Provided by: python3-ezdxf_1.4.1-1_all 

NAME
ezdxf - ezdxf Documentation [image]
Welcome! This is the documentation for ezdxf release 1.4.1, last updated May 05, 2025.
• ezdxf is a Python package to create new DXF documents and read/modify/write existing DXF documents
• MIT-License
• the intended audience are programmers
• requires at least Python 3.9
• OS independent
• tested with CPython and pypy3
• has type annotations and passes mypy --ignore-missing-imports -p ezdxf successful
• additional required packages for the core package without add-ons: typing_extensions, pyparsing, numpy,
fontTools
• read/write/new support for DXF versions: R12, R2000, R2004, R2007, R2010, R2013 and R2018
• additional read-only support for DXF versions R13/R14 (upgraded to R2000)
• additional read-only support for older DXF versions than R12 (upgraded to R12)
• read/write support for ASCII DXF and Binary DXF
• retains third-party DXF content
• optional C-extensions for CPython are included in the binary wheels, available on PyPI for Windows,
Linux and macOS
INCLUDED EXTENSIONS
Additional packages required for these add-ons are not automatically installed during the basic setup,
for more information about the setup & dependencies visit the documentation.
• drawing add-on to visualise and convert DXF files to images which can be saved as PNG, PDF or SVG files
• r12writer add-on to write basic DXF entities direct and fast into a DXF R12 file or stream
• iterdxf add-on to iterate over DXF entities from the modelspace of huge DXF files (> 5GB) which do not
fit into memory
• importer add-on to import entities, blocks and table entries from another DXF document
• dxf2code add-on to generate Python code for DXF structures loaded from DXF documents as starting point
for parametric DXF entity creation
• acadctb add-on to read/write Plot Style Files (CTB/STB)
• pycsg add-on for Constructive Solid Geometry (CSG) modeling technique
• MTextExplode add-on for exploding MTEXT entities into single-line TEXT entities
• text2path add-on to convert text into outline paths
• geo add-on to support the __geo_interface__
• meshex add-on for exchanging meshes with other tools as STL, OFF or OBJ files
• openscad add-on, an interface to OpenSCAD
• odafc add-on, an interface to the ODA File Converter to read and write DWG files
• hpgl2 add-on for converting HPGL/2 plot files to DXF, SVG and PDF
WEBSITE
https://ezdxf.mozman.at/
DOCUMENTATION
Documentation of development version at https://ezdxf.mozman.at/docs
Documentation of latest release at http://ezdxf.readthedocs.io/
KNOWLEDGE GRAPH
The Knowledge Graph contains additional information beyond the documentation and is managed by logseq.
The source data is included in the repository in the folder ezdxf/notes. There is also a HTML export on
the website which gets regular updates.
RELEASE NOTES
The release notes are included in the Knowledge Graph.
CHANGELOG
The changelog is included in the Knowledge Graph.
SOURCE CODE & FEEDBACK
Source Code: http://github.com/mozman/ezdxf.git
Issue Tracker: http://github.com/mozman/ezdxf/issues
Forum: https://github.com/mozman/ezdxf/discussions
QUESTIONS AND ANSWERS
Please post questions at the forum or stack overflow to make answers available to other users as well.
INTRODUCTION
What is ezdxf
Ezdxf is a Python interface to the DXF (drawing interchange file) format developed by Autodesk, ezdxf
allows developers to read and modify existing DXF documents or create new DXF documents.
The main objective in the development of ezdxf was to hide complex DXF details from the programmer but
still support most capabilities of the DXF format. Nevertheless, a basic understanding of the DXF format
is required, also to understand which tasks and goals are possible to accomplish by using the DXF format.
Not all DXF features are supported yet, but additional features will be added in the future gradually.
Ezdxf is also a replacement for the outdated dxfwrite and dxfgrabber packages but with different APIs,
for more information see also: What is the Relationship between ezdxf, dxfwrite and dxfgrabber?
What ezdxf can’t do
• ezdxf is not a DXF converter: ezdxf can not convert between different DXF versions, if you are looking
for an appropriate application, try the free ODAFileConverter from the Open Design Alliance, which
converts between different DXF version and also between the DXF and the DWG file format.
• ezdxf is not a CAD file format converter: ezdxf can not convert DXF files to other CAD formats such as
DWG
• ezdxf is not a CAD kernel and does not provide high level functionality for construction work, it is
just an interface to the DXF file format. If you are looking for a CAD kernel with Python scripting
support, look at FreeCAD.
Supported Python Versions
Ezdxf requires at least Python 3.9 (determined by numpy) and will be tested with the latest stable
CPython version and the latest stable release of pypy3 during development.
Ezdxf is written in pure Python with optional Cython implementations of some low level math classes and
requires pyparsing, numpy, fontTools and typing_extensions as additional library beside the Python
Standard Library. Pytest is required to run the unit and integration tests. Data to run the stress and
audit test can not be provided, because I don’t have the rights for publishing these DXF files.
Supported Operating Systems
Ezdxf is OS independent and runs on all platforms which provide an appropriate Python interpreter
(>=3.9).
