Provided by: rsync_3.0.9-1ubuntu1_amd64 bug


       rsync - a fast, versatile, remote (and local) file-copying tool


       Local:  rsync [OPTION...] SRC... [DEST]

       Access via remote shell:
         Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
         Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

       Access via rsync daemon:
         Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
               rsync [OPTION...] rsync://[USER@]HOST[:PORT]/SRC... [DEST]
         Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
               rsync [OPTION...] SRC... rsync://[USER@]HOST[:PORT]/DEST

       Usages  with  just  one  SRC  arg  and  no  DEST arg will list the source files instead of


       Rsync is a fast and extraordinarily versatile file copying tool.   It  can  copy  locally,
       to/from another host over any remote shell, or to/from a remote rsync daemon.  It offers a
       large number of options that control every aspect of its behavior and permit very flexible
       specification  of  the  set  of  files  to be copied.  It is famous for its delta-transfer
       algorithm, which reduces the amount of data sent over the  network  by  sending  only  the
       differences  between the source files and the existing files in the destination.  Rsync is
       widely used for backups and mirroring and as an improved copy command for everyday use.

       Rsync finds files that need to be transferred using a "quick check" algorithm (by default)
       that  looks  for files that have changed in size or in last-modified time.  Any changes in
       the other preserved attributes (as requested by options) are made on the destination  file
       directly when the quick check indicates that the file’s data does not need to be updated.

       Some of the additional features of rsync are:

       o      support for copying links, devices, owners, groups, and permissions

       o      exclude and exclude-from options similar to GNU tar

       o      a CVS exclude mode for ignoring the same files that CVS would ignore

       o      can use any transparent remote shell, including ssh or rsh

       o      does not require super-user privileges

       o      pipelining of file transfers to minimize latency costs

       o      support for anonymous or authenticated rsync daemons (ideal for mirroring)


       Rsync  copies  files  either  to or from a remote host, or locally on the current host (it
       does not support copying files between two remote hosts).

       There are two different ways for rsync to contact a remote system:  using  a  remote-shell
       program  as  the transport (such as ssh or rsh) or contacting an rsync daemon directly via
       TCP.  The remote-shell transport is used whenever the source or destination path  contains
       a  single  colon  (:)  separator  after  a host specification.  Contacting an rsync daemon
       directly happens when the  source  or  destination  path  contains  a  double  colon  (::)
       separator  after  a host specification, OR when an rsync:// URL is specified (see also the
       this latter rule).

       As  a  special  case, if a single source arg is specified without a destination, the files
       are listed in an output format similar to "ls -l".

       As expected, if neither the source or destination path specify a  remote  host,  the  copy
       occurs locally (see also the --list-only option).

       Rsync refers to the local side as the "client" and the remote side as the "server".  Don’t
       confuse "server" with an rsync daemon -- a daemon is always a server, but a server can  be
       either a daemon or a remote-shell spawned process.


       See the file README for installation instructions.

       Once  installed,  you  can use rsync to any machine that you can access via a remote shell
       (as well as some that you can access using the rsync daemon-mode  protocol).   For  remote
       transfers, a modern rsync uses ssh for its communications, but it may have been configured
       to use a different remote shell by default, such as rsh or remsh.

       You can also specify any remote shell you like,  either  by  using  the  -e  command  line
       option, or by setting the RSYNC_RSH environment variable.

       Note that rsync must be installed on both the source and destination machines.


       You  use  rsync  in the same way you use rcp. You must specify a source and a destination,
       one of which may be remote.

       Perhaps the best way to explain the syntax is with some examples:

              rsync -t *.c foo:src/

       This would transfer all files matching the pattern *.c from the current directory  to  the
       directory  src  on the machine foo. If any of the files already exist on the remote system
       then the rsync remote-update protocol is used to update  the  file  by  sending  only  the
       differences. See the tech report for details.

              rsync -avz foo:src/bar /data/tmp

       This  would  recursively  transfer all files from the directory src/bar on the machine foo
       into the /data/tmp/bar directory on the  local  machine.  The  files  are  transferred  in
       "archive"  mode,  which  ensures  that  symbolic  links, devices, attributes, permissions,
       ownerships, etc. are preserved in the transfer.  Additionally, compression will be used to
       reduce the size of data portions of the transfer.

              rsync -avz foo:src/bar/ /data/tmp

       A  trailing  slash  on  the  source  changes this behavior to avoid creating an additional
       directory level at the destination.  You can think of a trailing / on a source as  meaning
       "copy  the  contents of this directory" as opposed to "copy the directory by name", but in
       both cases the attributes of the containing directory are transferred  to  the  containing
       directory  on  the destination.  In other words, each of the following commands copies the
       files in the same way, including their setting of the attributes of /dest/foo:

              rsync -av /src/foo /dest
              rsync -av /src/foo/ /dest/foo

       Note also that host and module references don’t require  a  trailing  slash  to  copy  the
       contents of the default directory.  For example, both of these copy the remote directory’s
       contents into "/dest":

              rsync -av host: /dest
              rsync -av host::module /dest

       You can also use rsync in local-only mode, where both the  source  and  destination  don’t
       have a ’:’ in the name. In this case it behaves like an improved copy command.

       Finally,  you can list all the (listable) modules available from a particular rsync daemon
       by leaving off the module name:


       See the following section for more details.


       The syntax for requesting multiple  files  from  a  remote  host  is  done  by  specifying
       additional  remote-host args in the same style as the first, or with the hostname omitted.
       For instance, all these work:

              rsync -av host:file1 :file2 host:file{3,4} /dest/
              rsync -av host::modname/file{1,2} host::modname/file3 /dest/
              rsync -av host::modname/file1 ::modname/file{3,4}

       Older versions of rsync required using quoted spaces in the SRC, like these examples:

              rsync -av host:'dir1/file1 dir2/file2' /dest
              rsync host::'modname/dir1/file1 modname/dir2/file2' /dest

       This word-splitting still works (by default) in the latest rsync, but is not  as  easy  to
       use as the first method.

       If  you  need  to transfer a filename that contains whitespace, you can either specify the
       --protect-args (-s) option, or you’ll need to escape the whitespace  in  a  way  that  the
       remote shell will understand.  For instance:

              rsync -av host:'file\ name\ with\ spaces' /dest


       It  is  also  possible to use rsync without a remote shell as the transport.  In this case
       you will directly connect to a remote rsync daemon, typically using TCP port  873.   (This
       obviously requires the daemon to be running on the remote system, so refer to the STARTING
       AN RSYNC DAEMON TO ACCEPT CONNECTIONS section below for information on that.)

       Using rsync in this way is the same as using it with a remote shell except that:

       o      you either use a double colon :: instead of a single colon to separate the hostname
              from the path, or you use an rsync:// URL.

       o      the first word of the "path" is actually a module name.

       o      the remote daemon may print a message of the day when you connect.

       o      if  you specify no path name on the remote daemon then the list of accessible paths
              on the daemon will be shown.

       o      if you specify no local destination then a listing of the specified  files  on  the
              remote daemon is provided.

       o      you must not specify the --rsh (-e) option.

       An example that copies all the files in a remote module named "src":

           rsync -av host::src /dest

       Some  modules  on  the remote daemon may require authentication. If so, you will receive a
       password prompt when you connect. You  can  avoid  the  password  prompt  by  setting  the
       environment  variable  RSYNC_PASSWORD  to  the  password  you  want  to  use  or using the
       --password-file option. This may be useful when scripting rsync.

       WARNING: On some systems environment variables are visible to all users. On those  systems
       using --password-file is recommended.

       You  may  establish  the  connection  via  a web proxy by setting the environment variable
       RSYNC_PROXY to a hostname:port pair pointing to  your  web  proxy.   Note  that  your  web
       proxy’s configuration must support proxy connections to port 873.

       You  may  also  establish  a  daemon  connection using a program as a proxy by setting the
       environment variable RSYNC_CONNECT_PROG to the commands you wish to run in place of making
       a  direct  socket  connection.   The  string  may contain the escape "%H" to represent the
       hostname specified in the rsync command (so use "%%" if you need  a  single  "%"  in  your
       string).  For example:

         export RSYNC_CONNECT_PROG='ssh proxyhost nc %H 873'
         rsync -av targethost1::module/src/ /dest/
         rsync -av rsync:://targethost2/module/src/ /dest/

       The command specified above uses ssh to run nc (netcat) on a proxyhost, which forwards all
       data to port 873 (the rsync daemon) on the targethost (%H).


       It is sometimes useful to use various features of an rsync daemon (such as named  modules)
       without  actually  allowing  any  new socket connections into a system (other than what is
       already required to allow remote-shell access).  Rsync supports connecting to a host using
       a  remote  shell  and  then spawning a single-use "daemon" server that expects to read its
       config file in the home dir of the remote user.  This can be useful if you want to encrypt
       a  daemon-style  transfer’s  data,  but since the daemon is started up fresh by the remote
       user, you may not be able to use features such as chroot or change the  uid  used  by  the
       daemon.   (For  another  way  to encrypt a daemon transfer, consider using ssh to tunnel a
       local port to a remote machine and configure a normal rsync daemon on that remote host  to
       only allow connections from "localhost".)

       From  the  user’s perspective, a daemon transfer via a remote-shell connection uses nearly
       the same command-line syntax as a normal rsync-daemon transfer, with  the  only  exception
       being  that  you must explicitly set the remote shell program on the command-line with the
       --rsh=COMMAND option.  (Setting the RSYNC_RSH in the environment will  not  turn  on  this
       functionality.)  For example:

           rsync -av --rsh=ssh host::module /dest

       If  you  need to specify a different remote-shell user, keep in mind that the user@ prefix
       in front of the host is specifying the  rsync-user  value  (for  a  module  that  requires
       user-based  authentication).   This  means  that you must give the ’-l user’ option to ssh
       when specifying the remote-shell, as in this example that uses the short  version  of  the
       --rsh option:

           rsync -av -e "ssh -l ssh-user" rsync-user@host::module /dest

       The  "ssh-user"  will be used at the ssh level; the "rsync-user" will be used to log-in to
       the "module".


       In order to connect to an rsync daemon, the remote system needs to have a  daemon  already
       running  (or it needs to have configured something like inetd to spawn an rsync daemon for
       incoming connections on a particular port).  For full information on how to start a daemon
       that will handling incoming socket connections, see the rsyncd.conf(5) man page -- that is
       the config file for the daemon, and it contains the full details for how to run the daemon
       (including stand-alone and inetd configurations).

       If  you’re  using one of the remote-shell transports for the transfer, there is no need to
       manually start an rsync daemon.


       Rsync always sorts the specified filenames into its internal transfer list.  This  handles
       the  merging  together  of the contents of identically named directories, makes it easy to
       remove duplicate filenames, and may confuse someone when the files are  transferred  in  a
       different order than what was given on the command-line.

       If  you  need  a  particular  file to be transferred prior to another, either separate the
       files into different rsync calls, or consider using --delay-updates (which doesn’t  affect
       the  sorted  transfer  order, but does make the final file-updating phase happen much more


       Here are some examples of how I use rsync.

       To backup my wife’s home directory, which  consists  of  large  MS  Word  files  and  mail
       folders, I use a cron job that runs

              rsync -Cavz . arvidsjaur:backup

       each night over a PPP connection to a duplicate directory on my machine "arvidsjaur".

       To synchronize my samba source trees I use the following Makefile targets:

                   rsync -avuzb --exclude '*~' samba:samba/ .
                   rsync -Cavuzb . samba:samba/
           sync: get put

       this  allows me to sync with a CVS directory at the other end of the connection. I then do
       CVS operations on the remote machine, which saves a lot of time as the remote CVS protocol
       isn’t very efficient.

       I mirror a directory between my "old" and "new" ftp sites with the command:

       rsync -az -e ssh --delete ~ftp/pub/samba nimbus:"~ftp/pub/tridge"

       This is launched from cron every few hours.


       Here  is  a  short summary of the options available in rsync. Please refer to the detailed
       description below for a complete description.

        -v, --verbose               increase verbosity
        -q, --quiet                 suppress non-error messages
            --no-motd               suppress daemon-mode MOTD (see caveat)
        -c, --checksum              skip based on checksum, not mod-time & size
        -a, --archive               archive mode; equals -rlptgoD (no -H,-A,-X)
            --no-OPTION             turn off an implied OPTION (e.g. --no-D)
        -r, --recursive             recurse into directories
        -R, --relative              use relative path names
            --no-implied-dirs       don't send implied dirs with --relative
        -b, --backup                make backups (see --suffix & --backup-dir)
            --backup-dir=DIR        make backups into hierarchy based in DIR
            --suffix=SUFFIX         backup suffix (default ~ w/o --backup-dir)
        -u, --update                skip files that are newer on the receiver
            --inplace               update destination files in-place
            --append                append data onto shorter files
            --append-verify         --append w/old data in file checksum
        -d, --dirs                  transfer directories without recursing
        -l, --links                 copy symlinks as symlinks
        -L, --copy-links            transform symlink into referent file/dir
            --copy-unsafe-links     only "unsafe" symlinks are transformed
            --safe-links            ignore symlinks that point outside the tree
        -k, --copy-dirlinks         transform symlink to dir into referent dir
        -K, --keep-dirlinks         treat symlinked dir on receiver as dir
        -H, --hard-links            preserve hard links
        -p, --perms                 preserve permissions
        -E, --executability         preserve executability
            --chmod=CHMOD           affect file and/or directory permissions
        -A, --acls                  preserve ACLs (implies -p)
        -X, --xattrs                preserve extended attributes
        -o, --owner                 preserve owner (super-user only)
        -g, --group                 preserve group
            --devices               preserve device files (super-user only)
            --specials              preserve special files
        -D                          same as --devices --specials
        -t, --times                 preserve modification times
        -O, --omit-dir-times        omit directories from --times
            --super                 receiver attempts super-user activities
            --fake-super            store/recover privileged attrs using xattrs
        -S, --sparse                handle sparse files efficiently
        -n, --dry-run               perform a trial run with no changes made
        -W, --whole-file            copy files whole (w/o delta-xfer algorithm)
        -x, --one-file-system       don't cross filesystem boundaries
        -B, --block-size=SIZE       force a fixed checksum block-size
        -e, --rsh=COMMAND           specify the remote shell to use
            --rsync-path=PROGRAM    specify the rsync to run on remote machine
            --existing              skip creating new files on receiver
            --ignore-existing       skip updating files that exist on receiver
            --remove-source-files   sender removes synchronized files (non-dir)
            --del                   an alias for --delete-during
            --delete                delete extraneous files from dest dirs
            --delete-before         receiver deletes before xfer, not during
            --delete-during         receiver deletes during the transfer
            --delete-delay          find deletions during, delete after
            --delete-after          receiver deletes after transfer, not during
            --delete-excluded       also delete excluded files from dest dirs
            --ignore-errors         delete even if there are I/O errors
            --force                 force deletion of dirs even if not empty
            --max-delete=NUM        don't delete more than NUM files
            --max-size=SIZE         don't transfer any file larger than SIZE
            --min-size=SIZE         don't transfer any file smaller than SIZE
            --partial               keep partially transferred files
            --partial-dir=DIR       put a partially transferred file into DIR
            --delay-updates         put all updated files into place at end
        -m, --prune-empty-dirs      prune empty directory chains from file-list
            --numeric-ids           don't map uid/gid values by user/group name
            --timeout=SECONDS       set I/O timeout in seconds
            --contimeout=SECONDS    set daemon connection timeout in seconds
        -I, --ignore-times          don't skip files that match size and time
            --size-only             skip files that match in size
            --modify-window=NUM     compare mod-times with reduced accuracy
        -T, --temp-dir=DIR          create temporary files in directory DIR
        -y, --fuzzy                 find similar file for basis if no dest file
            --compare-dest=DIR      also compare received files relative to DIR
            --copy-dest=DIR         ... and include copies of unchanged files
            --link-dest=DIR         hardlink to files in DIR when unchanged
        -z, --compress              compress file data during the transfer
            --compress-level=NUM    explicitly set compression level
            --skip-compress=LIST    skip compressing files with suffix in LIST
        -C, --cvs-exclude           auto-ignore files in the same way CVS does
        -f, --filter=RULE           add a file-filtering RULE
        -F                          same as --filter='dir-merge /.rsync-filter'
                                    repeated: --filter='- .rsync-filter'
            --exclude=PATTERN       exclude files matching PATTERN
            --exclude-from=FILE     read exclude patterns from FILE
            --include=PATTERN       don't exclude files matching PATTERN
            --include-from=FILE     read include patterns from FILE
            --files-from=FILE       read list of source-file names from FILE
        -0, --from0                 all *from/filter files are delimited by 0s
        -s, --protect-args          no space-splitting; wildcard chars only
            --address=ADDRESS       bind address for outgoing socket to daemon
            --port=PORT             specify double-colon alternate port number
            --sockopts=OPTIONS      specify custom TCP options
            --blocking-io           use blocking I/O for the remote shell
            --stats                 give some file-transfer stats
        -8, --8-bit-output          leave high-bit chars unescaped in output
        -h, --human-readable        output numbers in a human-readable format
            --progress              show progress during transfer
        -P                          same as --partial --progress
        -i, --itemize-changes       output a change-summary for all updates
            --out-format=FORMAT     output updates using the specified FORMAT
            --log-file=FILE         log what we're doing to the specified FILE
            --log-file-format=FMT   log updates using the specified FMT
            --password-file=FILE    read daemon-access password from FILE
            --list-only             list the files instead of copying them
            --bwlimit=KBPS          limit I/O bandwidth; KBytes per second
            --write-batch=FILE      write a batched update to FILE
            --only-write-batch=FILE like --write-batch but w/o updating dest
            --read-batch=FILE       read a batched update from FILE
            --protocol=NUM          force an older protocol version to be used
            --iconv=CONVERT_SPEC    request charset conversion of filenames
            --checksum-seed=NUM     set block/file checksum seed (advanced)
        -4, --ipv4                  prefer IPv4
        -6, --ipv6                  prefer IPv6
            --version               print version number
       (-h) --help                  show this help (see below for -h comment)

