap.
       IB verbs have the higher priority domain.
       In addition to the domain, there is priority within each of the domains.  A lower priority numeric  value
       (higher  priority)  takes  precedence  over  matching  rules  with  higher  numeric priority value (lower
       priority).  It is important to note that the priority value of a flow spec is used not only to  establish
       the  precedence  of  conflicting flow matches but also as a way to abstract the order on which flow specs
       are tested for matches. Flows with higher priorities will be tested before flows with lower priorities.

   Rules definition ordering
       An application can provide the ibv_flow_spec_xxx rules in an un-ordered scheme. In this case,  each  spec
       should  be well defined and match a specific network header layer.  In some cases, when certain flow spec
       types are present in the spec list, it is required to provide the list in an ordered manner so  that  the
       position  of  that flow spec type in the protocol stack is strictly defined.  When the certain spec type,
       which requires the ordering, resides in the inner  network  protocol  stack  (in  tunnel  protocols)  the
       ordering  should  be  applied  to  the  inner  network  specs  and should be combined with the inner spec
       indication using the IBV_FLOW_SPEC_INNER flag.  For example: An MPLS spec which attempts to match an MPLS
       tag  in  the  inner  network should have the IBV_FLOW_SPEC_INNER flag set and so do the rest of the inner
       network specs. On top of that, all the inner network specs should be provided in an ordered manner.  This
       is essential to represent many of the encapsulation tunnel protocols.

       The flow spec types which require this sort of ordering are:
       1. IBV_FLOW_SPEC_MPLS -
       Since  MPLS  header can appear at several locations in the protocol stack and can also be encapsulated on
       top of different layers, it is required to place this  spec  according  to  its  exact  location  in  the
       protocol stack.

   ibv_destroy_flow()
       destroys the flow flow_id.

RETURN VALUE

       ibv_create_flow() returns a pointer to the flow, or NULL if the request fails. In case of an error, errno
       is updated.

       ibv_destroy_flow() returns 0 on success, or the value of errno on failure (which  indicates  the  failure
       reason).

ERRORS

   EINVAL
       ibv_create_flow() flow specification, QP or priority are invalid

       ibv_destroy_flow() flow_id is invalid

   ENOMEM
       Couldn't create/destroy flow, not enough memory

   ENXIO
       Device managed flow steering isn't currently supported

   EPERM
       No permissions to add the flow steering rule

NOTES

       1. These verbs are available only for devices supporting
          IBV_DEVICE_MANAGED_FLOW_STEERING   and   only   for  QPs  of  Transport  Service  Type  IBV_QPT_UD  or
       IBV_QPT_RAW_PACKET
       2. User must memset the spec struct with zeros before using it.
       3. ether_type field in ibv_flow_eth_filter is the ethertype following the last VLAN tag of the packet.
       4. Only rule type IBV_FLOW_ATTR_NORMAL supports IBV_FLOW_ATTR_FLAGS_DONT_TRAP flag.
       5. No specifications are needed for IBV_FLOW_ATTR_SNIFFER rule type.
       6. When IBV_FLOW_ATTR_FLAGS_EGRESS flag is set, the qp parameter is used  only  as  a  mean  to  get  the
       device.

EXAMPLE

       Below  flow_attr  defines  a  rule  in  priority  0  to match a destination mac address and a source ipv4
       address. For that, L2 and L3 specs are used.
       If there is a hit on this rule, means the received packet  has  destination  mac:  66:11:22:33:44:55  and
       source ip: 0x0B86C806, the packet is steered to its attached qp.

       struct raw_eth_flow_attr {
               struct ibv_flow_attr            attr;
               struct ibv_flow_spec_eth        spec_eth;
               struct ibv_flow_spec_ipv4       spec_ipv4;
       } __attribute__((packed));

       struct raw_eth_flow_attr flow_attr = {
                       .attr = {
                               .comp_mask      = 0,
                               .type           = IBV_FLOW_ATTR_NORMAL,
                               .size           = sizeof(flow_attr),
                               .priority       = 0,
                               .num_of_specs   = 2,
                               .port           = 1,
                               .flags          = 0,
                       },
                       .spec_eth = {
                               .type   = IBV_FLOW_SPEC_ETH,
                               .size   = sizeof(struct ibv_flow_spec_eth),
                               .val = {
                                       .dst_mac = {0x66, 0x11, 0x22, 0x33, 0x44, 0x55},
                                       .src_mac = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
                                       .ether_type = 0,
                                       .vlan_tag = 0,
                               },
                               .mask = {
                                       .dst_mac = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                                       .src_mac = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                                       .ether_type = 0,
                                       .vlan_tag = 0,
                               }
                       },
                       .spec_ipv4 = {
                               .type   = IBV_FLOW_SPEC_IPV4,
                               .size   = sizeof(struct ibv_flow_spec_ipv4),
                               .val = {
                                       .src_ip = 0x0B86C806,
                                       .dst_ip = 0,
                               },
                               .mask = {
                                       .src_ip = 0xFFFFFFFF,
                                       .dst_ip = 0,
                               }
                       }
       };

AUTHORS

       Hadar Hen Zion <hadarh@mellanox.com>

       Matan Barak <matanb@mellanox.com>

       Yishai Hadas <yishaih@mellanox.com>

       Maor Gottlieb <maorg@mellanox.com>