Supported DXF Versions
┌─────────┬──────────────────────┐
│ Version │ AutoCAD Release │
├─────────┼──────────────────────┤
│ AC1009 │ AutoCAD R12 │
├─────────┼──────────────────────┤
│ AC1012 │ AutoCAD R13 -> R2000 │
├─────────┼──────────────────────┤
│ AC1014 │ AutoCAD R14 -> R2000 │
├─────────┼──────────────────────┤
│ AC1015 │ AutoCAD R2000 │
├─────────┼──────────────────────┤
│ AC1018 │ AutoCAD R2004 │
├─────────┼──────────────────────┤
│ AC1021 │ AutoCAD R2007 │
├─────────┼──────────────────────┤
│ AC1024 │ AutoCAD R2010 │
├─────────┼──────────────────────┤
│ AC1027 │ AutoCAD R2013 │
├─────────┼──────────────────────┤
│ AC1032 │ AutoCAD R2018 │
└─────────┴──────────────────────┘
Ezdxf also reads older DXF versions but saves it as DXF R12.
Embedded DXF Information of 3rd Party Applications
The DXF format allows third-party applications to embed application-specific information. Ezdxf manages
DXF data in a structure-preserving form, but for the price of large memory requirement. Because of this,
processing of DXF information of third-party applications is possible and will retained on rewriting.
License
Ezdxf is licensed under the very liberal MIT-License.
SETUP & DEPENDENCIES
The primary goal is to keep the dependencies of the core package as small as possible. The add-ons are
not part of the core package and can therefore use as many packages as needed. The only requirement for
these packages is an easy way to install them on Windows, Linux and macOS, preferably as:
pip3 install ezdxf
The packages pyparsing, numpy, fontTools and typing_extensions are the hard dependency and will be
installed automatically by pip3!
The minimal required Python version is determined by the latest release version of numpy.
Basic Installation
The most common case is the installation by pip3 including the optional C-extensions from PyPI as binary
wheels:
pip3 install ezdxf
Installation with Extras
To use all features of the drawing add-on, add the [draw] tag:
pip3 install ezdxf[draw]
┌────────┬───────────────────────────────────────┐
│ Tag │ Additional Installed Packages │
├────────┼───────────────────────────────────────┤
│ [draw] │ Matplotlib, PySide6, PyMuPDF, Pillow │
├────────┼───────────────────────────────────────┤
│ [dev] │ [draw] + setuptools, wheel, Cython, │
│ │ pytest (full development setup) │
└────────┴───────────────────────────────────────┘
If PySide6 is not available on your system, use PyQt5 by this options:
┌─────────┬───────────────────────────────────────┐
│ Tag │ Additional Installed Packages │
├─────────┼───────────────────────────────────────┤
│ [draw5] │ Matplotlib, PyQt5, PyMuPDF, Pillow │
├─────────┼───────────────────────────────────────┤
│ [dev5] │ [draw5] + setuptools, wheel, Cython, │
│ │ pytest (full development setup) │
└─────────┴───────────────────────────────────────┘
PySide6 Issue
Maybe PySide6 won’t launch on Debian based distributions and shows this error message:
qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was found.
...
This may fix the issue:
sudo apt-get install libxcb-cursor0
Binary Wheels
Ezdxf includes some C-extensions, which will be deployed automatically at each release to PyPI as binary
wheels to PyPI:
• Windows: only amd64 packages
• Linux: manylinux and musllinux packages for x86_64 & aarch64
• macOS: x86_64, arm64 and universal packages
The wheels are created by the continuous integration (CI) service provided by GitHub and the build
container cibuildwheel provided by PyPA the Python Packaging Authority. The workflows are kept short and
simple, so my future me will understand what’s going on and they are maybe also helpful for other
developers which do not touch CI services every day.
The C-extensions are disabled for pypy3, because the JIT compiled code of pypy is much faster than the
compiled C-extensions.
Disable C-Extensions
It is possible to disable the C-Extensions by setting the environment variable EZDXF_DISABLE_C_EXT to 1
or true:
set EZDXF_DISABLE_C_EXT=1
or on Linux:
export EZDXF_DISABLE_C_EXT=1
This is has to be done before anything from ezdxf is imported! If you are working in an interactive
environment, you have to restart the interpreter.
Installation from GitHub
Install the latest development version by pip3 from GitHub:
pip3 install git+https://github.com/mozman/ezdxf.git@master
Build and Install from Source
This is only required if you want the compiled C-extensions, the ezdxf installation by pip from the
source code package works without the C-extension but is slower. There are binary wheels available on ‐
PyPi which included the compiled C-extensions.
Windows
Make a build directory and a virtual environment:
mkdir build
cd build
py -m venv .venv
.venv/Scripts/activate.bat
A working C++ compiler setup is required to compile the C-extensions from source code. Windows users need
the build tools from Microsoft: https://visualstudio.microsoft.com/de/downloads/
Download and install the required Visual Studio Installer of the community edition and choose the option:
Visual Studio Build Tools 20..
Install required packages to build and install ezdxf with C-extensions:
pip3 install setuptools wheel cython
Clone the GitHub repository:
git clone https://github.com/mozman/ezdxf.git
Build and install ezdxf from source code:
cd ezdxf
pip3 install .