       Rsync can also be run as a daemon, in which case the following options are accepted:

            --daemon                run as an rsync daemon
            --address=ADDRESS       bind to the specified address
            --bwlimit=KBPS          limit I/O bandwidth; KBytes per second
            --config=FILE           specify alternate rsyncd.conf file
            --no-detach             do not detach from the parent
            --port=PORT             listen on alternate port number
            --log-file=FILE         override the "log file" setting
            --log-file-format=FMT   override the "log format" setting
            --sockopts=OPTIONS      specify custom TCP options
        -v, --verbose               increase verbosity
        -4, --ipv4                  prefer IPv4
        -6, --ipv6                  prefer IPv6
        -h, --help                  show this help (if used after --daemon)


       Rsync accepts both long (double-dash + word) and short  (single-dash  +  letter)  options.
       The full list of the available options are described below.  If an option can be specified
       in more than one way, the choices are comma-separated.  Some  options  only  have  a  long
       variant, not a short.  If the option takes a parameter, the parameter is only listed after
       the long variant, even though it must also be specified for the short.  When specifying  a
       parameter,  you can either use the form --option=param or replace the ’=’ with whitespace.
       The parameter may need to be  quoted  in  some  manner  for  it  to  survive  the  shell’s
       command-line  parsing.  Keep in mind that a leading tilde (~) in a filename is substituted
       by your shell, so --option=~/foo will not  change  the  tilde  into  your  home  directory
       (remove the ’=’ for that).

       --help Print  a  short  help page describing the options available in rsync and exit.  For
              backward-compatibility with older versions of rsync, the help will also  be  output
              if you use the -h option without any other args.

              print the rsync version number and exit.

       -v, --verbose
              This  option increases the amount of information you are given during the transfer.
              By default, rsync works silently. A single -v will give you information about  what
              files  are  being  transferred  and a brief summary at the end. Two -v options will
              give you information on what files are being skipped and slightly more  information
              at  the  end.  More  than  two  -v options should only be used if you are debugging

              Note that the names of the transferred files that  are  output  are  done  using  a
              default  --out-format  of "%n%L", which tells you just the name of the file and, if
              the item is a link, where it points.  At the single -v  level  of  verbosity,  this
              does  not  mention  when  a  file  gets  its attributes changed.  If you ask for an
              itemized list of changed attributes (either --itemize-changes or adding "%i" to the
              --out-format  setting),  the  output (on the client) increases to mention all items
              that are changed in any way.  See the --out-format option for more details.

       -q, --quiet
              This option decreases the amount of information you are given during the  transfer,
              notably  suppressing  information  messages  from the remote server. This option is
              useful when invoking rsync from cron.

              This option affects the information that is output by the client at the start of  a
              daemon  transfer.   This suppresses the message-of-the-day (MOTD) text, but it also
              affects the list of modules that the daemon sends in response to the "rsync host::"
              request  (due  to  a  limitation in the rsync protocol), so omit this option if you
              want to request the list of modules from the daemon.

       -I, --ignore-times
              Normally rsync will skip any files that are already the same size and have the same
              modification timestamp.  This option turns off this "quick check" behavior, causing
              all files to be updated.

              This modifies rsync’s "quick check" algorithm for finding files  that  need  to  be
              transferred,  changing  it  from  the  default  of transferring files with either a
              changed size or a changed last-modified time to just looking for  files  that  have
              changed  in  size.   This  is useful when starting to use rsync after using another
              mirroring system which may not preserve timestamps exactly.

              When comparing two timestamps, rsync treats the timestamps as being equal  if  they
              differ  by  no more than the modify-window value.  This is normally 0 (for an exact
              match), but you may find  it  useful  to  set  this  to  a  larger  value  in  some
              situations.   In  particular,  when  transferring  to  or  from  an  MS Windows FAT
              filesystem (which represents times with a 2-second  resolution),  --modify-window=1
              is useful (allowing times to differ by up to 1 second).

       -c, --checksum
              This changes the way rsync checks if the files have been changed and are in need of
              a transfer.  Without this option, rsync uses a  "quick  check"  that  (by  default)
              checks  if  each file’s size and time of last modification match between the sender
              and receiver.  This option changes this to compare a 128-bit checksum for each file
              that  has  a  matching  size.   Generating the checksums means that both sides will
              expend a lot of disk I/O reading all the data in the files  in  the  transfer  (and
              this  is prior to any reading that will be done to transfer changed files), so this
              can slow things down significantly.

              The sending side generates its checksums while it is  doing  the  file-system  scan
              that  builds the list of the available files.  The receiver generates its checksums
              when it is scanning for changed files, and will checksum any file that has the same
              size  as  the  corresponding  sender’s file:  files with either a changed size or a
              changed checksum are selected for transfer.

              Note  that  rsync  always  verifies  that  each  transferred  file  was   correctly
              reconstructed  on  the  receiving  side  by  checking a whole-file checksum that is
              generated as  the  file  is  transferred,  but  that  automatic  after-the-transfer
              verification  has  nothing  to do with this option’s before-the-transfer "Does this
              file need to be updated?" check.

              For protocol 30 and beyond (first supported in 3.0.0), the checksum  used  is  MD5.
              For older protocols, the checksum used is MD4.

       -a, --archive
              This  is equivalent to -rlptgoD. It is a quick way of saying you want recursion and
              want to preserve almost everything (with -H being a notable  omission).   The  only
              exception to the above equivalence is when --files-from is specified, in which case
              -r is not implied.

              Note that -a does not preserve hardlinks, because finding multiply-linked files  is
              expensive.  You must separately specify -H.

              You  may  turn  off  one  or more implied options by prefixing the option name with
              "no-".  Not all options may be prefixed with a "no-": only options that are implied
              by  other  options  (e.g. --no-D, --no-perms) or have different defaults in various
              circumstances (e.g. --no-whole-file, --no-blocking-io, --no-dirs).  You may specify
              either the short or the long option name after the "no-" prefix (e.g. --no-R is the
              same as --no-relative).

              For example: if you want to use -a (--archive) but don’t want -o (--owner), instead
              of converting -a into -rlptgD, you could specify -a --no-o (or -a --no-owner).

              The  order  of  the  options is important:  if you specify --no-r -a, the -r option
              would end up being turned on, the opposite  of  -a  --no-r.   Note  also  that  the
              side-effects  of  the  --files-from  option  are  NOT positional, as it affects the
              default state of several options and slightly changes the meaning of  -a  (see  the
              --files-from option for more details).

       -r, --recursive
              This tells rsync to copy directories recursively.  See also --dirs (-d).

              Beginning with rsync 3.0.0, the recursive algorithm used is now an incremental scan
              that uses much less memory than before and begins the transfer after  the  scanning
              of  the  first  few  directories  have  been completed.  This incremental scan only
              affects our recursion algorithm, and does not change a non-recursive transfer.   It
              is also only possible when both ends of the transfer are at least version 3.0.0.

              Some options require rsync to know the full file list, so these options disable the
              incremental  recursion  mode.   These  include:  --delete-before,   --delete-after,
              --prune-empty-dirs,  and --delay-updates.  Because of this, the default delete mode
              when you specify --delete is now --delete-during when both ends of  the  connection
              are  at least 3.0.0 (use --del or --delete-during to request this improved deletion
              mode explicitly).  See also the --delete-delay option that is a better choice  than
              using --delete-after.

              Incremental  recursion  can  be disabled using the --no-inc-recursive option or its
              shorter --no-i-r alias.

       -R, --relative
              Use relative paths. This means that the full path names specified  on  the  command
              line  are sent to the server rather than just the last parts of the filenames. This
              is particularly useful when you want to send several different directories  at  the
              same time. For example, if you used this command:

                 rsync -av /foo/bar/baz.c remote:/tmp/

              ... this would create a file named baz.c in /tmp/ on the remote machine. If instead
              you used

                 rsync -avR /foo/bar/baz.c remote:/tmp/

              then a file named /tmp/foo/bar/baz.c  would  be  created  on  the  remote  machine,
              preserving   its  full  path.   These  extra  path  elements  are  called  "implied
              directories" (i.e. the "foo" and the "foo/bar" directories in the above example).

              Beginning with rsync 3.0.0, rsync always sends these implied  directories  as  real
              directories  in  the  file  list, even if a path element is really a symlink on the
              sending side.  This prevents some really unexpected behaviors when copying the full
              path  of  a file that you didn’t realize had a symlink in its path.  If you want to
              duplicate a server-side symlink,  include  both  the  symlink  via  its  path,  and
              referent directory via its real path.  If you’re dealing with an older rsync on the
              sending side, you may need to use the --no-implied-dirs option.

              It is also possible to limit the amount of path information that is sent as implied
              directories  for  each  path  you specify.  With a modern rsync on the sending side
              (beginning with 2.6.7), you can insert a dot and a slash into the source path, like

                 rsync -avR /foo/./bar/baz.c remote:/tmp/

              That would create /tmp/bar/baz.c on the remote machine.  (Note that the dot must be
              followed by a slash, so "/foo/."  would  not  be  abbreviated.)   For  older  rsync
              versions,  you  would  need  to use a chdir to limit the source path.  For example,
              when pushing files:

                 (cd /foo; rsync -avR bar/baz.c remote:/tmp/)

              (Note that the parens put the two commands into  a  sub-shell,  so  that  the  "cd"
              command  doesn’t  remain  in  effect for future commands.)  If you’re pulling files
              from an older rsync, use this idiom (but only for a non-daemon transfer):

                 rsync -avR --rsync-path="cd /foo; rsync" \
                     remote:bar/baz.c /tmp/

              This option affects the default behavior of the  --relative  option.   When  it  is
              specified,  the attributes of the implied directories from the source names are not
              included in the transfer.  This means that the corresponding path elements  on  the
              destination  system  are  left  unchanged  if  they  exist, and any missing implied
              directories are created with default attributes.  This even  allows  these  implied
              path  elements  to  have big differences, such as being a symlink to a directory on
              the receiving side.

              For instance, if a command-line arg or a files-from entry told  rsync  to  transfer
              the  file  "path/foo/file",  the directories "path" and "path/foo" are implied when
              --relative is used.  If "path/foo" is a symlink to "bar" on the destination system,
              the receiving rsync would ordinarily delete "path/foo", recreate it as a directory,
              and receive the file into the new directory.  With --no-implied-dirs, the receiving
              rsync  updates  "path/foo/file"  using the existing path elements, which means that
              the file ends up being created in "path/bar".  Another way to accomplish this  link
              preservation  is to use the --keep-dirlinks option (which will also affect symlinks
              to directories in the rest of the transfer).

              When pulling files from an rsync older than 3.0.0, you may need to use this  option
              if  the sending side has a symlink in the path you request and you wish the implied
              directories to be transferred as normal directories.

       -b, --backup
              With this option, preexisting  destination  files  are  renamed  as  each  file  is
              transferred  or  deleted.   You can control where the backup file goes and what (if
              any) suffix gets appended using the --backup-dir and --suffix options.

              Note that if you don’t specify --backup-dir, (1) the --omit-dir-times  option  will
              be  implied,  and  (2)  if  --delete is also in effect (without --delete-excluded),
              rsync will add a "protect" filter-rule for the backup suffix to the end of all your
              existing  excludes  (e.g. -f "P *~").  This will prevent previously backed-up files
              from being deleted.  Note that if you are supplying your own filter rules, you  may
              need  to  manually  insert your own exclude/protect rule somewhere higher up in the
              list so that it has a high enough priority to be effective  (e.g.,  if  your  rules
              specify  a  trailing inclusion/exclusion of ’*’, the auto-added rule would never be

              In combination with the --backup option, this tells rsync to store all  backups  in
              the  specified  directory  on the receiving side.  This can be used for incremental
              backups.  You can additionally specify a backup suffix using  the  --suffix  option
              (otherwise  the files backed up in the specified directory will keep their original

              Note that if you specify a relative path, the backup directory will be relative  to
              the  destination directory, so you probably want to specify either an absolute path
              or a path that starts with "../".  If an rsync daemon is the receiver,  the  backup
              dir cannot go outside the module’s path hierarchy, so take extra care not to delete
              it or copy into it.

              This option allows you to override the default backup suffix used with the --backup
              (-b)  option. The default suffix is a ~ if no --backup-dir was specified, otherwise
              it is an empty string.

       -u, --update
              This forces rsync to skip any files which exist  on  the  destination  and  have  a
              modified time that is newer than the source file.  (If an existing destination file
              has a modification time equal to the source file’s, it will be updated if the sizes
              are different.)

              Note  that  this  does  not  affect the copying of symlinks or other special files.
              Also, a difference of file  format  between  the  sender  and  receiver  is  always
              considered  to  be  important  enough  for an update, no matter what date is on the
              objects.  In other words, if the source has a directory where the destination has a
              file, the transfer would occur regardless of the timestamps.

              This  option is a transfer rule, not an exclude, so it doesn’t affect the data that
              goes into the file-lists, and thus it doesn’t affect deletions.  It just limits the
              files that the receiver requests to be transferred.

              This  option  changes how rsync transfers a file when its data needs to be updated:
              instead of the default method of creating a new copy of the file and moving it into
              place  when  it  is complete, rsync instead writes the updated data directly to the
              destination file.

              This has several effects:

              o      Hard links are not broken.  This means the new data will be visible  through
                     other  hard  links  to  the  destination  file.   Moreover, attempts to copy
                     differing source files onto a multiply-linked destination file  will  result
                     in a "tug of war" with the destination data changing back and forth.

              o      In-use  binaries  cannot  be  updated  (either the OS will prevent this from
                     happening, or binaries that attempt to swap-in their data will misbehave  or

              o      The  file’s  data  will  be in an inconsistent state during the transfer and
                     will be left that way if the transfer is interrupted or if an update fails.

              o      A file that rsync cannot write to cannot be updated. While a super user  can
                     update  any file, a normal user needs to be granted write permission for the
                     open of the file for writing to be successful.

              o      The efficiency of rsync’s delta-transfer algorithm may be  reduced  if  some
                     data  in  the  destination  file is overwritten before it can be copied to a
                     position later in the file.  This does not apply if you use --backup,  since
                     rsync  is  smart  enough  to  use  the backup file as the basis file for the

              WARNING: you should not use this option to update files that are being accessed  by
              others, so be careful when choosing to use this for a copy.

              This  option  is  useful  for  transferring large files with block-based changes or
              appended data, and also on systems that are disk bound, not network bound.  It  can
              also  help  keep  a  copy-on-write  filesystem  snapshot  from diverging the entire
              contents of a file that only has minor changes.

              The option implies --partial (since an interrupted transfer  does  not  delete  the
              file),  but conflicts with --partial-dir and --delay-updates.  Prior to rsync 2.6.4
              --inplace was also incompatible with --compare-dest and --link-dest.