Check if the installation was successful:
python3 -m ezdxf -V
The ezdxf command should run without a preceding python3 -m, but calling the launcher through the
interpreter guarantees to call the version which was installed in the venv if there exist a global
installation of ezdxf like in my development environment.
The output should look like this:
ezdxf 0.17.2b4 from D:\Source\build\.venv\lib\site-packages\ezdxf
Python version: 3.10.1 (tags/v3.10.1:2cd268a, Dec 6 2021, 19:10:37) [MSC v.1929 64 bit (AMD64)]
using C-extensions: yes
using Matplotlib: no
To install optional packages go to section: Install Optional Packages
To run the included tests go to section: Run the Tests
WSL & Ubuntu
I use sometimes the Windows Subsystem for Linux (WSL) with Ubuntu 20.04 LTS for some tests (how to
install WSL).
By doing as fresh install on WSL & Ubuntu, I encountered an additional requirement, the build-essential
package adds the required C++ support and the python3.10-dev package the required headers, change 3.10 to
the Python version you are using:
sudo apt install build-essential python3.10-dev
The system Python 3 interpreter has the version 3.8 (in 2021), but I will show in a later section how to
install an additional newer Python version from the source code:
cd ~
mkdir build
cd build
python3 -m venv .venv
source .venv/bin/activate
Install Cython and wheel in the venv to get the C-extensions compiled:
pip3 install cython wheel
Clone the GitHub repository:
git clone https://github.com/mozman/ezdxf.git
Build and install ezdxf from source code:
cd ezdxf
pip3 install .
Check if the installation was successful:
python3 -m ezdxf -V
The output should look like this:
ezdxf 0.17.2b4 from /home/mozman/src/.venv/lib/python3.8/site-packages/ezdxf
Python version: 3.8.10 (default, Nov 26 2021, 20:14:08)
[GCC 9.3.0]
using C-extensions: yes
using Matplotlib: no
To install optional packages go to section: Install Optional Packages
To run the included tests go to section: Run the Tests
Raspberry Pi OS
Testing platform is a Raspberry Pi 400 and the OS is the Raspberry Pi OS which runs on 64bit hardware but
is a 32bit OS. The system Python 3 interpreter comes in version 3.7 (in 2021), but I will show in a later
section how to install an additional newer Python version from the source code.
Install the build requirements, Matplotlib and the PyQt5 bindings from the distribution repository:
sudo apt install python3-pip python3-matplotlib python3-pyqt5
Installing Matplotlib and the PyQt5 bindings by pip from piwheels in the venv worked, but the packages
showed errors at import, seems to be an packaging error in the required numpy package. PySide6 is the
preferred Qt binding but wasn’t available on Raspberry Pi OS at the time of writing this - PyQt5 is
supported as fallback.
Create the venv with access to the system site-packages for using Matplotlib and the Qt bindings from the
system installation:
cd ~
mkdir build
cd build
python3 -m venv --system-site-packages .venv
source .venv/bin/activate
Install Cython and wheel in the venv to get the C-extensions compiled:
pip3 install cython wheel
Clone the GitHub repository:
git clone https://github.com/mozman/ezdxf.git
Build and install ezdxf from source code:
cd ezdxf
pip3 install .
Check if the installation was successful:
python3 -m ezdxf -V
The output should look like this:
ezdxf 0.17.2b4 from /home/pi/src/.venv/lib/python3.7/site-packages/ezdxf
Python version: 3.7.3 (default, Jan 22 2021, 20:04:44)
[GCC 8.3.0]
using C-extensions: yes
using Matplotlib: yes
To run the included tests go to section: Run the Tests
Manjaro on Raspberry Pi
Because the (very well working) Raspberry Pi OS is only a 32bit OS, I searched for a 64bit alternative
like Ubuntu, which just switched to version 21.10 and always freezes at the installation process! So I
tried Manjaro as rolling release, which I used prior in a virtual machine and wasn’t really happy,
because there is always something to update. Anyway the distribution looks really nice and has Python
3.9.9 installed.
Install build requirements and optional packages by the system packager pacman:
sudo pacman -S python-pip python-matplotlib python-pyqt5
Create and activate the venv:
cd ~
mkdir build
cd build
python3 -m venv --system-site-packages .venv
source .venv/bin/activate
The rest is the same procedure as for the Raspberry Pi OS:
pip3 install cython wheel
git clone https://github.com/mozman/ezdxf.git
cd ezdxf
pip3 install .
python3 -m ezdxf -V
To run the included tests go to section: Run the Tests
Ubuntu Server 21.10 on Raspberry Pi
I gave the Ubuntu Server 21.10 a chance after the desktop version failed to install by a nasty bug and it
worked well. The distribution comes with Python 3.9.4 and after installing some requirements:
sudo apt install build-essential python3-pip python3.9-venv
The remaining process is like on WSL & Ubuntu except for the newer Python version. Installing Matplotlib
by pip works as expected and is maybe useful even on a headless server OS to create SVG and PNG from DXF
files. PySide6 is not available by pip and the installation of PyQt5 starts from the source code package
which I stopped because this already didn’t finished on Manjaro, but the installation of the PyQt5
bindings by apt works:
sudo apt install python3-pyqt5
Use the --system-site-packages option for creating the venv to get access to the PyQt5 package.