              This causes rsync to update a file by appending data onto  the  end  of  the  file,
              which presumes that the data that already exists on the receiving side is identical
              with the start of the file on the sending side.  If a file needs to be  transferred
              and its size on the receiver is the same or longer than the size on the sender, the
              file is skipped.  This does not interfere with the updating of a file’s non-content
              attributes  (e.g.  permissions,  ownership, etc.) when the file does not need to be
              transferred, nor does it affect the updating of  any  non-regular  files.   Implies
              --inplace,  but  does  not  conflict  with --sparse (since it is always extending a
              file’s length).

              This works just like the --append option, but the existing data  on  the  receiving
              side  is  included  in the full-file checksum verification step, which will cause a
              file to be resent if the final  verification  step  fails  (rsync  uses  a  normal,
              non-appending --inplace transfer for the resend).

              Note:  prior to rsync 3.0.0, the --append option worked like --append-verify, so if
              you are interacting with an older rsync (or the transfer is using a protocol  prior
              to 30), specifying either append option will initiate an --append-verify transfer.

       -d, --dirs
              Tell  the  sending  side  to  include any directories that are encountered.  Unlike
              --recursive, a directory’s contents  are  not  copied  unless  the  directory  name
              specified  is  "." or ends with a trailing slash (e.g. ".", "dir/.", "dir/", etc.).
              Without this option or the --recursive option, rsync will skip all  directories  it
              encounters (and output a message to that effect for each one).  If you specify both
              --dirs and --recursive, --recursive takes precedence.

              The --dirs option is implied by the --files-from option or the  --list-only  option
              (including  an  implied --list-only usage) if --recursive wasn’t specified (so that
              directories are seen in the listing).  Specify --no-dirs (or --no-d) if you want to
              turn this off.

              There  is also a backward-compatibility helper option, --old-dirs (or --old-d) that
              tells rsync to use a hack of "-r --exclude=’/*/*’" to get an older rsync to list  a
              single directory without recursing.

       -l, --links
              When symlinks are encountered, recreate the symlink on the destination.

       -L, --copy-links
              When  symlinks  are  encountered,  the  item  that  they point to (the referent) is
              copied, rather than the symlink.  In older versions of rsync, this option also  had
              the  side-effect of telling the receiving side to follow symlinks, such as symlinks
              to directories.  In a modern rsync  such  as  this  one,  you’ll  need  to  specify
              --keep-dirlinks  (-K)  to  get  this  extra  behavior.   The only exception is when
              sending files to an rsync that is too old to understand -K -- in that case, the  -L
              option will still have the side-effect of -K on that older receiving rsync.

              This  tells  rsync  to  copy  the referent of symbolic links that point outside the
              copied tree.  Absolute symlinks are also treated like ordinary files,  and  so  are
              any symlinks in the source path itself when --relative is used.  This option has no
              additional effect if --copy-links was also specified.

              This tells rsync to ignore any symbolic links which point outside the copied  tree.
              All  absolute  symlinks  are  also  ignored.  Using this option in conjunction with
              --relative may give unexpected results.

       -k, --copy-dirlinks
              This option causes the sending side to treat a symlink to a directory as though  it
              were   a   real   directory.   This  is  useful  if  you  don’t  want  symlinks  to
              non-directories to be affected, as they would be using --copy-links.

              Without this option, if the sending side has replaced a directory with a symlink to
              a  directory, the receiving side will delete anything that is in the way of the new
              symlink, including a directory hierarchy (as long as  --force  or  --delete  is  in

              See also --keep-dirlinks for an analogous option for the receiving side.

              --copy-dirlinks  applies to all symlinks to directories in the source.  If you want
              to follow only a few specified symlinks, a trick you can use is  to  pass  them  as
              additional  source  args  with a trailing slash, using --relative to make the paths
              match up right.  For example:

              rsync -r --relative src/./ src/./follow-me/ dest/

              This works because rsync calls lstat(2)  on  the  source  arg  as  given,  and  the
              trailing slash makes lstat(2) follow the symlink, giving rise to a directory in the
              file-list which overrides the symlink found during the scan of "src/./".

       -K, --keep-dirlinks
              This option causes the receiving side to treat a symlink to a directory  as  though
              it  were a real directory, but only if it matches a real directory from the sender.
              Without this option, the receiver’s symlink would be deleted and  replaced  with  a
              real directory.

              For  example,  suppose  you transfer a directory "foo" that contains a file "file",
              but  "foo"  is  a  symlink  to  directory   "bar"   on   the   receiver.    Without
              --keep-dirlinks,  the  receiver deletes symlink "foo", recreates it as a directory,
              and receives the file into the new directory.  With --keep-dirlinks,  the  receiver
              keeps the symlink and "file" ends up in "bar".

              One  note  of caution:  if you use --keep-dirlinks, you must trust all the symlinks
              in the copy!  If it is possible for an untrusted user to create their  own  symlink
              to  any  directory,  the user could then (on a subsequent copy) replace the symlink
              with a real directory and affect the content  of  whatever  directory  the  symlink
              references.   For  backup  copies,  you  are better off using something like a bind
              mount instead of a symlink to modify your receiving hierarchy.

              See also --copy-dirlinks for an analogous option for the sending side.

       -H, --hard-links
              This tells rsync to look for hard-linked files in the source and link together  the
              corresponding  files on the destination.  Without this option, hard-linked files in
              the source are treated as though they were separate files.

              This option does NOT necessarily ensure that the  pattern  of  hard  links  on  the
              destination exactly matches that on the source.  Cases in which the destination may
              end up with extra hard links include the following:

              o      If the destination contains extraneous hard-links (more linking than what is
                     present  in the source file list), the copying algorithm will not break them
                     explicitly.  However, if one or more of the paths have content  differences,
                     the  normal file-update process will break those extra links (unless you are
                     using the --inplace option).

              o      If you specify a --link-dest directory that contains hard links, the linking
                     of  the destination files against the --link-dest files can cause some paths
                     in the  destination  to  become  linked  together  due  to  the  --link-dest

              Note  that  rsync  can  only  detect  hard  links between files that are inside the
              transfer set.  If rsync updates a file that  has  extra  hard-link  connections  to
              files outside the transfer, that linkage will be broken.  If you are tempted to use
              the --inplace option to avoid this breakage, be very careful that you know how your
              files  are  being updated so that you are certain that no unintended changes happen
              due to lingering hard links (and see the --inplace option for more caveats).

              If incremental recursion is active (see --recursive), rsync may transfer a  missing
              hard-linked  file  before  it  finds  that  another  link  for that contents exists
              elsewhere in the hierarchy.  This does not affect  the  accuracy  of  the  transfer
              (i.e.  which files are hard-linked together), just its efficiency (i.e. copying the
              data for a new, early copy of a hard-linked file that could have been  found  later
              in  the  transfer  in  another member of the hard-linked set of files).  One way to
              avoid  this  inefficiency  is  to   disable   incremental   recursion   using   the
              --no-inc-recursive option.

       -p, --perms
              This option causes the receiving rsync to set the destination permissions to be the
              same as the source permissions.  (See also the --chmod option for a way  to  modify
              what rsync considers to be the source permissions.)

              When this option is off, permissions are set as follows:

              o      Existing  files (including updated files) retain their existing permissions,
                     though the --executability option might change just the  execute  permission
                     for the file.

              o      New  files  get  their  "normal"  permission  bits  set to the source file’s
                     permissions  masked  with  the  receiving  directory’s  default  permissions
                     (either  the receiving process’s umask, or the permissions specified via the
                     destination directory’s default ACL),  and  their  special  permission  bits
                     disabled except in the case where a new directory inherits a setgid bit from
                     its parent directory.

              Thus, when --perms and --executability are both disabled, rsync’s behavior  is  the
              same as that of other file-copy utilities, such as cp(1) and tar(1).

              In  summary:  to  give destination files (both old and new) the source permissions,
              use --perms.  To give new files the destination-default permissions (while  leaving
              existing  files  unchanged),  make  sure  that  the  --perms  option is off and use
              --chmod=ugo=rwX (which ensures that all non-masked bits  get  enabled).   If  you’d
              care to make this latter behavior easier to type, you could define a popt alias for
              it, such as putting this line in the file ~/.popt (the  following  defines  the  -Z
              option, and includes --no-g to use the default group of the destination dir):

                 rsync alias -Z --no-p --no-g --chmod=ugo=rwX

              You could then use this new option in a command such as this one:

                 rsync -avZ src/ dest/

              (Caveat:  make  sure  that  -a  does  not  follow  -Z, or it will re-enable the two
              "--no-*" options mentioned above.)

              The preservation of the destination’s setgid bit on newly-created directories  when
              --perms  is  off  was  added  in  rsync  2.6.7.   Older  rsync versions erroneously
              preserved the three special permission bits for newly-created  files  when  --perms
              was  off,  while overriding the destination’s setgid bit setting on a newly-created
              directory.  Default ACL observance was added to the ACL patch for rsync  2.6.7,  so
              older  (or  non-ACL-enabled) rsyncs use the umask even if default ACLs are present.
              (Keep in mind that it is the version of the  receiving  rsync  that  affects  these

       -E, --executability
              This  option  causes  rsync to preserve the executability (or non-executability) of
              regular files when --perms is not enabled.  A regular  file  is  considered  to  be
              executable  if  at least one ’x’ is turned on in its permissions.  When an existing
              destination file’s executability differs from  that  of  the  corresponding  source
              file, rsync modifies the destination file’s permissions as follows:

              o      To make a file non-executable, rsync turns off all its ’x’ permissions.

              o      To  make  a  file  executable, rsync turns on each ’x’ permission that has a
                     corresponding ’r’ permission enabled.

              If --perms is enabled, this option is ignored.

       -A, --acls
              This option causes rsync to update the destination ACLs  to  be  the  same  as  the
              source ACLs.  The option also implies --perms.

              The source and destination systems must have compatible ACL entries for this option
              to work properly.  See the --fake-super option for a way to backup and restore ACLs
              that are not compatible.

       -X, --xattrs
              This  option  causes  rsync to update the destination extended attributes to be the
              same as the source ones.

              For systems that support extended-attribute namespaces, a  copy  being  done  by  a
              super-user  copies  all  namespaces except system.*.  A normal user only copies the
              user.* namespace.  To be able to backup and restore non-user namespaces as a normal
              user, see the --fake-super option.

              Note that this option does not copy rsyncs special xattr values (e.g. those used by
              --fake-super) unless you repeat the option (e.g. -XX).  This "copy all xattrs" mode
              cannot be used with --fake-super.

              This  option  tells rsync to apply one or more comma-separated "chmod" modes to the
              permission of the files in the transfer.  The resulting value is treated as  though
              it  were  the  permissions that the sending side supplied for the file, which means
              that this option can seem to have no effect on existing files  if  --perms  is  not

              In  addition to the normal parsing rules specified in the chmod(1) manpage, you can
              specify an item that should only apply to a directory by prefixing it with  a  ’D’,
              or  specify  an  item  that should only apply to a file by prefixing it with a ’F’.
              For example, the following will ensure that all  directories  get  marked  set-gid,
              that  no  files are other-writable, that both are user-writable and group-writable,
              and that both have consistent executability across all bits:


              It is also legal to specify multiple --chmod options, as each additional option  is
              just appended to the list of changes to make.

              See  the --perms and --executability options for how the resulting permission value
              can be applied to the files in the transfer.

       -o, --owner
              This option causes rsync to set the owner of the destination file to be the same as
              the  source  file,  but  only if the receiving rsync is being run as the super-user
              (see also the --super and --fake-super options).  Without this option, the owner of
              new and/or transferred files are set to the invoking user on the receiving side.

              The  preservation  of  ownership  will associate matching names by default, but may
              fall back to using the ID number in some circumstances (see also the  --numeric-ids
              option for a full discussion).

       -g, --group
              This option causes rsync to set the group of the destination file to be the same as
              the source file.  If the receiving program is not running as the super-user (or  if
              --no-super was specified), only groups that the invoking user on the receiving side
              is a member of will be preserved.  Without this option, the group  is  set  to  the
              default group of the invoking user on the receiving side.

              The preservation of group information will associate matching names by default, but
              may fall back  to  using  the  ID  number  in  some  circumstances  (see  also  the
              --numeric-ids option for a full discussion).

              This option causes rsync to transfer character and block device files to the remote
              system to recreate these devices.  This option has no effect if the receiving rsync
              is not run as the super-user (see also the --super and --fake-super options).

              This option causes rsync to transfer special files such as named sockets and fifos.

       -D     The -D option is equivalent to --devices --specials.

       -t, --times
              This  tells  rsync  to  transfer modification times along with the files and update
              them on the remote system.  Note that if this option is not used, the  optimization
              that  excludes  files  that  have  not  been modified cannot be effective; in other
              words, a missing -t or -a will cause the next transfer to behave as if it used  -I,
              causing  all files to be updated (though rsync’s delta-transfer algorithm will make
              the update fairly efficient if the files  haven’t  actually  changed,  you’re  much
              better off using -t).

       -O, --omit-dir-times
              This  tells rsync to omit directories when it is preserving modification times (see
              --times).  If NFS is sharing the directories on the receiving side, it  is  a  good
              idea to use -O.  This option is inferred if you use --backup without --backup-dir.

              This  tells  the  receiving  side  to  attempt  super-user  activities  even if the
              receiving rsync wasn’t run by the super-user.  These activities include: preserving
              users  via  the  --owner option, preserving all groups (not just the current user’s
              groups) via the --groups option, and copying  devices  via  the  --devices  option.
              This is useful for systems that allow such activities without being the super-user,
              and also for ensuring that you will get errors if the receiving  side  isn’t  being
              run  as  the super-user.  To turn off super-user activities, the super-user can use

              When  this  option  is  enabled,   rsync   simulates   super-user   activities   by
              saving/restoring the privileged attributes via special extended attributes that are
              attached to each file (as needed).  This includes the file’s owner and group (if it
              is  not the default), the file’s device info (device & special files are created as
              empty text files), and any permission bits that we won’t allow to  be  set  on  the
              real file (e.g.  the real file gets u-s,g-s,o-t for safety) or that would limit the
              owner’s access (since the real super-user can  always  access/change  a  file,  the
              files  we create can always be accessed/changed by the creating user).  This option
              also handles ACLs (if --acls was specified) and non-user  extended  attributes  (if
              --xattrs was specified).

              This  is  a  good  way to backup data without using a super-user, and to store ACLs
              from incompatible systems.

              The --fake-super option only affects the side where the option is used.  To  affect
              the remote side of a remote-shell connection, specify an rsync path:

                rsync -av --rsync-path="rsync --fake-super" /src/ host:/dest/

              Since  there  is  only  one  "side"  in  a local copy, this option affects both the
              sending and receiving of files.  You’ll need to specify a copy using "localhost" if
              you  need  to  avoid  this, possibly using the "lsh" shell script (from the support
              directory) as a substitute for an actual remote shell (see --rsh).

              This option is overridden by both --super and --no-super.

              See also the "fake super" setting in the daemon’s rsyncd.conf file.

       -S, --sparse
              Try to handle  sparse  files  efficiently  so  they  take  up  less  space  on  the
              destination.   Conflicts with --inplace because it’s not possible to overwrite data
              in a sparse fashion.

       -n, --dry-run
              This makes rsync perform a trial run that doesn’t make any  changes  (and  produces
              mostly  the  same  output  as a real run).  It is most commonly used in combination
              with the -v, --verbose and/or -i, --itemize-changes options to see  what  an  rsync
              command is going to do before one actually runs it.

              The output of --itemize-changes is supposed to be exactly the same on a dry run and
              a subsequent real run (barring intentional trickery and system call  failures);  if
              it isn’t, that’s a bug.  Other output should be mostly unchanged, but may differ in
              some areas.  Notably, a dry run does not send the actual data for  file  transfers,
              so  --progress  has  no effect, the "bytes sent", "bytes received", "literal data",
              and "matched data" statistics are too small, and the "speedup" value is  equivalent
              to a run where no file transfers were needed.

       -W, --whole-file
              With this option rsync’s delta-transfer algorithm is not used and the whole file is
              sent as-is instead.  The transfer may be faster if this option  is  used  when  the
              bandwidth  between the source and destination machines is higher than the bandwidth
              to disk (especially when the "disk" is actually a networked filesystem).   This  is
              the  default when both the source and destination are specified as local paths, but
              only if no batch-writing option is in effect.