Install Optional Packages
Install the optional dependencies by pip only for Windows and WSL & Ubuntu, for Raspberry Pi OS and
Manjaro on Raspberry Pi install these packages by the system packager:
pip3 install matplotlib PySide6
Run the Tests
This is the same procedure for all systems, assuming you are still in the build directory build/ezdxf and
ezdxf is now installed in the venv.
Install the test dependencies and run the tests:
pip3 install pytest
python3 -m pytest tests integration_tests
Build Documentation
Assuming you are still in the build directory build/ezdxf of the previous section.
Install Sphinx:
pip3 install Sphinx sphinx-rtd-theme
Build the HTML documentation:
cd docs
make html
The output is located in build/ezdxf/docs/build/html.
Python from Source
Debian based systems have often very outdated software installed and sometimes there is no easy way to
install a newer Python version. This is a brief summery how I installed Python 3.9.9 on the Raspberry Pi
OS, for more information go to the source of the recipe: Real Python
Install build requirements:
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install -y make build-essential libssl-dev zlib1g-dev \
libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \
libncurses5-dev libncursesw5-dev xz-utils tk-dev
Make a build directory:
cd ~
mkdir build
cd build
Download and unpack the source code from Python.org, replace 3.9.9 by your desired version:
wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz
tar -xvzf Python-3.9.9.tgz
cd Python-3.9.9/
Configure the build process, use a prefix to the directory where the interpreter should be installed:
./configure --prefix=/opt/python3.9.9 --enable-optimizations
Build & install the Python interpreter. The -j option simply tells make to split the building into
parallel steps to speed up the compilation, my Raspberry Pi 400 has 4 cores so 4 seems to be a good
choice:
make -j 4
sudo make install
The building time was ~25min and the new Python 3.9.9 interpreter is now installed as
/opt/python3.9.9/bin/python3.
At the time there were no system packages for Matplotlib and PyQt5 for this new Python version available,
so there is no benefit of using the option --system-site-packages for building the venv:
cd ~/build
/opt/python3.9.9/bin/python3 -m venv py39
source py39/bin/activate
I have not tried to build Matplotlib and PyQt5 by myself and the installation by pip from piwheels did
not work, in this case the drawing add-on will not work.
Proceed with the ezdxf installation from source as shown for the Raspberry Pi OS.
USAGE FOR BEGINNERS
This section shows the intended usage of the ezdxf package. This is just a brief overview for new ezdxf
users, follow the provided links for more detailed information.
First import the package:
import ezdxf
Loading DXF Files
ezdxf supports loading ASCII and binary DXF documents from a file:
doc = ezdxf.readfile(filename)
or from a zip-file:
doc = ezdxf.readzip(zipfilename[, filename])
Which loads the DXF document filename from the zip-file zipfilename or the first DXF file in the zip-file
if filename is absent.
It is also possible to read a DXF document from a stream by the ezdxf.read() function, but this is a more
advanced feature, because this requires detection of the file encoding in advance.
This works well with DXF documents from trusted sources like AutoCAD or BricsCAD. For loading DXF
documents with minor or major flaws use the ezdxf.recover module.
SEE ALSO:
Documentation for ezdxf.readfile(), ezdxf.readzip() and ezdxf.read(), for more information about file
management go to the Document Management section. For loading DXF documents with structural errors
look at the ezdxf.recover module.
Layouts and Blocks
Layouts are containers for DXF entities like LINE or CIRCLE. The most important layout is the modelspace
labeled as “Model” in CAD applications which represents the “world” work space. Paperspace layouts
represents plottable sheets which contains often the framing and the tile block of a drawing and VIEWPORT
entities as scaled and clipped “windows” into the modelspace.
The modelspace is always present and can not be deleted. The active paperspace is also always present in
a new DXF document but can be deleted, in that case another paperspace layout gets the new active
paperspace, but you can not delete the last paperspace layout.
Getting the modelspace of a DXF document:
msp = doc.modelspace()
Getting a paperspace layout by the name as shown in the tab of a CAD application:
psp = doc.paperspace("Layout1")
A block is just another kind of entity space, which can be inserted multiple times into other layouts and
blocks by the INSERT entity also called block references, this is a very powerful and an important
concept of the DXF format.
Getting a block layout by the block name:
blk = doc.blocks.get("NAME")
All these layouts have factory functions to create graphical DXF entities for their entity space, for
more information about creating entities see section: Create new DXF Entities
Query DXF Entities
As said in the Layouts and Blocks section, all graphical DXF entities are stored in layouts, all these
layouts can be iterated and do support the index operator e.g. layout[-1] returns the last entity.
The main difference between iteration and index access is, that iteration filters destroyed entities, but
the index operator returns also destroyed entities until these entities are purged by layout.purge(),
more about this topic in section: Delete Entities.
There are two advanced query methods: query() and groupby().
Get all lines of layer "MyLayer":
lines = msp.query('LINE[layer=="MyLayer"]')
This returns an EntityQuery container, which also provides the same query() and groupby() methods.
Get all lines categorized by a DXF attribute like color:
all_lines_by_color = msp.query("LINE").groupby("color")
lines_with_color_1 = all_lines_by_color.get(1, [])
The groupby() method returns a regular Python dict with colors as key and a regular Python list of
entities as values (not an EntityQuery container).
SEE ALSO:
For more information go to the Tutorial for Getting Data from DXF Files
Examine DXF Entities
Each DXF entity has a dxf namespace attribute, which stores the named DXF attributes, some entity
attributes and assets are only available from Python properties or methods outside the dxf namespace like
the vertices of the LWPOLYLINE entity. More information about the DXF attributes of each entity can found
in the documentation of the ezdxf.entities module.
Get some basic DXF attributes:
layer = entity.dxf.layer # default is "0"
color = entity.dxf.color # default is 256 = BYLAYER
Most DXF attributes have a default value, which will be returned if the DXF attribute is not present, for
DXF attributes without a default value you can check if the attribute really exist:
entity.dxf.hasattr("true_color")
or use the get() method and provide a default value:
entity.dxf.get("true_color", 0)
SEE ALSO:
• Common graphical DXF attributes
• Helper class ezdxf.gfxattribs.GfxAttribs for building DXF attribute dictionaries.
Create a New DXF File
Create new document for the latest supported DXF version:
doc = ezdxf.new()
Create a new DXF document for a specific DXF version, e.g. for DXF R12:
doc = ezdxf.new("R12")
The ezdxf.new() function can create some standard resources, such as linetypes and text styles, by
setting the argument setup to True:
doc = ezdxf.new(setup=True)
SEE ALSO:
• Tutorial for Creating DXF Drawings
• Documentation for ezdxf.new(), for more information about file management go to the Document
Management section.
Create New DXF Entities
The factory methods for creating new graphical DXF entities are located in the BaseLayout class and these
factory methods are available for all entity containers:
• Modelspace
• Paperspace
• BlockLayout
The usage is simple:
msp = doc.modelspace()
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer"})
A few important/required DXF attributes are explicit method arguments, most additional DXF attributes are
gives as a regular Python dict object by the keyword only argument dxfattribs. The supported DXF
attributes can be found in the documentation of the ezdxf.entities module.
WARNING:
Do not instantiate DXF entities by yourself and add them to layouts, always use the provided factory
methods to create new graphical entities, this is the intended way to use ezdxf.
SEE ALSO:
• Thematic Index of Layout Factory Methods
• Tutorial for Creating DXF Drawings
• Tutorial for Simple DXF Entities
• Tutorial for LWPolyline
• Tutorial for Text
• Tutorial for MText and MTextEditor
• Tutorial for Hatch
Saving DXF Files
Save the DXF document with a new name:
doc.saveas("new_name.dxf")
or with the same name as loaded:
doc.save()
SEE ALSO:
Documentation for ezdxf.document.Drawing.save() and ezdxf.document.Drawing.saveas(), for more
information about file management go to the Document Management section.
Create New Blocks
The block definitions of a DXF document are managed by the BlocksSection object:
my_block = doc.blocks.new("MyBlock")
SEE ALSO:
Tutorial for Blocks
Create Block References
A block reference is just another DXF entity called INSERT. The Insert entity is created by the factory
method: add_blockref():
msp.add_blockref("MyBlock", (0, 0))
SEE ALSO:
See Tutorial for Blocks for more advanced features like using Attrib entities.
Create New Layers
A layer is not an entity container, a layer is just another DXF attribute stored in the entity and the
entity can inherit some properties from this Layer object. Layer objects are stored in the layer table
which is available as attribute doc.layers.
You can create your own layers:
my_layer = doc.layers.add("MyLayer")
The layer object also controls the visibility of entities which references this layer, the on/off state
of the layer is unfortunately stored as positive or negative color value which make the raw DXF attribute
of layers useless, to change the color of a layer use the property Layer.color
my_layer.color = 1
To change the state of a layer use the provided methods of the Layer object, like on(), off(), freeze()
or thaw():
my_layer.off()
SEE ALSO:
Layers
Delete Entities
The safest way to delete entities is to delete the entity from the layout containing that entity:
line = msp.add_line((0, 0), (1, 0))
msp.delete_entity(line)
This removes the entity immediately from the layout and destroys the entity. The property is_alive
returns False for a destroyed entity and all Python attributes are deleted, so line.dxf.color will raise
an AttributeError exception, because line does not have a dxf attribute anymore.
Ezdxf also supports manually destruction of entities by calling the method destroy():
line.destroy()
Manually destroyed entities are not removed immediately from entities containers like Modelspace or
EntityQuery, but iterating such a container will filter destroyed entities automatically, so a for e in
msp: ... loop will never yield destroyed entities. The index operator and the len() function do not
filter deleted entities, to avoid getting deleted entities call the purge() method of the container
manually to remove deleted entities.
Further Information
• Basic Concepts: what is the meaning or purpose of …
• Tasks: how to accomplish certain tasks
• Reference
BASIC CONCEPTS
The Basic Concepts section teach the intended meaning of DXF attributes and structures without teaching
the application of this information or the specific implementation by ezdxf, if you are looking for more
information about the ezdxf internals look at the Reference section or if you want to learn how to use
ezdxf go to the Tutorials section and for the solution of specific problems go to the Howto section.