       -x, --one-file-system
              This tells rsync to avoid crossing a filesystem boundary when recursing.  This does
              not  limit  the  user’s ability to specify items to copy from multiple filesystems,
              just rsync’s recursion through the  hierarchy  of  each  directory  that  the  user
              specified,  and also the analogous recursion on the receiving side during deletion.
              Also keep in mind that rsync treats a "bind" mount to the same device as  being  on
              the same filesystem.

              If  this option is repeated, rsync omits all mount-point directories from the copy.
              Otherwise, it includes an empty directory at each mount-point it encounters  (using
              the attributes of the mounted directory because those of the underlying mount-point
              directory are inaccessible).

              If  rsync   has   been   told   to   collapse   symlinks   (via   --copy-links   or
              --copy-unsafe-links),  a symlink to a directory on another device is treated like a
              mount-point.  Symlinks to non-directories are unaffected by this option.

       --existing, --ignore-non-existing
              This tells rsync to skip creating files (including directories) that do  not  exist
              yet  on  the  destination.   If  this option is combined with the --ignore-existing
              option, no files will be updated (which can be useful if all  you  want  to  do  is
              delete extraneous files).

              This  option is a transfer rule, not an exclude, so it doesn’t affect the data that
              goes into the file-lists, and thus it doesn’t affect deletions.  It just limits the
              files that the receiver requests to be transferred.

              This tells rsync to skip updating files that already exist on the destination (this
              does not ignore existing  directories,  or  nothing  would  get  done).   See  also

              This  option is a transfer rule, not an exclude, so it doesn’t affect the data that
              goes into the file-lists, and thus it doesn’t affect deletions.  It just limits the
              files that the receiver requests to be transferred.

              This option can be useful for those doing backups using the --link-dest option when
              they need to continue a backup run that got interrupted.  Since a  --link-dest  run
              is copied into a new directory hierarchy (when it is used properly), using --ignore
              existing will ensure that the already-handled files don’t get tweaked (which avoids
              a change in permissions on the hard-linked files).  This does mean that this option
              is only looking at the existing files in the destination hierarchy itself.

              This  tells  rsync  to  remove  from  the   sending   side   the   files   (meaning
              non-directories)  that  are  a  part  of  the  transfer  and have been successfully
              duplicated on the receiving side.

              Note that you should only use this option on source files that are  quiescent.   If
              you  are  using  this  to move files that show up in a particular directory over to
              another host, make sure that  the  finished  files  get  renamed  into  the  source
              directory,  not  directly  written into it, so that rsync can’t possibly transfer a
              file that is not yet fully written.  If you can’t first  write  the  files  into  a
              different  directory,  you  should  use  a  naming  idiom  that  lets  rsync  avoid
              transferring files that are not yet finished (e.g. name the file "" when  it
              is  written,  rename  it  to  "foo"  when  it  is  done,  and  then  use the option
              --exclude='*.new' for the rsync transfer).

              This tells rsync to delete extraneous files from  the  receiving  side  (ones  that
              aren’t  on  the  sending  side),  but  only  for  the  directories  that  are being
              synchronized.  You must have asked rsync to send the whole directory (e.g. "dir" or
              "dir/")  without using a wildcard for the directory’s contents (e.g. "dir/*") since
              the wildcard is expanded by the shell and rsync thus gets  a  request  to  transfer
              individual  files,  not  the files’ parent directory.  Files that are excluded from
              the  transfer  are  also  excluded  from  being  deleted   unless   you   use   the
              --delete-excluded  option  or  mark  the rules as only matching on the sending side
              (see the include/exclude modifiers in the FILTER RULES section).

              Prior to rsync 2.6.7, this option would  have  no  effect  unless  --recursive  was
              enabled.   Beginning  with  2.6.7,  deletions  will  also occur when --dirs (-d) is
              enabled, but only for directories whose contents are being copied.

              This option can be dangerous if used incorrectly!  It is a very good idea to  first
              try  a  run  using  the  --dry-run  option  (-n)  to see what files are going to be

              If the sending side detects any I/O errors, then the deletion of any files  at  the
              destination will be automatically disabled. This is to prevent temporary filesystem
              failures (such as NFS errors) on the sending side from causing a  massive  deletion
              of  files  on  the  destination.   You  can  override this with the --ignore-errors

              The --delete option may be combined with one of the --delete-WHEN  options  without
              conflict,  as  well  as  --delete-excluded.   However, if none of the --delete-WHEN
              options are specified, rsync will choose the --delete-during algorithm when talking
              to rsync 3.0.0 or newer, and the --delete-before algorithm when talking to an older
              rsync.  See also --delete-delay and --delete-after.

              Request that the file-deletions on the receiving side be done before  the  transfer
              starts.  See --delete (which is implied) for more details on file-deletion.

              Deleting  before  the  transfer is helpful if the filesystem is tight for space and
              removing extraneous files would help to make the transfer  possible.   However,  it
              does introduce a delay before the start of the transfer, and this delay might cause
              the transfer to timeout (if --timeout was specified).  It also forces rsync to  use
              the  old,  non-incremental  recursion algorithm that requires rsync to scan all the
              files in the transfer into memory at once (see --recursive).

       --delete-during, --del
              Request that the file-deletions on the receiving side be done incrementally as  the
              transfer  happens.   The  per-directory  delete  scan  is  done  right  before each
              directory  is  checked  for  updates,  so  it  behaves  like   a   more   efficient
              --delete-before,  including  doing  the deletions prior to any per-directory filter
              files being updated.  This option was first added  in  rsync  version  2.6.4.   See
              --delete (which is implied) for more details on file-deletion.

              Request  that  the  file-deletions  on  the  receiving  side be computed during the
              transfer (like --delete-during), and then removed  after  the  transfer  completes.
              This  is  useful  when  combined  with  --delay-updates and/or --fuzzy, and is more
              efficient  than  using  --delete-after   (but   can   behave   differently,   since
              --delete-after  computes  the  deletions  in  a separate pass after all updates are
              done).  If the number of removed files overflows an internal  buffer,  a  temporary
              file  will  be created on the receiving side to hold the names (it is removed while
              open, so you shouldn’t see it  during  the  transfer).   If  the  creation  of  the
              temporary file fails, rsync will try to fall back to using --delete-after (which it
              cannot do if --recursive is doing an incremental scan).   See  --delete  (which  is
              implied) for more details on file-deletion.

              Request  that  the  file-deletions on the receiving side be done after the transfer
              has completed.  This is useful if you are sending new per-directory merge files  as
              a  part of the transfer and you want their exclusions to take effect for the delete
              phase  of  the  current  transfer.   It  also  forces  rsync  to   use   the   old,
              non-incremental  recursion  algorithm  that requires rsync to scan all the files in
              the transfer into memory  at  once  (see  --recursive).   See  --delete  (which  is
              implied) for more details on file-deletion.

              In addition to deleting the files on the receiving side that are not on the sending
              side, this tells rsync to also delete any files on  the  receiving  side  that  are
              excluded  (see  --exclude).   See  the  FILTER  RULES  section  for  a  way to make
              individual exclusions behave this way on the receiver, and for  a  way  to  protect
              files  from --delete-excluded.  See --delete (which is implied) for more details on

              Tells --delete to go ahead and delete files even when there are I/O errors.

              This option tells rsync to delete a non-empty directory when it is to  be  replaced
              by  a  non-directory.   This  is  only  relevant  if  deletions are not active (see
              --delete for details).

              Note for older rsync versions:  --force  used  to  still  be  required  when  using
              --delete-after,  and it used to be non-functional unless the --recursive option was
              also enabled.

              This tells rsync not to delete more than NUM files or directories.  If  that  limit
              is  exceeded, a warning is output and rsync exits with an error code of 25 (new for

              Also new for version 3.0.0, you may specify --max-delete=0 to be warned  about  any
              extraneous  files  in  the destination without removing any of them.  Older clients
              interpreted this as "unlimited", so if you don’t know what version the  client  is,
              you  can  use  the  less  obvious  --max-delete=-1  as a backward-compatible way to
              specify that no deletions be allowed (though older versions didn’t  warn  when  the
              limit was exceeded).

              This  tells  rsync to avoid transferring any file that is larger than the specified
              SIZE. The SIZE value can be suffixed with a string to indicate a  size  multiplier,
              and may be a fractional value (e.g. "--max-size=1.5m").

              This  option is a transfer rule, not an exclude, so it doesn’t affect the data that
              goes into the file-lists, and thus it doesn’t affect deletions.  It just limits the
              files that the receiver requests to be transferred.

              The suffixes are as follows: "K" (or "KiB") is a kibibyte (1024), "M" (or "MiB") is
              a mebibyte (1024*1024), and "G" (or "GiB") is a gibibyte (1024*1024*1024).  If  you
              want  the  multiplier  to be 1000 instead of 1024, use "KB", "MB", or "GB".  (Note:
              lower-case is also accepted for all values.)  Finally, if the suffix ends in either
              "+1" or "-1", the value will be offset by one byte in the indicated direction.

              Examples:  --max-size=1.5mb-1  is  1499999 bytes, and --max-size=2g+1 is 2147483649

              This tells rsync to avoid transferring any file that is smaller than the  specified
              SIZE,  which  can  help  in not transferring small, junk files.  See the --max-size
              option for a description of SIZE and other information.

       -B, --block-size=BLOCKSIZE
              This forces the block size used in rsync’s  delta-transfer  algorithm  to  a  fixed
              value.   It is normally selected based on the size of each file being updated.  See
              the technical report for details.

       -e, --rsh=COMMAND
              This option allows you to choose an alternative remote shell  program  to  use  for
              communication  between  the  local  and remote copies of rsync. Typically, rsync is
              configured to use ssh by default, but you may prefer to use rsh on a local network.

              If this option is used with [user@]host::module/path, then the remote shell COMMAND
              will  be  used  to  run  an  rsync  daemon on the remote host, and all data will be
              transmitted through that remote shell connection,  rather  than  through  a  direct
              socket  connection  to  a running rsync daemon on the remote host.  See the section

              Command-line arguments are permitted in COMMAND provided that COMMAND is  presented
              to  rsync as a single argument.  You must use spaces (not tabs or other whitespace)
              to separate the command and args from each other, and you can  use  single-  and/or
              double-quotes  to  preserve spaces in an argument (but not backslashes).  Note that
              doubling a single-quote inside a single-quoted string  gives  you  a  single-quote;
              likewise  for  double-quotes (though you need to pay attention to which quotes your
              shell is parsing and which quotes rsync is parsing).  Some examples:

                  -e 'ssh -p 2234'
                  -e 'ssh -o "ProxyCommand nohup ssh firewall nc -w1 %h %p"'

              (Note that ssh users can alternately customize  site-specific  connect  options  in
              their .ssh/config file.)

              You  can  also  choose  the  remote  shell  program using the RSYNC_RSH environment
              variable, which accepts the same range of values as -e.

              See also the --blocking-io option which is affected by this option.

              Use this to specify what program is to be run on the  remote  machine  to  start-up
              rsync.   Often  used  when  rsync  is  not in the default remote-shell’s path (e.g.
              --rsync-path=/usr/local/bin/rsync).  Note that PROGRAM is run with the  help  of  a
              shell,  so it can be any program, script, or command sequence you’d care to run, so
              long as it does not corrupt the standard-in & standard-out that rsync is  using  to

              One  tricky  example  is to set a different default directory on the remote machine
              for use with the --relative option.  For instance:

                  rsync -avR --rsync-path="cd /a/b && rsync" host:c/d /e/

       -C, --cvs-exclude
              This is a useful shorthand for excluding a broad range  of  files  that  you  often
              don’t  want  to  transfer  between  systems.  It uses a similar algorithm to CVS to
              determine if a file should be ignored.

              The exclude list is initialized to exclude the following items (these initial items
              are marked as perishable -- see the FILTER RULES section):

                     RCS  SCCS  CVS CVS.adm RCSLOG cvslog.* tags TAGS .make.state .nse_depinfo *~
                     #* .#* ,* _$* *$ *.old *.bak *.BAK *.orig *.rej .del-* *.a *.olb  *.o  *.obj
                     *.so *.exe *.Z *.elc *.ln core .svn/ .git/ .hg/ .bzr/

              then, files listed in a $HOME/.cvsignore are added to the list and any files listed
              in the CVSIGNORE  environment  variable  (all  cvsignore  names  are  delimited  by

              Finally,  any  file  is ignored if it is in the same directory as a .cvsignore file
              and matches one of the patterns  listed  therein.   Unlike  rsync’s  filter/exclude
              files,  these  patterns  are  split  on whitespace.  See the cvs(1) manual for more

              If you’re combining -C with your own --filter rules, you should note that these CVS
              excludes  are appended at the end of your own rules, regardless of where the -C was
              placed on the command-line.  This makes them a lower priority than  any  rules  you
              specified explicitly.  If you want to control where these CVS excludes get inserted
              into your filter rules, you should omit the -C as a command-line option and  use  a
              combination  of  --filter=:C  and  --filter=-C  (either  on your command-line or by
              putting the ":C" and "-C" rules into a filter file with  your  other  rules).   The
              first  option  turns  on  the  per-directory scanning for the .cvsignore file.  The
              second option does a one-time import of the CVS excludes mentioned above.

       -f, --filter=RULE
              This option allows you to add rules to selectively exclude certain files  from  the
              list  of  files  to  be  transferred.  This  is  most  useful in combination with a
              recursive transfer.

              You may use as many --filter options on the command line as you like  to  build  up
              the  list of files to exclude.  If the filter contains whitespace, be sure to quote
              it so that the shell gives the rule to rsync as a single argument.  The text  below
              also  mentions that you can use an underscore to replace the space that separates a
              rule from its arg.

              See the FILTER RULES section for detailed information on this option.

       -F     The -F option is a shorthand for adding two --filter rules to  your  command.   The
              first time it is used is a shorthand for this rule:

                 --filter='dir-merge /.rsync-filter'

              This  tells  rsync  to  look  for  per-directory .rsync-filter files that have been
              sprinkled through the hierarchy and use their rules to  filter  the  files  in  the
              transfer.  If -F is repeated, it is a shorthand for this rule:

                 --filter='exclude .rsync-filter'

              This filters out the .rsync-filter files themselves from the transfer.

              See the FILTER RULES section for detailed information on how these options work.

              This option is a simplified form of the --filter option that defaults to an exclude
              rule and does not allow the full rule-parsing syntax of normal filter rules.

              See the FILTER RULES section for detailed information on this option.

              This option is related to the --exclude  option,  but  it  specifies  a  FILE  that
              contains  exclude  patterns  (one  per  line).   Blank  lines in the file and lines
              starting with ’;’ or ’#’ are ignored.  If FILE is -, the list  will  be  read  from
              standard input.

              This option is a simplified form of the --filter option that defaults to an include
              rule and does not allow the full rule-parsing syntax of normal filter rules.

              See the FILTER RULES section for detailed information on this option.

              This option is related to the --include  option,  but  it  specifies  a  FILE  that
              contains  include  patterns  (one  per  line).   Blank  lines in the file and lines
              starting with ’;’ or ’#’ are ignored.  If FILE is -, the list  will  be  read  from
              standard input.

              Using  this  option  allows  you to specify the exact list of files to transfer (as
              read from the specified FILE or - for standard input).  It also tweaks the  default
              behavior  of  rsync  to  make transferring just the specified files and directories

              o      The --relative (-R) option is implied, which preserves the path  information
                     that  is specified for each item in the file (use --no-relative or --no-R if
                     you want to turn that off).

              o      The --dirs (-d) option is implied, which will create  directories  specified
                     in  the  list  on  the  destination  rather  than noisily skipping them (use
                     --no-dirs or --no-d if you want to turn that off).

              o      The --archive (-a) option’s behavior does not  imply  --recursive  (-r),  so
                     specify it explicitly, if you want it.

              o      These side-effects change the default state of rsync, so the position of the
                     --files-from option on the command-line has no bearing on how other  options
                     are  parsed  (e.g.  -a  works the same before or after --files-from, as does
                     --no-R and all other options).

              The filenames that are read from the FILE are all relative to the source dir -- any
              leading  slashes  are  removed and no ".." references are allowed to go higher than
              the source dir.  For example, take this command:

                 rsync -a --files-from=/tmp/foo /usr remote:/backup

              If /tmp/foo contains the string "bin" (or even "/bin"), the /usr/bin directory will
              be  created  as  /backup/bin  on  the remote host.  If it contains "bin/" (note the
              trailing slash), the immediate  contents  of  the  directory  would  also  be  sent
              (without  needing  to  be explicitly mentioned in the file -- this began in version
              2.6.4).  In both cases, if the -r option was enabled, that dir’s  entire  hierarchy
              would  also  be  transferred (keep in mind that -r needs to be specified explicitly
              with --files-from, since it is not implied by -a).  Also note that  the  effect  of
              the  (enabled by default) --relative option is to duplicate only the path info that
              is read from the file -- it does not force the duplication of the source-spec  path
              (/usr in this case).

              In  addition, the --files-from file can be read from the remote host instead of the
              local host if you specify a "host:" in front of the file (the host must  match  one
              end of the transfer).  As a short-cut, you can specify just a prefix of ":" to mean
              "use the remote end of the transfer".  For example:

                 rsync -a --files-from=:/path/file-list src:/ /tmp/copy

              This would copy all the files  specified  in  the  /path/file-list  file  that  was
              located on the remote "src" host.

              If  the  --iconv  and  --protect-args  options  are  specified and the --files-from
              filenames are being sent from one host to another, the filenames will be translated
              from the sending host’s charset to the receiving host’s charset.

              NOTE:  sorting  the  list of files in the --files-from input helps rsync to be more
              efficient, as it will avoid re-visiting the path elements that are  shared  between
              adjacent  entries.   If  the  input  is  not  sorted,  some  path elements (implied
              directories) may end up being scanned multiple times,  and  rsync  will  eventually
              unduplicate them after they get turned into file-list elements.

       -0, --from0
              This  tells rsync that the rules/filenames it reads from a file are terminated by a
              null (’\0’) character, not a  NL,  CR,  or  CR+LF.   This  affects  --exclude-from,
              --include-from,  --files-from,  and  any merged files specified in a --filter rule.
              It does not affect --cvs-exclude (since all names read from a .cvsignore  file  are
              split on whitespace).

       -s, --protect-args
              This  option  sends  all  filenames  and  most  options to the remote rsync without
              allowing the remote shell to interpret them.  This means that spaces are not  split
              in names, and any non-wildcard special characters are not translated (such as ~, $,
              ;, &, etc.).  Wildcards are expanded on the remote host by rsync  (instead  of  the
              shell doing it).

              If  you use this option with --iconv, the args related to the remote side will also
              be translated from the local to the remote character-set.  The translation  happens
              before wild-cards are expanded.  See also the --files-from option.

       -T, --temp-dir=DIR
              This  option  instructs  rsync  to  use  DIR  as  a scratch directory when creating
              temporary copies of the files transferred  on  the  receiving  side.   The  default
              behavior  is  to create each temporary file in the same directory as the associated
              destination file.

              This option is most often used when the receiving  disk  partition  does  not  have
              enough free space to hold a copy of the largest file in the transfer.  In this case
              (i.e. when the scratch directory is on a different disk partition), rsync will  not
              be  able  to  rename  each  received  temporary file over the top of the associated
              destination file, but instead must copy it into place.  Rsync does this by  copying
              the  file  over  the  top of the destination file, which means that the destination
              file will contain truncated data during this copy.  If this were not done this  way
              (even  if  the  destination  file  were first removed, the data locally copied to a
              temporary file in the destination directory, and then renamed into place) it  would
              be  possible  for  the old file to continue taking up disk space (if someone had it
              open), and thus there might not be enough room to fit the new version on  the  disk
              at the same time.

              If  you  are using this option for reasons other than a shortage of disk space, you
              may wish to combine it with the --delay-updates option, which will ensure that  all
              copied files get put into subdirectories in the destination hierarchy, awaiting the
              end of the transfer.  If you don’t have enough room to duplicate all  the  arriving
              files  on  the  destination  partition,  another  way to tell rsync that you aren’t
              overly concerned about disk space  is  to  use  the  --partial-dir  option  with  a
              relative  path;  because  this  tells  rsync that it is OK to stash off a copy of a
              single file  in  a  subdir  in  the  destination  hierarchy,  rsync  will  use  the
              partial-dir  as  a  staging  area to bring over the copied file, and then rename it
              into place from there. (Specifying a --partial-dir with an absolute path  does  not
              have this side-effect.)

       -y, --fuzzy
              This  option  tells  rsync that it should look for a basis file for any destination
              file that is missing.  The current algorithm looks in the  same  directory  as  the
              destination file for either a file that has an identical size and modified-time, or
              a similarly-named file.  If found, rsync uses the fuzzy basis file to try to  speed
              up the transfer.

              Note that the use of the --delete option might get rid of any potential fuzzy-match
              files, so either use --delete-after or specify some filename exclusions if you need
              to prevent this.

              This  option instructs rsync to use DIR on the destination machine as an additional
              hierarchy to compare destination files against doing transfers (if  the  files  are
              missing in the destination directory).  If a file is found in DIR that is identical
              to the sender’s  file,  the  file  will  NOT  be  transferred  to  the  destination
              directory.   This  is  useful  for creating a sparse backup of just files that have
              changed from an earlier backup.

              Beginning in version 2.6.4, multiple --compare-dest directories  may  be  provided,
              which  will  cause  rsync  to  search  the list in the order specified for an exact
              match.  If a match is found that differs only in attributes, a local copy  is  made
              and  the attributes updated.  If a match is not found, a basis file from one of the
              DIRs will be selected to try to speed up the transfer.

              If DIR is a relative path, it is relative to the destination directory.   See  also
              --copy-dest and --link-dest.

              This  option  behaves like --compare-dest, but rsync will also copy unchanged files
              found in DIR to the destination directory using a local copy.  This is  useful  for
              doing  transfers to a new destination while leaving existing files intact, and then
              doing a flash-cutover when all files have been successfully transferred.

              Multiple --copy-dest directories may be provided, which will cause rsync to  search
              the  list in the order specified for an unchanged file.  If a match is not found, a
              basis file from one of the DIRs will be selected to try to speed up the transfer.

              If DIR is a relative path, it is relative to the destination directory.   See  also
              --compare-dest and --link-dest.

              This  option behaves like --copy-dest, but unchanged files are hard linked from DIR
              to the destination directory.   The  files  must  be  identical  in  all  preserved
              attributes  (e.g.  permissions,  possibly  ownership)  in order for the files to be
              linked together.  An example:

                rsync -av --link-dest=$PWD/prior_dir host:src_dir/ new_dir/

              If file’s aren’t linking,  double-check  their  attributes.   Also  check  if  some
              attributes  are getting forced outside of rsync’s control, such a mount option that
              squishes root to a single user, or mounts a removable drive with generic  ownership
              (such as OS X’s "Ignore ownership on this volume" option).

              Beginning in version 2.6.4, multiple --link-dest directories may be provided, which
              will cause rsync to search the list in the order specified for an exact match.   If
              a  match  is  found  that  differs only in attributes, a local copy is made and the
              attributes updated.  If a match is not found, a basis file from  one  of  the  DIRs
              will be selected to try to speed up the transfer.

              This  option  works best when copying into an empty destination hierarchy, as rsync
              treats existing files as definitive (so it never looks in the link-dest dirs when a
              destination  file  already  exists),  and  as  malleable  (so  it  might change the
              attributes of a destination file, which affects all the hard-linked versions).

              Note that if you combine this option with --ignore-times, rsync will not  link  any
              files  together  because it only links identical files together as a substitute for
              transferring the file, never as an additional check after the file is updated.

              If DIR is a relative path, it is relative to the destination directory.   See  also
              --compare-dest and --copy-dest.

              Note  that  rsync  versions prior to 2.6.1 had a bug that could prevent --link-dest
              from working properly for a non-super-user when -o was  specified  (or  implied  by
              -a).  You can work-around this bug by avoiding the -o option when sending to an old

       -z, --compress
              With this option, rsync compresses the file data as it is sent to  the  destination
              machine,  which  reduces  the amount of data being transmitted -- something that is
              useful over a slow connection.

              Note that this option typically achieves better  compression  ratios  than  can  be
              achieved  by using a compressing remote shell or a compressing transport because it
              takes advantage of the implicit information in the matching data  blocks  that  are
              not explicitly sent over the connection.

              See  the --skip-compress option for the default list of file suffixes that will not
              be compressed.

              Explicitly set the compression level to use (see --compress) instead of letting  it
              default.  If NUM is non-zero, the --compress option is implied.

              Override the list of file suffixes that will not be compressed.  The LIST should be
              one or more file suffixes (without the dot) separated by slashes (/).

              You may specify an empty string to indicate that no file should be skipped.

              Simple character-class matching is supported:  each  must  consist  of  a  list  of
              letters  inside  the square brackets (e.g. no special classes, such as "[:alpha:]",
              are supported, and ’-’ has no special meaning).

              The characters asterisk (*) and question-mark (?) have no special meaning.

              Here’s an example that specifies 6 suffixes to skip (since 1 of the 5 rules matches
              2 suffixes):


              The  default  list of suffixes that will not be compressed is this (in this version
              of rsync):

              7z avi bz2 deb gz iso jpeg jpg mov mp3 mp4 ogg rpm tbz tgz z zip

              This list will be replaced by your --skip-compress list in all but one situation: a
              copy  from  a  daemon  rsync  will  add  your  skipped  suffixes  to  its  list  of
              non-compressing files (and its list may be configured to a different default).

              With this option rsync will transfer numeric group and user IDs rather  than  using
              user and group names and mapping them at both ends.

              By default rsync will use the username and groupname to determine what ownership to
              give files. The special uid 0  and  the  special  group  0  are  never  mapped  via
              user/group names even if the --numeric-ids option is not specified.

              If  a  user  or  group  has  no name on the source system or it has no match on the
              destination system, then the numeric ID from the source  system  is  used  instead.
              See  also  the  comments on the "use chroot" setting in the rsyncd.conf manpage for
              information on how the chroot setting affects rsync’s ability to look up the  names
              of the users and groups and what you can do about it.

              This  option  allows  you  to  set  a maximum I/O timeout in seconds. If no data is
              transferred for the specified time then rsync will exit. The default  is  0,  which
              means no timeout.

              This  option  allows  you  to  set  the amount of time that rsync will wait for its
              connection to an rsync daemon to succeed.  If the timeout is reached,  rsync  exits
              with an error.

              By  default  rsync  will  bind  to the wildcard address when connecting to an rsync
              daemon.  The --address option allows you to  specify  a  specific  IP  address  (or
              hostname) to bind to.  See also this option in the --daemon mode section.

              This  specifies an alternate TCP port number to use rather than the default of 873.
              This is only needed if you are using the double-colon (::) syntax to  connect  with
              an  rsync  daemon  (since the URL syntax has a way to specify the port as a part of
              the URL).  See also this option in the --daemon mode section.

              This option can provide endless fun for people who like to tune  their  systems  to
              the utmost degree. You can set all sorts of socket options which may make transfers
              faster (or slower!). Read the man page for the setsockopt() system call for details
              on some of the options you may be able to set. By default no special socket options
              are set. This only affects direct socket connections  to  a  remote  rsync  daemon.
              This option also exists in the --daemon mode section.

              This  tells  rsync to use blocking I/O when launching a remote shell transport.  If
              the remote shell is either rsh or remsh, rsync  defaults  to  using  blocking  I/O,
              otherwise   it  defaults  to  using  non-blocking  I/O.   (Note  that  ssh  prefers
              non-blocking I/O.)

       -i, --itemize-changes
              Requests a simple itemized list of the changes that are being made  to  each  file,
              including   attribute   changes.    This   is   exactly   the  same  as  specifying
              --out-format='%i %n%L'.  If you repeat the option, unchanged  files  will  also  be
              output,  but only if the receiving rsync is at least version 2.6.7 (you can use -vv
              with older versions of rsync, but that also turns on the output  of  other  verbose

              The  "%i"  escape has a cryptic output that is 11 letters long.  The general format
              is like the string YXcstpoguax, where Y is replaced by the  type  of  update  being
              done,  X  is  replaced by the file-type, and the other letters represent attributes
              that may be output if they are being modified.

              The update types that replace the Y are as follows:

              o      A < means that a file is being transferred to the remote host (sent).

              o      A > means that a file is being transferred to the local host (received).

              o      A c means that a local change/creation is occurring for the  item  (such  as
                     the creation of a directory or the changing of a symlink, etc.).

              o      A  h  means  that  the  item  is  a  hard  link  to  another  item (requires

              o      A . means that  the  item  is  not  being  updated  (though  it  might  have
                     attributes that are being modified).

              o      A * means that the rest of the itemized-output area contains a message (e.g.

              The file-types that replace the X are: f for a file, a d for a directory, an L  for
              a  symlink,  a  D  for a device, and a S for a special file (e.g. named sockets and

              The other letters in the string above are the actual letters that will be output if
              the  associated  attribute  for  the  item is being updated or a "." for no change.
              Three exceptions to this are: (1) a newly created item replaces each letter with  a
              "+",  (2)  an  identical  item  replaces  the  dots with spaces, and (3) an unknown
              attribute replaces each letter with a "?" (this can happen when talking to an older

              The attribute that is associated with each letter is as follows:

              o      A  c  means  either  that  a regular file has a different checksum (requires
                     --checksum) or that a symlink, device, or special file has a changed  value.
                     Note  that  if you are sending files to an rsync prior to 3.0.1, this change
                     flag will be present only for checksum-differing regular files.

              o      A s means the size of a regular file is different and will be updated by the
                     file transfer.

              o      A  t  means  the  modification time is different and is being updated to the
                     sender’s value (requires --times).  An alternate value of T means  that  the
                     modification  time  will  be  set to the transfer time, which happens when a
                     file/symlink/device is updated without --times and when a symlink is changed
                     and  the  receiver  can’t  set  its  time.  (Note: when using an rsync 3.0.0
                     client, you might see the s flag combined with t instead  of  the  proper  T
                     flag for this time-setting failure.)

              o      A  p  means  the  permissions  are  different  and  are being updated to the
                     sender’s value (requires --perms).

              o      An o means the owner is different and is being updated to the sender’s value
                     (requires --owner and super-user privileges).

              o      A  g means the group is different and is being updated to the sender’s value
                     (requires --group and the authority to set the group).

              o      The u slot is reserved for future use.

              o      The a means that the ACL information changed.

              o      The x means that the extended attribute information changed.

              One other output is possible:  when deleting files, the "%i" will output the string
              "*deleting" for each item that is being removed (assuming that you are talking to a
              recent enough rsync that it logs deletions instead of outputting them as a  verbose

              This  allows  you to specify exactly what the rsync client outputs to the user on a
              per-update basis.  The format is a text string containing embedded single-character
              escape  sequences  prefixed  with  a  percent  (%) character.   A default format of
              "%n%L" is assumed if -v is specified (which reports the name of the  file  and,  if
              the  item  is  a  link,  where  it points).  For a full list of the possible escape
              characters, see the "log format" setting in the rsyncd.conf manpage.

              Specifying the --out-format option will mention each  file,  dir,  etc.  that  gets
              updated  in a significant way (a transferred file, a recreated symlink/device, or a
              touched directory).  In addition, if the itemize-changes escape (%i) is included in
              the  string  (e.g.  if the --itemize-changes option was used), the logging of names
              increases to mention any item that is changed in any way (as long as the  receiving
              side is at least 2.6.4).  See the --itemize-changes option for a description of the
              output of "%i".

              Rsync will output the out-format string prior to a file’s transfer  unless  one  of
              the  transfer-statistic  escapes is requested, in which case the logging is done at
              the end of the file’s transfer.  When this late logging is in effect and --progress
              is  also  specified,  rsync will also output the name of the file being transferred
              prior to its progress information (followed, of course, by the out-format output).

              This option causes rsync to log what it is doing to a file.  This is similar to the
              logging  that  a  daemon  does, but can be requested for the client side and/or the
              server side of a non-daemon transfer.  If specified as a  client  option,  transfer
              logging   will   be   enabled  with  a  default  format  of  "%i  %n%L".   See  the
              --log-file-format option if you wish to override this.

              Here’s a example command that requests the remote side to log what is happening:

                rsync -av --rsync-path="rsync --log-file=/tmp/rlog" src/ dest/

              This is very useful if you need to debug why a connection is closing unexpectedly.