What is DXF?
The common assumption is also the cite of Wikipedia:
AutoCAD DXF (Drawing eXchange Format) is a CAD data file format developed by Autodesk for enabling
data interoperability between AutoCAD and other applications.
DXF was originally introduced in December 1982 as part of AutoCAD 1.0, and was intended to provide an
exact representation of the data in the AutoCAD native file format, DWG (Drawing). For many years
Autodesk did not publish specifications making correct imports of DXF files difficult. Autodesk now
publishes the DXF specifications online.
The more precise cite from the DXF reference itself:
The DXF™ format is a tagged data representation of all the information contained in an AutoCAD®
drawing file. Tagged data means that each data element in the file is preceded by an integer number
that is called a group code. A group code’s value indicates what type of data element follows. This
value also indicates the meaning of a data element for a given object (or record) type. Virtually all
user-specified information in a drawing file can be represented in DXF format.
No mention of interoperability between AutoCAD and other applications.
In reality the DXF format was designed to ensure AutoCAD cross-platform compatibility in the early days
when different hardware platforms with different binary data formats were used. The name DXF (Drawing
eXchange Format) may suggest an universal exchange format, but it is not. It is based on the
infrastructure installed by Autodesk products (fonts) and the implementation details of AutoCAD (MTEXT)
or on licensed third party technologies (embedded ACIS entities).
For more information about the AutoCAD history see the document: The Autodesk File - Bits of History,
Words of Experience by John Walker, founder of Autodesk, Inc. and co-author of AutoCAD.
DXF Reference Quality
The DXF reference is by far no specification nor a standard like the W3C standard for SVG or the ISO
standard for PDF.
The reference describes many but not all DXF entities and some basic concepts like the tag structure or
the arbitrary axis algorithm. But the existing documentation (reference) is incomplete and partly
misleading or wrong. Also missing from the reference are some important parts like the complex
relationship between the entities to create higher order structures like block definitions, layouts
(model space & paper space) or dynamic blocks to name a few.
Reliable CAD Applications
Because of the suboptimal quality of the DXF reference not all DXF viewers, creators or processors are of
equal quality. I consider a CAD application as a reliable CAD application when the application creates
valid DXF documents in the meaning and interpretation of Autodesk and a reliable DXF viewer when the
result matches in most parts the result of the free Trueview viewer provided by Autodesk.
These are some applications which do fit the criteria of a reliable CAD application:
• AutoCAD and Trueview
• CAD applications based on the OpenDesignAlliance (ODA) SDK, see also ODA on wikipedia, even Autodesk is
a corporate member, see their blog post from 22 Sep 2020 at adsknews but only to use the ODA IFC tools
and not to improve the DWG/DXF compatibility
• BricsCAD (ODA based)
• GstarCAD (ODA based)
• ZWCAD (ODA based)
Unfortunately, I cannot recommend any open source applications because everyone I know has serious
shortcomings, at least as a DXF viewer, and I don’t trust them as a DXF creator either. To be clear, not
even ezdxf (which is not a CAD application) is a reliable library in this sense - it just keeps getting
better, but is far from reliable.
HINT:
Please do not submit bug reports based on the use of LibreCAD or QCAD, these applications are in no
way reliable regarding the DXF format and I will not waste my time on them.
DXF Entities and Objects
DXF entities are objects that make up the design data stored in a DXF file.
Graphical Entities
Graphical entities are visible objects stored in blocks, modelspace- or paperspace layouts. They
represent the various shapes, lines, and other elements that make up a 2D or 3D design.
Some common types of DXF entities include:
• LINE and POLYLINE: These are the basic building blocks of a DXF file. They represent straight and
curved lines.
• CIRCLE and ARC: These entities represent circles and portions of circles, respectively.
• TEXT and MTEXT: DXF files can also contain text entities, which can be used to label parts of the
design or provide other information.
• HATCH: DXF files can also include hatch patterns, which are used to fill in areas with a specific
pattern or texture.
• DIMENSION: DXF files can also contain dimension entities, which provide precise measurements of the
various elements in a design.
• INSERT: A block is a group of entities that can be inserted into a design multiple times by the INSERT
entity, making it a useful way to reuse elements of a design.
These entities are defined using specific codes and values in the DXF file format, and they can be
created and manipulated by ezdxf.
Objects
DXF objects are non-graphical entities and have no visual representation, they store administrative data,
paperspace layout definitions, style definitions for multiple entity types, custom data and objects. The
OBJECTS section in DXF files serves as a container for these non-graphical objects.
Some common DXF types of DXF objects include:
• DICTIONARY: A dictionary object consists of a series of name-value pairs, where the name is a string
that identifies a specific object within the dictionary, and the value is a reference to that object.
The objects themselves can be any type of DXF entity or custom object defined in the DXF file.
• XRECORD entities are used to store custom application data in a DXF file.
• the LAYOUT entity is a DXF entity that represents a single paper space layout in a DXF file. Paper
space is the area in a CAD drawing that represents the sheet of paper or other physical media on which
the design will be plotted or printed.