              This allows you to specify exactly what per-update logging is  put  into  the  file
              specified by the --log-file option (which must also be specified for this option to
              have any effect).  If you specify an  empty  string,  updated  files  will  not  be
              mentioned  in  the log file.  For a list of the possible escape characters, see the
              "log format" setting in the rsyncd.conf manpage.

              The default FORMAT used if --log-file is specified and this option is  not  is  ’%i

              This  tells  rsync  to  print  a  verbose  set  of statistics on the file transfer,
              allowing you to tell how effective rsync’s delta-transfer  algorithm  is  for  your

              The current statistics are as follows:

              o      Number  of  files  is the count of all "files" (in the generic sense), which
                     includes directories, symlinks, etc.

              o      Number of files transferred is the count of normal files that  were  updated
                     via  rsync’s  delta-transfer algorithm, which does not include created dirs,
                     symlinks, etc.

              o      Total file size is the total sum of all file sizes in  the  transfer.   This
                     does  not  count any size for directories or special files, but does include
                     the size of symlinks.

              o      Total transferred file size is the total sum of all files sizes for just the
                     transferred files.

              o      Literal  data  is  how much unmatched file-update data we had to send to the
                     receiver for it to recreate the updated files.

              o      Matched data is how much data the receiver got locally when  recreating  the
                     updated files.

              o      File  list size is how big the file-list data was when the sender sent it to
                     the receiver.  This is smaller than the in-memory size for the file list due
                     to some compressing of duplicated data when rsync sends the list.

              o      File  list  generation  time  is the number of seconds that the sender spent
                     creating the file list.  This requires a modern rsync on  the  sending  side
                     for this to be present.

              o      File  list  transfer  time  is  the  number of seconds that the sender spent
                     sending the file list to the receiver.

              o      Total bytes sent is the count of all the bytes  that  rsync  sent  from  the
                     client side to the server side.

              o      Total  bytes  received  is  the  count  of  all non-message bytes that rsync
                     received by the client side from the server side.  "Non-message" bytes means
                     that  we don’t count the bytes for a verbose message that the server sent to
                     us, which makes the stats more consistent.

       -8, --8-bit-output
              This tells rsync to leave all high-bit characters unescaped in the  output  instead
              of  trying  to test them to see if they’re valid in the current locale and escaping
              the invalid ones.  All control characters (but  never  tabs)  are  always  escaped,
              regardless of this option’s setting.

              The  escape  idiom that started in 2.6.7 is to output a literal backslash (\) and a
              hash (#), followed by exactly 3 octal digits.  For example, a newline would  output
              as  "\#012".  A literal backslash that is in a filename is not escaped unless it is
              followed by a hash and 3 digits (0-9).

       -h, --human-readable
              Output numbers in a more human-readable format.   This  makes  big  numbers  output
              using  larger  units, with a K, M, or G suffix.  If this option was specified once,
              these units are K (1000), M (1000*1000), and G (1000*1000*1000); if the  option  is
              repeated, the units are powers of 1024 instead of 1000.

              By  default,  rsync  will  delete any partially transferred file if the transfer is
              interrupted.  In  some  circumstances  it  is  more  desirable  to  keep  partially
              transferred  files. Using the --partial option tells rsync to keep the partial file
              which should make a subsequent transfer of the rest of the file much faster.

              A better way to keep partial files than the --partial option is to  specify  a  DIR
              that  will  be  used  to  hold  the  partial data (instead of writing it out to the
              destination file).  On the next transfer, rsync will use a file found in  this  dir
              as  data to speed up the resumption of the transfer and then delete it after it has
              served its purpose.

              Note that if --whole-file is specified (or implied), any partial-dir file  that  is
              found  for  a  file  that  is  being updated will simply be removed (since rsync is
              sending files without using rsync’s delta-transfer algorithm).

              Rsync will create the DIR if it is missing (just the last  dir  --  not  the  whole
              path).     This    makes    it   easy   to   use   a   relative   path   (such   as
              "--partial-dir=.rsync-partial") to have rsync create the partial-directory  in  the
              destination file’s directory when needed, and then remove it again when the partial
              file is deleted.

              If the partial-dir value is not an absolute path, rsync will add an exclude rule at
              the  end  of  all  your  existing  excludes.   This will prevent the sending of any
              partial-dir files that may exist on the sending side, and  will  also  prevent  the
              untimely  deletion  of  partial-dir  items  on the receiving side.  An example: the
              above --partial-dir option would add the equivalent of "-f '-p .rsync-partial/'" at
              the end of any other filter rules.

              If  you  are  supplying  your  own  exclude  rules,  you  may  need to add your own
              exclude/hide/protect rule for the partial-dir because (1) the auto-added  rule  may
              be  ineffective  at  the  end  of your other rules, or (2) you may wish to override
              rsync’s exclude choice.  For instance, if you  want  to  make  rsync  clean-up  any
              left-over  partial-dirs that may be lying around, you should specify --delete-after
              and add  a  "risk"  filter  rule,  e.g.   -f  'R  .rsync-partial/'.   (Avoid  using
              --delete-before  or  --delete-during  unless you don’t need rsync to use any of the
              left-over partial-dir data during the current run.)

              IMPORTANT: the --partial-dir should not be writable by  other  users  or  it  is  a
              security risk.  E.g. AVOID "/tmp".

              You  can also set the partial-dir value the RSYNC_PARTIAL_DIR environment variable.
              Setting this in the environment does not force --partial to be enabled, but  rather
              it  affects  where  partial  files  go  when --partial is specified.  For instance,
              instead of using --partial-dir=.rsync-tmp along  with  --progress,  you  could  set
              RSYNC_PARTIAL_DIR=.rsync-tmp in your environment and then just use the -P option to
              turn on the use of the .rsync-tmp dir for partial transfers.  The only  times  that
              the  --partial  option  does  not  look  for  this  environment  value are (1) when
              --inplace was specified (since --inplace conflicts  with  --partial-dir),  and  (2)
              when --delay-updates was specified (see below).

              For  the  purposes  of  the daemon-config’s "refuse options" setting, --partial-dir
              does not imply --partial.  This is so that a refusal of the --partial option can be
              used  to  disallow  the  overwriting  of destination files with a partial transfer,
              while still allowing the safer idiom provided by --partial-dir.

              This option puts the temporary file from each updated file into a holding directory
              until  the  end of the transfer, at which time all the files are renamed into place
              in rapid succession.  This attempts to make the updating of the files a little more
              atomic.   By  default  the files are placed into a directory named ".~tmp~" in each
              file’s destination directory, but if you’ve  specified  the  --partial-dir  option,
              that directory will be used instead.  See the comments in the --partial-dir section
              for a discussion of how this ".~tmp~" dir will be excluded from the  transfer,  and
              what  you can do if you want rsync to cleanup old ".~tmp~" dirs that might be lying
              around.  Conflicts with --inplace and --append.

              This option uses more memory on the receiving side (one bit per  file  transferred)
              and  also  requires  enough  free  disk  space  on  the  receiving  side to hold an
              additional copy of all the updated files.  Note also that you  should  not  use  an
              absolute path to --partial-dir unless (1) there is no chance of any of the files in
              the transfer having the same name (since all the updated files will be put  into  a
              single  directory if the path is absolute) and (2) there are no mount points in the
              hierarchy (since the delayed updates will  fail  if  they  can’t  be  renamed  into

              See  also  the  "atomic-rsync"  perl  script  in the "support" subdir for an update
              algorithm that is even more atomic (it uses --link-dest and a parallel hierarchy of

       -m, --prune-empty-dirs
              This  option  tells  the  receiving  rsync to get rid of empty directories from the
              file-list, including nested directories that have no non-directory children.   This
              is  useful  for  avoiding  the  creation of a bunch of useless directories when the
              sending   rsync   is   recursively   scanning   a   hierarchy   of   files    using
              include/exclude/filter rules.

              Note that the use of transfer rules, such as the --min-size option, does not affect
              what goes into the file list, and thus does not leave directories  empty,  even  if
              none of the files in a directory match the transfer rule.

              Because  the  file-list  is  actually  being  pruned, this option also affects what
              directories get deleted when a delete  is  active.   However,  keep  in  mind  that
              excluded files and directories can prevent existing items from being deleted due to
              an exclude both hiding source files and  protecting  destination  files.   See  the
              perishable filter-rule option for how to avoid this.

              You  can  prevent  the  pruning  of certain empty directories from the file-list by
              using a global "protect" filter.  For instance, this option would ensure  that  the
              directory "emptydir" was kept in the file-list:

              --filter ’protect emptydir/’

              Here’s  an  example  that  copies  all .pdf files in a hierarchy, only creating the
              necessary destination directories to hold the .pdf  files,  and  ensures  that  any
              superfluous  files  and  directories  in the destination are removed (note the hide
              filter of non-directories being used instead of an exclude):

              rsync -avm --del --include=’*.pdf’ -f ’hide,! */’ src/ dest

              If you didn’t want to remove superfluous destination files, the  more  time-honored
              options  of  "--include='*/'  --exclude='*'"  would  work  fine  in  place  of  the
              hide-filter (if that is more natural to you).

              This option tells rsync to print information showing the progress of the  transfer.
              This gives a bored user something to watch.  Implies --verbose if it wasn’t already

              While rsync is transferring a regular file, it updates a progress line  that  looks
              like this:

                    782448  63%  110.64kB/s    0:00:04

              In this example, the receiver has reconstructed 782448 bytes or 63% of the sender’s
              file, which is being reconstructed at a rate of 110.64 kilobytes  per  second,  and
              the  transfer  will finish in 4 seconds if the current rate is maintained until the

              These statistics can be misleading if rsync’s delta-transfer algorithm is  in  use.
              For example, if the sender’s file consists of the basis file followed by additional
              data, the reported rate will probably drop dramatically when the receiver  gets  to
              the  literal  data,  and the transfer will probably take much longer to finish than
              the receiver estimated as it was finishing the matched part of the file.

              When the file transfer finishes, rsync replaces the progress line  with  a  summary
              line that looks like this:

                   1238099 100%  146.38kB/s    0:00:08  (xfer#5, to-check=169/396)

              In  this  example,  the  file  was 1238099 bytes long in total, the average rate of
              transfer for the whole file was 146.38 kilobytes per second over the 8 seconds that
              it  took  to complete, it was the 5th transfer of a regular file during the current
              rsync session, and there are 169 more files for the receiver to check  (to  see  if
              they are up-to-date or not) remaining out of the 396 total files in the file-list.

       -P     The  -P  option  is  equivalent to --partial --progress.  Its purpose is to make it
              much easier to  specify  these  two  options  for  a  long  transfer  that  may  be

              This  option  allows  you  to  provide  a password in a file for accessing an rsync
              daemon.  The file must not be world readable.  It should contain just the  password
              as the first line of the file (all other lines are ignored).

              This  option does not supply a password to a remote shell transport such as ssh; to
              learn how to do that, consult the remote shell’s documentation.  When accessing  an
              rsync  daemon  using  a  remote shell as the transport, this option only comes into
              effect after the remote shell finishes its authentication (i.e. if  you  have  also
              specified a password in the daemon’s config file).

              This  option will cause the source files to be listed instead of transferred.  This
              option is inferred if there is a single source arg and no destination specified, so
              its  main uses are: (1) to turn a copy command that includes a destination arg into
              a file-listing command, or (2) to be able to  specify  more  than  one  source  arg
              (note:  be  sure  to include the destination).  Caution: keep in mind that a source
              arg with a wild-card is expanded by the shell into multiple args, so  it  is  never
              safe to try to list such an arg without using this option.  For example:

                  rsync -av --list-only foo* dest/

              Compatibility  note:   when requesting a remote listing of files from an rsync that
              is version  2.6.3  or  older,  you  may  encounter  an  error  if  you  ask  for  a
              non-recursive  listing.   This  is because a file listing implies the --dirs option
              w/o --recursive, and older rsyncs don’t have that option.  To avoid  this  problem,
              either  specify  the  --no-dirs  option  (if you don’t need to expand a directory’s
              content), or turn on recursion  and  exclude  the  content  of  subdirectories:  -r

              This  option allows you to specify a maximum transfer rate in kilobytes per second.
              This option is most effective when using rsync with large files (several  megabytes
              and  up).  Due  to  the nature of rsync transfers, blocks of data are sent, then if
              rsync determines the transfer was too fast, it will wait before  sending  the  next
              data  block. The result is an average transfer rate equaling the specified limit. A
              value of zero specifies no limit.

              Record a file that can later be  applied  to  another  identical  destination  with
              --read-batch.   See   the   "BATCH   MODE"   section  for  details,  and  also  the
              --only-write-batch option.

              Works like --write-batch, except that no updates are made on the destination system
              when  creating  the  batch.  This lets you transport the changes to the destination
              system via some other means and then apply the changes via --read-batch.

              Note that you can feel free to write the batch directly to some portable media:  if
              this  media  fills  to  capacity before the end of the transfer, you can just apply
              that partial transfer to the destination and repeat the whole process  to  get  the
              rest  of  the  changes  (as  long as you don’t mind a partially updated destination
              system while the multi-update cycle is happening).

              Also note that you only save bandwidth when pushing  changes  to  a  remote  system
              because  this allows the batched data to be diverted from the sender into the batch
              file without having to flow over the wire to the receiver (when pulling, the sender
              is remote, and thus can’t write the batch).

              Apply  all  of  the  changes  stored  in  FILE,  a  file  previously  generated  by
              --write-batch.  If FILE is -, the batch data will be read from standard input.  See
              the "BATCH MODE" section for details.

              Force  an  older  protocol version to be used.  This is useful for creating a batch
              file that is compatible with an older version of rsync.   For  instance,  if  rsync
              2.6.4  is being used with the --write-batch option, but rsync 2.6.3 is what will be
              used to run the --read-batch option, you should use "--protocol=28"  when  creating
              the  batch  file  to  force the older protocol version to be used in the batch file
              (assuming you can’t upgrade the rsync on the reading system).

              Rsync can convert filenames between character sets  using  this  option.   Using  a
              CONVERT_SPEC of "." tells rsync to look up the default character-set via the locale
              setting.  Alternately, you can fully specify what conversion  to  do  by  giving  a
              local  and a remote charset separated by a comma in the order --iconv=LOCAL,REMOTE,
              e.g.  --iconv=utf8,iso88591.  This order ensures that the option will stay the same
              whether  you’re  pushing  or  pulling  files.   Finally,  you  can  specify  either
              --no-iconv or a CONVERT_SPEC of "-"  to  turn  off  any  conversion.   The  default
              setting  of  this  option  is  site-specific,  and  can  also  be  affected via the
              RSYNC_ICONV environment variable.

              For a list of what charset names your local iconv library  supports,  you  can  run
              "iconv --list".

              If  you  specify the --protect-args option (-s), rsync will translate the filenames
              you specify on the command-line that are being sent to the remote host.   See  also
              the --files-from option.

              Note  that  rsync  does  not  do any conversion of names in filter files (including
              include/exclude files).  It is up to you to ensure that you’re specifying  matching
              rules  that can match on both sides of the transfer.  For instance, you can specify
              extra include/exclude rules if there are filename differences on the two sides that
              need to be accounted for.

              When  you pass an --iconv option to an rsync daemon that allows it, the daemon uses
              the charset specified in its "charset" configuration parameter  regardless  of  the
              remote  charset  you  actually  pass.   Thus, you may feel free to specify just the
              local charset for a daemon transfer (e.g. --iconv=utf8).

       -4, --ipv4 or -6, --ipv6
              Tells rsync to prefer IPv4/IPv6 when creating sockets.  This only  affects  sockets
              that  rsync  has  direct  control  over,  such as the outgoing socket when directly
              contacting an rsync daemon.  See also these options in the --daemon mode section.

              If rsync was complied without support for IPv6, the  --ipv6  option  will  have  no
              effect.  The --version output will tell you if this is the case.

              Set the checksum seed to the integer NUM.  This 4 byte checksum seed is included in
              each block and  file  checksum  calculation.   By  default  the  checksum  seed  is
              generated  by  the server and defaults to the current time() .  This option is used
              to set a specific checksum  seed,  which  is  useful  for  applications  that  want
              repeatable  block  and  file  checksums, or in the case where the user wants a more
              random checksum seed.  Setting NUM to 0 causes rsync to use the default  of  time()
              for checksum seed.


       The options allowed when starting an rsync daemon are as follows:

              This  tells  rsync that it is to run as a daemon.  The daemon you start running may
              be accessed using an rsync client using the  host::module  or  rsync://host/module/

              If  standard  input  is  a  socket  then rsync will assume that it is being run via
              inetd, otherwise it will detach from the current terminal and become  a  background
              daemon.  The daemon will read the config file (rsyncd.conf) on each connect made by
              a client and respond to requests accordingly.  See the rsyncd.conf(5) man page  for
              more details.

              By  default  rsync  will bind to the wildcard address when run as a daemon with the
              --daemon option.  The --address option allows you to specify a specific IP  address
              (or  hostname) to bind to.  This makes virtual hosting possible in conjunction with
              the --config option.  See also the  "address"  global  option  in  the  rsyncd.conf

              This  option  allows you to specify a maximum transfer rate in kilobytes per second
              for the data the daemon sends.  The client can still specify  a  smaller  --bwlimit
              value,  but  their  requested  value will be rounded down if they try to exceed it.
              See the client version of this option (above) for some extra details.

              This specifies an alternate config file than the default.  This  is  only  relevant
              when  --daemon  is specified.  The default is /etc/rsyncd.conf unless the daemon is
              running over a remote shell program and the remote user is not the  super-user;  in
              that case the default is rsyncd.conf in the current directory (typically $HOME).

              When  running  as  a  daemon,  this option instructs rsync to not detach itself and
              become a background process.  This option is required when running as a service  on
              Cygwin,  and  may  also  be  useful  when  rsync is supervised by a program such as
              daemontools or AIX’s System Resource Controller.  --no-detach is  also  recommended
              when rsync is run under a debugger.  This option has no effect if rsync is run from
              inetd or sshd.

              This specifies an alternate TCP port number for the daemon to listen on rather than
              the default of 873.  See also the "port" global option in the rsyncd.conf manpage.

              This  option tells the rsync daemon to use the given log-file name instead of using
              the "log file" setting in the config file.

              This option tells the rsync daemon to use the given FORMAT string instead of  using
              the  "log  format"  setting in the config file.  It also enables "transfer logging"
              unless the string is empty, in which case transfer logging is turned off.

              This overrides the socket options setting in the rsyncd.conf file and has the  same

       -v, --verbose
              This  option increases the amount of information the daemon logs during its startup
              phase.  After the client connects, the daemon’s verbosity level will be  controlled
              by the options that the client used and the "max verbosity" setting in the module’s
              config section.

       -4, --ipv4 or -6, --ipv6
              Tells rsync to prefer IPv4/IPv6 when creating the incoming sockets that  the  rsync
              daemon will use to listen for connections.  One of these options may be required in
              older versions of Linux to work around an IPv6 bug in the kernel  (if  you  see  an
              "address  already in use" error when nothing else is using the port, try specifying
              --ipv6 or --ipv4 when starting the daemon).

              If rsync was complied without support for IPv6, the  --ipv6  option  will  have  no
              effect.  The --version output will tell you if this is the case.

       -h, --help
              When  specified  after  --daemon,  print  a  short help page describing the options
              available for starting an rsync daemon.


       The filter rules allow for flexible selection of which files  to  transfer  (include)  and
       which files to skip (exclude).  The rules either directly specify include/exclude patterns
       or they specify a way to acquire more include/exclude patterns (e.g. to read them  from  a

       As  the  list  of  files/directories  to  transfer  is built, rsync checks each name to be
       transferred against the list of include/exclude patterns in turn, and the  first  matching
       pattern  is acted on:  if it is an exclude pattern, then that file is skipped; if it is an
       include pattern then that filename is not skipped; if no matching pattern is  found,  then
       the filename is not skipped.

       Rsync  builds  an  ordered  list of filter rules as specified on the command-line.  Filter
       rules have the following syntax:


       You have your choice of using either short or long RULE names, as described below.  If you
       use  a  short-named rule, the ’,’ separating the RULE from the MODIFIERS is optional.  The
       PATTERN or FILENAME that follows (when present) must come after either a single  space  or
       an underscore (_).  Here are the available rule prefixes:

              exclude, - specifies an exclude pattern.
              include, + specifies an include pattern.
              merge, . specifies a merge-file to read for more rules.
              dir-merge, : specifies a per-directory merge-file.
              hide, H specifies a pattern for hiding files from the transfer.
              show, S files that match the pattern are not hidden.
              protect, P specifies a pattern for protecting files from deletion.
              risk, R files that match the pattern are not protected.
              clear, ! clears the current include/exclude list (takes no arg)

       When  rules are being read from a file, empty lines are ignored, as are comment lines that
       start with a "#".

       Note that the --include/--exclude command-line options do not allow the full range of rule
       parsing  as  described  above  --  they  only  allow  the specification of include/exclude
       patterns plus a "!" token to clear the list (and the normal comment parsing when rules are
       read  from  a  file).   If a pattern does not begin with "- " (dash, space) or "+ " (plus,
       space), then the rule will be interpreted as if "+ " (for an include option) or "- "  (for
       an  exclude  option)  were  prefixed to the string.  A --filter option, on the other hand,
       must always contain either a short or long rule name at the start of the rule.

       Note also that the --filter, --include, and --exclude options take one rule/pattern  each.
       To  add  multiple ones, you can repeat the options on the command-line, use the merge-file
       syntax of the --filter option, or the --include-from/--exclude-from options.


       You can include and exclude files by specifying patterns using the "+", "-",  etc.  filter
       rules  (as  introduced in the FILTER RULES section above).  The include/exclude rules each
       specify a pattern that is matched against the names of the files  that  are  going  to  be
       transferred.  These patterns can take several forms:

       o      if  the  pattern  starts  with  a / then it is anchored to a particular spot in the
              hierarchy of files, otherwise it is matched against the end of the pathname.   This
              is  similar  to a leading ^ in regular expressions.  Thus "/foo" would match a name
              of "foo" at either the "root of the  transfer"  (for  a  global  rule)  or  in  the
              merge-file’s  directory  (for  a  per-directory  rule).  An unqualified "foo" would
              match a name of "foo" anywhere  in  the  tree  because  the  algorithm  is  applied
              recursively  from the top down; it behaves as if each path component gets a turn at
              being the end of the filename.  Even the unanchored "sub/foo" would  match  at  any
              point in the hierarchy where a "foo" was found within a directory named "sub".  See
              the section on ANCHORING INCLUDE/EXCLUDE PATTERNS for a full discussion of  how  to
              specify a pattern that matches at the root of the transfer.

       o      if  the  pattern  ends  with a / then it will only match a directory, not a regular
              file, symlink, or device.

       o      rsync chooses between doing a simple string match and wildcard matching by checking
              if the pattern contains one of these three wildcard characters: ’*’, ’?’, and ’[’ .

       o      a ’*’ matches any path component, but it stops at slashes.

       o      use ’**’ to match anything, including slashes.

       o      a ’?’ matches any character except a slash (/).

       o      a ’[’ introduces a character class, such as [a-z] or [[:alpha:]].

       o      in  a wildcard pattern, a backslash can be used to escape a wildcard character, but
              it is matched literally when no wildcards are present.

       o      if the pattern contains a / (not counting a trailing /)  or  a  "**",  then  it  is
              matched  against  the  full  pathname,  including  any  leading directories. If the
              pattern doesn’t contain a / or a "**", then it is matched only  against  the  final
              component  of the filename.  (Remember that the algorithm is applied recursively so
              "full filename" can actually be any portion of a path from the  starting  directory
              on down.)

       o      a trailing "dir_name/***" will match both the directory (as if "dir_name/" had been
              specified)  and  everything  in  the  directory  (as  if  "dir_name/**"  had   been
              specified).  This behavior was added in version 2.6.7.

       Note  that,  when  using  the  --recursive  (-r)  option  (which  is implied by -a), every
       subcomponent of every path is visited from the top down, so include/exclude  patterns  get
       applied  recursively  to each subcomponent’s full name (e.g. to include "/foo/bar/baz" the
       subcomponents "/foo" and "/foo/bar" must not be excluded).  The exclude patterns  actually
       short-circuit  the  directory  traversal  stage  when rsync finds the files to send.  If a
       pattern excludes a particular parent directory, it can render  a  deeper  include  pattern
       ineffectual  because rsync did not descend through that excluded section of the hierarchy.
       This is particularly important when using a trailing ’*’ rule.  For instance,  this  won’t

              + /some/path/this-file-will-not-be-found
              + /file-is-included
              - *

       This fails because the parent directory "some" is excluded by the ’*’ rule, so rsync never
       visits any of the files in the "some" or "some/path" directories.  One solution is to  ask
       for all directories in the hierarchy to be included by using a single rule: "+ */" (put it
       somewhere before the "- *" rule), and perhaps use the --prune-empty-dirs option.   Another
       solution is to add specific include rules for all the parent dirs that need to be visited.
       For instance, this set of rules works fine:

              + /some/
              + /some/path/
              + /some/path/this-file-is-found
              + /file-also-included
              - *

       Here are some examples of exclude/include matching:

       o      "- *.o" would exclude all names matching *.o

       o      "- /foo" would exclude a  file  (or  directory)  named  foo  in  the  transfer-root

       o      "- foo/" would exclude any directory named foo

       o      "-  /foo/*/bar"  would  exclude  any  file named bar which is at two levels below a
              directory named foo in the transfer-root directory

       o      "- /foo/**/bar" would exclude any file  named  bar  two  or  more  levels  below  a
              directory named foo in the transfer-root directory

       o      The  combination  of "+ */", "+ *.c", and "- *" would include all directories and C
              source files but nothing else (see also the --prune-empty-dirs option)

       o      The combination of "+ foo/", "+ foo/bar.c", and "- *" would include  only  the  foo
              directory  and foo/bar.c (the foo directory must be explicitly included or it would
              be excluded by the "*")

       The following modifiers are accepted after a "+" or "-":

       o      A / specifies that the include/exclude rule should be matched against the  absolute
              pathname  of  the  current  item.   For example, "-/ /etc/passwd" would exclude the
              passwd file any time the transfer was sending files from the "/etc" directory,  and
              "-/ subdir/foo" would always exclude "foo" when it is in a dir named "subdir", even
              if "foo" is at the root of the current transfer.

       o      A ! specifies that the include/exclude should take effect if the pattern  fails  to
              match.  For instance, "-! */" would exclude all non-directories.

       o      A C is used to indicate that all the global CVS-exclude rules should be inserted as
              excludes in place of the "-C".  No arg should follow.

       o      An s is used to indicate that the rule applies to the sending side.   When  a  rule
              affects the sending side, it prevents files from being transferred.  The default is
              for a rule to affect both sides unless --delete-excluded was  specified,  in  which
              case  default  rules  become  sender-side only.  See also the hide (H) and show (S)
              rules, which are an alternate way to specify sending-side includes/excludes.

       o      An r is used to indicate that the rule applies to the receiving side.  When a  rule
              affects  the  receiving  side,  it  prevents  files  from being deleted.  See the s
              modifier for more info.  See also the protect (P) and risk (R) rules, which are  an
              alternate way to specify receiver-side includes/excludes.

       o      A  p indicates that a rule is perishable, meaning that it is ignored in directories
              that are being deleted.  For instance, the -C option’s default rules  that  exclude
              things  like  "CVS"  and  "*.o"  are  marked  as perishable, and will not prevent a
              directory that was removed on the source from being deleted on the destination.


       You can merge whole files into your filter rules by specifying either a  merge  (.)  or  a
       dir-merge (:) filter rule (as introduced in the FILTER RULES section above).

       There  are  two kinds of merged files -- single-instance (’.’) and per-directory (’:’).  A
       single-instance merge file is read one time, and  its  rules  are  incorporated  into  the
       filter  list in the place of the "." rule.  For per-directory merge files, rsync will scan
       every directory that it traverses for the named file, merging its contents when  the  file
       exists  into  the current list of inherited rules.  These per-directory rule files must be
       created on the sending side because it is the sending side that is being scanned  for  the
       available  files  to  transfer.   These  rule files may also need to be transferred to the
       receiving side if you want them to affect what files don’t get deleted (see  PER-DIRECTORY
       RULES AND DELETE below).

       Some examples:

              merge /etc/rsync/default.rules
              . /etc/rsync/default.rules
              dir-merge .per-dir-filter
              dir-merge,n- .non-inherited-per-dir-excludes
              :n- .non-inherited-per-dir-excludes

       The following modifiers are accepted after a merge or dir-merge rule:

       o      A  - specifies that the file should consist of only exclude patterns, with no other
              rule-parsing except for in-file comments.

       o      A + specifies that the file should consist of only include patterns, with no  other
              rule-parsing except for in-file comments.

       o      A  C  is  a way to specify that the file should be read in a CVS-compatible manner.
              This turns on ’n’, ’w’, and ’-’, but also allows the list-clearing token (!) to  be
              specified.  If no filename is provided, ".cvsignore" is assumed.

       o      A  e will exclude the merge-file name from the transfer; e.g.  "dir-merge,e .rules"
              is like "dir-merge .rules" and "- .rules".

       o      An n specifies that the rules are not inherited by subdirectories.

       o      A w specifies that the rules are word-split on whitespace  instead  of  the  normal
              line-splitting.   This also turns off comments.  Note: the space that separates the
              prefix from the rule is treated specially, so "- foo + bar" is parsed as two  rules
              (assuming that prefix-parsing wasn’t also disabled).

       o      You may also specify any of the modifiers for the "+" or "-" rules (above) in order
              to have the rules that are read in from the file default to  having  that  modifier
              set  (except  for  the  !  modifier,  which  would  not  be useful).  For instance,
              "merge,-/ .excl" would treat the contents of .excl as absolute-path excludes, while
              "dir-merge,s  .filt"  and ":sC" would each make all their per-directory rules apply
              only on the sending side.  If the merge rule specifies sides to affect (via  the  s
              or  r  modifier  or both), then the rules in the file must not specify sides (via a
              modifier or a rule prefix such as hide).

       Per-directory rules are inherited  in  all  subdirectories  of  the  directory  where  the
       merge-file  was  found  unless  the  ’n’ modifier was used.  Each subdirectory’s rules are
       prefixed to the inherited per-directory rules from its parents,  which  gives  the  newest
       rules  a  higher priority than the inherited rules.  The entire set of dir-merge rules are
       grouped together in the spot where the merge-file was specified,  so  it  is  possible  to
       override  dir-merge  rules  via  a  rule  that got specified earlier in the list of global
       rules.  When the list-clearing rule ("!") is read  from  a  per-directory  file,  it  only
       clears the inherited rules for the current merge file.

       Another  way  to  prevent  a  single rule from a dir-merge file from being inherited is to
       anchor it with a leading slash.  Anchored rules in a per-directory merge-file are relative
       to  the merge-file’s directory, so a pattern "/foo" would only match the file "foo" in the
       directory where the dir-merge filter file was found.

       Here’s an example filter file which you’d specify via --filter=". file":

              merge /home/user/.global-filter
              - *.gz
              dir-merge .rules
              + *.[ch]
              - *.o

       This will merge the contents of the /home/user/.global-filter file at  the  start  of  the
       list  and  also  turns  the ".rules" filename into a per-directory filter file.  All rules
       read in prior to the start of the directory scan follow the global anchoring rules (i.e. a
       leading slash matches at the root of the transfer).

       If  a  per-directory merge-file is specified with a path that is a parent directory of the
       first transfer directory, rsync will scan all the parent dirs from that starting point  to
       the  transfer  directory  for  the  indicated per-directory file.  For instance, here is a
       common filter (see -F):

              --filter=': /.rsync-filter'

       That rule tells rsync to scan for the file .rsync-filter in all directories from the  root
       down  through  the  parent  directory  of  the  transfer  prior to the start of the normal
       directory scan of the file in the directories that are sent as a  part  of  the  transfer.
       (Note: for an rsync daemon, the root is always the same as the module’s "path".)

       Some examples of this pre-scanning for per-directory files:

              rsync -avF /src/path/ /dest/dir
              rsync -av --filter=': ../../.rsync-filter' /src/path/ /dest/dir
              rsync -av --filter=': .rsync-filter' /src/path/ /dest/dir

       The  first  two  commands above will look for ".rsync-filter" in "/" and "/src" before the
       normal scan begins looking for the file in "/src/path" and its subdirectories.   The  last
       command  avoids  the  parent-dir scan and only looks for the ".rsync-filter" files in each
       directory that is a part of the transfer.