• MATERIAL, MLINESTYLE, MLEADERSTYLE definitions stored in certain DICTIONARY objects.
• A GROUP entity contains a list of handles that refer to other DXF entities in the drawing. The entities
in the group can be of any type, including entities from the model space or paper space layouts.
TagStorage
The ezdxf package supports many but not all entity types, all these unsupported types are stored as
TagStorage instances to preserve their data when exporting the edited DXF content by ezdxf.
Access Entity Attributes
All DXF attributes are stored in the entity namespace attribute dxf.
print(entity.dxf.layer)
Some attributes are mandatory others are optional in most cases a reasonable values will be returned as
default value if the attribute is missing.
SEE ALSO:
Tutorial for Getting Data from DXF Files
Where to Look for Entities
The DXF document has an entity database where all entities which have a handle are stored in a (key,
value) storage. The query() method is often the easiest way to request data:
for text in doc.entitydb.query("TEXT"):
print(text.dxf.text)
SEE ALSO:
• ezdxf.query module
• ezdxf.entitydb module
Graphical entities are stored in blocks, the modelspace or paperspace layouts.
• The doc.modelspace() function returns the Modelspace instance
• The doc.paperspace() returns a Paperspace instance
• The doc.blocks attribute provides access to the BlocksSection
The query() method of the Drawing class which represents the DXF document, runs the query on all layouts
and block definitions.
Non-graphical entities are stored in the OBJECTS section:
• The doc.objects attribute provides access to the ObjectsSection.
Resource definitions like Layer, Linetype or Textstyle are stored in resource tables:
• doc.layers: the LayerTable
• doc.linetypes: the LinetypeTable
• doc.styles: the TextstyleTable
• doc.dimstyles: the DimStyleTable
IMPORTANT:
A layer assignment is just an attribute of a DXF entity, it’s not an entity container!
SEE ALSO:
• Basic concept of the Modelspace
• Basic concept of Paperspace layouts
• Basic concept of Blocks
• Tutorial for Getting Data from DXF Files
How to Create Entities
The recommended way to create new DXF entities is to use the factory methods of layouts and blocks to
create entities and add them to the entity space automatically.
SEE ALSO:
• Thematic Index of Layout Factory Methods
• Reference of the BaseLayout class
• Tutorial for Simple DXF Entities
AutoCAD Color Index (ACI)
The color attribute represents an ACI (AutoCAD Color Index). AutoCAD and many other CAD application
provides a default color table, but pen table would be the more correct term. Each ACI entry defines the
color value, the line weight and some other attributes to use for the pen. This pen table can be edited
by the user or loaded from an CTB or STB file. Ezdxf provides functions to create (new()) or modify
(ezdxf.acadctb.load()) plot styles files.
DXF R12 and prior do not preserve the layout of a drawing very well, because of the lack of a standard
color table and missing DXF structures to define these color tables in the DXF file. If a CAD user
redefines an ACI color entry in a CAD application and does not provide this CTB or STB file, you can not
know what color or lineweight was used intentionally. This got better in later DXF versions by
supporting additional DXF attributes like lineweight and true_color which can define these attributes by
distinct values. [image]
SEE ALSO:
• Plot Style Files (CTB/STB)
• ezdxf.colors
• Tutorial for Common Graphical Attributes
• Autodesk Knowledge Network: About Setting the Color of Objects
• BricsCAD Help Center: Entity Color
True Color
The support for true color was added to the DXF file format in revision R2004. The true color value has
three components red, green and blue in the range from 0 to 255 and is stored as a 24-bit value in the
DXF namespace as true_color attribute and looks like this 0xRRGGBB as hex value. For a more easy usage
all graphical entities support the rgb property to get and set the true color as (r, g, b) tuples where
the components must be in the range from 0 to 255.
import ezdxf
doc = ezdxf.new()
msp = doc.modelspace()
line = msp.add_line((0, 0), (10, 0))
line.rgb = (255, 128, 32)
The true color value has higher precedence than the AutoCAD Color Index (ACI) value, if the attributes
color and the true_color are present the entity will be rendered with the true color value.
The true color value has the advantage that it defines the color absolutely and unambiguously, no
unexpected overwriting is possible. The representation of the color is fixed and only depends on the
calibration of the output medium: [image]
SEE ALSO:
• ezdxf.colors
• Tutorial for Common Graphical Attributes
• Autodesk Knowledge Network: About Setting the Color of Objects
• BricsCAD Help Center: Entity Color
Transparency
The support for transparency was added to the DXF file format in revision R2004. The raw transparency
value stored as 32 bit value in the DXF namespace as transparency attribute, has a range from 0 to 255
where 0 is fully transparent and 255 if opaque and has the top byte set to 0x02. For a more easy usage
all graphical entities support the transparency property to get and set the transparency as float value
in the range frem 0.0 to 1.0 where 0.0 is opaque and 1.0 is fully transparent. The transparency value can
be set explicit in the entity, by layer or by block.
import ezdxf
doc = ezdxf.new()
msp = doc.modelspace()
line = msp.add_line((0, 0), (10, 0))
line.transparency = 0.5
SEE ALSO:
• ezdxf.colors
• Tutorial for Common Graphical Attributes
• Autodesk Knowledge Network: About Making Objects Transparent
• BricsCAD Help Center: Entity Transparency
Layers
Every object has a layer as one of its properties. You may be familiar with layers - independent drawing
spaces that stack on top of each other to create an overall image - from using drawing programs. Most CAD
programs use layers as the primary organizing principle for all the objects that you draw. You use
layers to organize objects into logical groups of things that belong together; for example, walls,
furniture, and text notes usually belong on three separate layers, for a couple of reasons:
• Layers give you a way to turn groups of objects on and off - both on the screen and on the plot.