       If you want to include the contents of a ".cvsignore" in your patterns, you should use the
       rule   ":C",  which  creates  a  dir-merge  of  the  .cvsignore  file,  but  parsed  in  a
       CVS-compatible manner.  You can use this to affect where the --cvs-exclude  (-C)  option’s
       inclusion  of the per-directory .cvsignore file gets placed into your rules by putting the
       ":C" wherever you like in your filter rules.  Without this, rsync would add the  dir-merge
       rule  for  the  .cvsignore  file  at  the  end  of all your other rules (giving it a lower
       priority than your command-line rules).  For example:

              cat <<EOT | rsync -avC --filter='. -' a/ b
              + foo.o
              - *.old
              rsync -avC --include=foo.o -f :C --exclude='*.old' a/ b

       Both of the above rsync commands are identical.  Each one will merge all the per-directory
       .cvsignore  rules  in  the  middle  of the list rather than at the end.  This allows their
       dir-specific rules to supersede the rules that follow the :C instead of being  subservient
       to  all  your  rules.   To  affect  the  other CVS exclude rules (i.e. the default list of
       exclusions, the contents of $HOME/.cvsignore, and the value of $CVSIGNORE) you should omit
       the  -C  command-line  option  and instead insert a "-C" rule into your filter rules; e.g.


       You can clear the current include/exclude list by using the "!" filter rule (as introduced
       in the FILTER RULES section above).  The "current" list is either the global list of rules
       (if the rule is encountered while parsing the filter options) or a  set  of  per-directory
       rules  (which are inherited in their own sub-list, so a subdirectory can use this to clear
       out the parent’s rules).


       As mentioned earlier, global include/exclude patterns are anchored at  the  "root  of  the
       transfer"  (as  opposed  to per-directory patterns, which are anchored at the merge-file’s
       directory).  If you think of the transfer as a subtree of names that are being  sent  from
       sender  to  receiver,  the  transfer-root is where the tree starts to be duplicated in the
       destination directory.  This root governs where patterns that start with a / match.

       Because the matching is relative to the transfer-root, changing the trailing  slash  on  a
       source path or changing your use of the --relative option affects the path you need to use
       in your matching (in addition to changing how much of the file tree is duplicated  on  the
       destination host).  The following examples demonstrate this.

       Let’s  say  that  we  want  to  match  two  source  files,  one  with  an absolute path of
       "/home/me/foo/bar", and one with a path of "/home/you/bar/baz".  Here is how  the  various
       command choices differ for a 2-source transfer:

              Example cmd: rsync -a /home/me /home/you /dest
              +/- pattern: /me/foo/bar
              +/- pattern: /you/bar/baz
              Target file: /dest/me/foo/bar
              Target file: /dest/you/bar/baz

              Example cmd: rsync -a /home/me/ /home/you/ /dest
              +/- pattern: /foo/bar               (note missing "me")
              +/- pattern: /bar/baz               (note missing "you")
              Target file: /dest/foo/bar
              Target file: /dest/bar/baz

              Example cmd: rsync -a --relative /home/me/ /home/you /dest
              +/- pattern: /home/me/foo/bar       (note full path)
              +/- pattern: /home/you/bar/baz      (ditto)
              Target file: /dest/home/me/foo/bar
              Target file: /dest/home/you/bar/baz

              Example cmd: cd /home; rsync -a --relative me/foo you/ /dest
              +/- pattern: /me/foo/bar      (starts at specified path)
              +/- pattern: /you/bar/baz     (ditto)
              Target file: /dest/me/foo/bar
              Target file: /dest/you/bar/baz

       The  easiest  way  to  see  what name you should filter is to just look at the output when
       using --verbose and put a / in front of the name (use the --dry-run option if  you’re  not
       yet ready to copy any files).


       Without a delete option, per-directory rules are only relevant on the sending side, so you
       can feel free to exclude the merge files themselves without affecting  the  transfer.   To
       make  this  easy,  the  ’e’  modifier  adds  this  exclude  for  you, as seen in these two
       equivalent commands:

              rsync -av --filter=': .excl' --exclude=.excl host:src/dir /dest
              rsync -av --filter=':e .excl' host:src/dir /dest

       However, if you want to do a delete on the receiving side AND you want some  files  to  be
       excluded  from  being  deleted,  you’ll need to be sure that the receiving side knows what
       files to exclude.  The easiest way is to include the  per-directory  merge  files  in  the
       transfer and use --delete-after, because this ensures that the receiving side gets all the
       same exclude rules as the sending side before it tries to delete anything:

              rsync -avF --delete-after host:src/dir /dest

       However, if the merge files are not a part of the transfer, you’ll need to either  specify
       some global exclude rules (i.e. specified on the command line), or you’ll need to maintain
       your own per-directory merge files on the receiving side.  An example of the first is this
       (assume that the remote .rules files exclude themselves):

       rsync -av --filter=’: .rules’ --filter=’. /my/extra.rules’
          --delete host:src/dir /dest

       In  the  above example the extra.rules file can affect both sides of the transfer, but (on
       the sending side) the rules are subservient to the rules  merged  from  the  .rules  files
       because they were specified after the per-directory merge rule.

       In  one  final  example,  the  remote  side  is excluding the .rsync-filter files from the
       transfer, but we want to use our own .rsync-filter files to control what gets  deleted  on
       the receiving side.  To do this we must specifically exclude the per-directory merge files
       (so that they don’t get deleted) and then put rules into the local files to  control  what
       else should not get deleted.  Like one of these commands:

           rsync -av --filter=':e /.rsync-filter' --delete \
               host:src/dir /dest
           rsync -avFF --delete host:src/dir /dest


       Batch mode can be used to apply the same set of updates to many identical systems. Suppose
       one has a tree which is replicated on a number of hosts.  Now suppose  some  changes  have
       been  made to this source tree and those changes need to be propagated to the other hosts.
       In order to do this using batch mode, rsync is run with the write-batch  option  to  apply
       the  changes  made  to  the  source tree to one of the destination trees.  The write-batch
       option causes the rsync client to store in a "batch file" all the  information  needed  to
       repeat this operation against other, identical destination trees.

       Generating the batch file once saves having to perform the file status, checksum, and data
       block generation more than  once  when  updating  multiple  destination  trees.  Multicast
       transport  protocols  can  be  used to transfer the batch update files in parallel to many
       hosts at once, instead of sending the same data to every host individually.

       To apply the recorded changes to another destination tree, run rsync with  the  read-batch
       option,  specifying  the  name  of  the  same batch file, and the destination tree.  Rsync
       updates the destination tree using the information stored in the batch file.

       For your convenience, a script file is also created when the write-batch option  is  used:
       it  will  be  named  the  same  as  the  batch file with ".sh" appended.  This script file
       contains a command-line suitable for updating a  destination  tree  using  the  associated
       batch  file.  It can be executed using a Bourne (or Bourne-like) shell, optionally passing
       in an alternate destination tree pathname which is  then  used  instead  of  the  original
       destination  path.   This  is  useful  when  the destination tree path on the current host
       differs from the one used to create the batch file.


              $ rsync --write-batch=foo -a host:/source/dir/ /adest/dir/
              $ scp foo* remote:
              $ ssh remote ./ /bdest/dir/

              $ rsync --write-batch=foo -a /source/dir/ /adest/dir/
              $ ssh remote rsync --read-batch=- -a /bdest/dir/ <foo

       In these examples,  rsync  is  used  to  update  /adest/dir/  from  /source/dir/  and  the
       information  to  repeat this operation is stored in "foo" and "".  The host "remote"
       is then  updated  with  the  batched  data  going  into  the  directory  /bdest/dir.   The
       differences  between  the two examples reveals some of the flexibility you have in how you
       deal with batches:

       o      The first example shows that the initial copy doesn’t have to be local --  you  can
              push  or  pull  data  to/from a remote host using either the remote-shell syntax or
              rsync daemon syntax, as desired.

       o      The first example uses the created "" file to get  the  right  rsync  options
              when running the read-batch command on the remote host.

       o      The  second  example reads the batch data via standard input so that the batch file
              doesn’t need to be copied to the remote machine first.   This  example  avoids  the
      script  because  it  needed  to use a modified --read-batch option, but you
              could edit the script file if you wished to make use of it (just be  sure  that  no
              other  option  is  trying  to  use  standard  input, such as the "--exclude-from=-"


       The read-batch option expects the destination tree that it is updating to be identical  to
       the  destination tree that was used to create the batch update fileset.  When a difference
       between the destination trees is encountered the update might be discarded with a  warning
       (if  the  file  appears  to be up-to-date already) or the file-update may be attempted and
       then, if the file fails to verify, the update discarded with an error.  This means that it
       should  be  safe  to re-run a read-batch operation if the command got interrupted.  If you
       wish to force the batched-update to always be attempted regardless of the file’s size  and
       date,  use  the  -I  option (when reading the batch).  If an error occurs, the destination
       tree will probably be in a partially updated state. In that case, rsync can be used in its
       regular (non-batch) mode of operation to fix up the destination tree.

       The  rsync  version  used  on  all destinations must be at least as new as the one used to
       generate the batch file.  Rsync will die with an error if  the  protocol  version  in  the
       batch  file  is  too  new  for the batch-reading rsync to handle.  See also the --protocol
       option for a way to have the creating rsync generate a batch file that an older rsync  can
       understand.   (Note  that  batch files changed format in version 2.6.3, so mixing versions
       older than that with newer versions will not work.)

       When reading a batch file, rsync will force the value of certain options to match the data
       in  the batch file if you didn’t set them to the same as the batch-writing command.  Other
       options can (and should) be changed.  For instance --write-batch changes to  --read-batch,
       --files-from  is  dropped,  and  the  --filter/--include/--exclude  options are not needed
       unless one of the --delete options is specified.

       The code that creates the file transforms any filter/include/exclude options into
       a single list that is appended as a "here" document to the shell script file.  An advanced
       user can use this to modify the exclude list if a change in what gets deleted by  --delete
       is desired.  A normal user can ignore this detail and just use the shell script as an easy
       way to run the appropriate --read-batch command for the batched data.

       The original batch mode in rsync was based on "rsync+", but the latest version uses a  new


       Three  basic  behaviors  are  possible when rsync encounters a symbolic link in the source

       By default, symbolic links are not transferred at all.  A message  "skipping  non-regular"
       file is emitted for any symlinks that exist.

       If  --links  is  specified,  then  symlinks  are  recreated  with  the  same target on the
       destination.  Note that --archive implies --links.

       If --copy-links is specified, then symlinks are "collapsed"  by  copying  their  referent,
       rather than the symlink.

       Rsync  can  also  distinguish  "safe"  and "unsafe" symbolic links.  An example where this
       might be used is a web site mirror that wishes to ensure that the  rsync  module  that  is
       copied  does  not include symbolic links to /etc/passwd in the public section of the site.
       Using --copy-unsafe-links will cause any links to be copied as the file they point  to  on
       the  destination.   Using  --safe-links  will cause unsafe links to be omitted altogether.
       (Note that you must specify --links for --safe-links to have any effect.)

       Symbolic links are considered unsafe if they are absolute symlinks (start with /),  empty,
       or if they contain enough ".." components to ascend from the directory being copied.

       Here’s  a  summary  of  how  the symlink options are interpreted.  The list is in order of
       precedence, so if your combination of options isn’t mentioned, use the first line that  is
       a complete subset of your options:

              Turn  all  symlinks into normal files (leaving no symlinks for any other options to

       --links --copy-unsafe-links
              Turn all unsafe symlinks into files and duplicate all safe symlinks.

              Turn all unsafe symlinks into files, noisily skip all safe symlinks.

       --links --safe-links
              Duplicate safe symlinks and skip unsafe ones.

              Duplicate all symlinks.


       rsync occasionally produces error messages that may seem a little cryptic.  The  one  that
       seems to cause the most confusion is "protocol version mismatch -- is your shell clean?".

       This  message is usually caused by your startup scripts or remote shell facility producing
       unwanted garbage on the stream that rsync is using for its transport. The way to  diagnose
       this problem is to run your remote shell like this:

              ssh remotehost /bin/true > out.dat

       then  look  at  out.dat.  If everything is working correctly then out.dat should be a zero
       length file. If you are getting the above error from rsync then  you  will  probably  find
       that  out.dat contains some text or data. Look at the contents and try to work out what is
       producing it. The most common cause is incorrectly configured shell startup scripts  (such
       as .cshrc or .profile) that contain output statements for non-interactive logins.

       If  you  are having trouble debugging filter patterns, then try specifying the -vv option.
       At this level of verbosity rsync will  show  why  each  individual  file  is  included  or


       0      Success

       1      Syntax or usage error

       2      Protocol incompatibility

       3      Errors selecting input/output files, dirs

       4      Requested action not supported: an attempt was made to manipulate 64-bit files on a
              platform that cannot support them; or an option was specified that is supported  by
              the client and not by the server.

       5      Error starting client-server protocol

       6      Daemon unable to append to log-file

       10     Error in socket I/O

       11     Error in file I/O

       12     Error in rsync protocol data stream

       13     Errors with program diagnostics

       14     Error in IPC code

       20     Received SIGUSR1 or SIGINT

       21     Some error returned by waitpid()

       22     Error allocating core memory buffers

       23     Partial transfer due to error

       24     Partial transfer due to vanished source files

       25     The --max-delete limit stopped deletions

       30     Timeout in data send/receive

       35     Timeout waiting for daemon connection


              The  CVSIGNORE  environment  variable supplements any ignore patterns in .cvsignore
              files. See the --cvs-exclude option for more details.

              Specify a default --iconv setting using this environment variable. (First supported
              in 3.0.0.)

              The RSYNC_RSH environment variable allows you to override the default shell used as
              the transport for rsync.  Command line options  are  permitted  after  the  command
              name, just as in the -e option.

              The  RSYNC_PROXY  environment  variable allows you to redirect your rsync client to
              use a web proxy when connecting to a rsync daemon. You should set RSYNC_PROXY to  a
              hostname:port pair.

              Setting  RSYNC_PASSWORD  to  the  required password allows you to run authenticated
              rsync connections to an rsync daemon without user intervention. Note that this does
              not  supply  a password to a remote shell transport such as ssh; to learn how to do
              that, consult the remote shell’s documentation.

       USER or LOGNAME
              The USER or LOGNAME  environment  variables  are  used  to  determine  the  default
              username  sent  to  an  rsync  daemon.  If neither is set, the username defaults to

       HOME   The HOME environment variable is used to find the user’s default .cvsignore file.


       /etc/rsyncd.conf or rsyncd.conf




       times are transferred as *nix time_t values

       When transferring to FAT filesystems rsync may re-sync unmodified files.  See the comments
       on the --modify-window option.

       file permissions, devices, etc. are transferred as native numerical values

       see also the comments on the --delete option

       Please report bugs! See the web site at


       This man page is current for version 3.0.9 of rsync.


       The  options --server and --sender are used internally by rsync, and should never be typed
       by a user under normal circumstances.  Some awareness of these options may  be  needed  in
       certain  scenarios,  such  as  when setting up a login that can only run an rsync command.
       For instance, the support directory of the rsync distribution has an example script  named
       rrsync (for restricted rsync) that can be used with a restricted ssh login.


       rsync is distributed under the GNU public license.  See the file COPYING for details.

       A  WEB  site  is  available  at  The site includes an FAQ-O-Matic
       which may cover questions unanswered by this manual page.

       The primary ftp site for rsync is

       We would be delighted to hear from you if you  like  this  program.   Please  contact  the
       mailing-list at

       This  program  uses the excellent zlib compression library written by Jean-loup Gailly and
       Mark Adler.


       Special thanks go out to: John Van  Essen,  Matt  McCutchen,  Wesley  W.  Terpstra,  David
       Dykstra,  Jos  Backus,  Sebastian  Krahmer,  Martin  Pool,  and our gone-but-not-forgotten
       compadre, J.W. Schultz.

       Thanks also to Richard Brent, Brendan Mackay, Bill Waite, Stephen Rothwell and David Bell.
       I’ve probably missed some people, my apologies if I have.


       rsync  was  originally  written  by  Andrew Tridgell and Paul Mackerras.  Many people have
       later contributed to it.  It is currently maintained by Wayne Davison.

       Mailing lists for support and development are available at

                                           23 Sep 2011                                   rsync(1)