• Layers provide the most efficient way of controlling object color and linetype
Create a layer table entry Layer by Drawing.layers.add(), assign the layer properties such as color and
linetype. Then assign those layers to other DXF entities by setting the DXF attribute layer to the layer
name as string.
The DXF format do not require a layer table entry for a layer. A layer without a layer table entry has
the default linetype 'Continuous', a default color of 7 and a lineweight of -3 which represents the
default lineweight of 0.25mm in most circumstances.
Layer Properties
The advantage of assigning properties to a layer is that entities can inherit this properties from the
layer by using the string 'BYLAYER' as linetype string, 256 as color or -1 as lineweight, all these
values are the default values for new entities. DXF version R2004 and later also support inheriting
true_color and transparency attributes from a layer.
Layer Status
The layer status is important for the visibility and the ability to select and edit DXF entities on that
layer in CAD applications. Ezdxf does not care about the visual representation and works at the level of
entity spaces and the entity database and therefore all the layer states documented below are ignored by
ezdxf. This means if you iterate an entity space like the modelspace or the entity database you will get
all entities from that entity space regardless the layer status.
• ON: the layer is visible, entities on that layer are visible, selectable and editable
• OFF: the layer is not visible, entities on that layer are not visible, not selectable and not editable
• FROZEN: the layer is not visible, entities on that layer are not visible, not selectable and not
editable, very similar to the OFF status but layers can be frozen individually in VIEWPORTS and
freezing layers may speed up some commands in CAD applications like ZOOM, PAN or REGEN.
• LOCKED: the layer is visible, entities on that layer are visible but not selectable and not editable
Deleting Layers
Deleting a layer is not as simple as it might seem, especially if you are used to use a CAD application
like AutoCAD. There is no directory of locations where layers can be used and references to layers can
occur even in third-party data. Deleting the layer table entry removes only the default attributes of
that layer and does not delete any layer references automatically. And because a layer can exist without
a layer table entry, the layer exist as long as at least one layer reference to the layer exist.
Renaming Layers
Renaming a layer is also problematic because the DXF format stores the layer references in most cases as
text strings, so renaming the layer table entry just creates a new layer and all entities which still
have a reference to the old layer now inherit their attributes from an undefined layer table entry with
default settings.
Viewport Overrides
Most of the layer properties can be overriden for each Viewport entity individually and this overrides
are stored in layer table entry referenced by the handle of the VIEWPORT entity. In contrast the frozen
status of layers is store in the VIEWPORT entity.
SEE ALSO:
• Tutorial for Layers
• Tutorial for Viewports in Paperspace
• Autodesk Knowledge Network: About Layers
• BricsCAD Help Center: Working with Layers
Linetypes
The linetype defines the rendering pattern of linear graphical entities like LINE, ARC, CIRCLE and so on.
The linetype of an entity can be specified by the DXF attribute linetype, this can be an explicit named
linetype or the entity can inherit its linetype from the assigned layer by setting linetype to 'BYLAYER',
which is also the default value. CONTINUOUS is the default linetype for layers with an unspecified
linetype.
Ezdxf creates several standard linetypes, if the argument setup is True when calling new(), this simple
linetypes are supported by all DXF versions:
doc = ezdxf.new('R2007', setup=True)
[image]
In DXF R13 Autodesk introduced complex linetypes which can contain text or shapes.
SEE ALSO:
• Tutorial for Common Graphical Attributes
• Tutorial for Creating Linetype Pattern
• Autodesk Knowledge Network: About Linetypes
• BricsCAD Help Center: Entity Linetype
Linetype Scaling
Global linetype scaling can be changed by setting the header variable doc.header['$LTSCALE'] = 2, which
stretches the line pattern by factor 2.
The linetype scaling for a single entity can be set by the DXF attribute ltscale, which is supported
since DXF R2000.
Lineweights
The lineweight attribute represents the lineweight as integer value in millimeters * 100, e.g. 0.25mm =
25, independently from the unit system used in the DXF document. The lineweight attribute is supported
by DXF R2000 and newer.
Only certain values are valid, they are stored in ezdxf.lldxf.const.VALID_DXF_LINEWEIGHTS: 0, 5, 9, 13,
15, 18, 20, 25, 30, 35, 40, 50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211.
Values < 0 have a special meaning and can be imported as constants from ezdxf.lldxf.const
┌────┬────────────────────┐
│ -1 │ LINEWEIGHT_BYLAYER │
├────┼────────────────────┤
│ -2 │ LINEWEIGHT_BYBLOCK │
├────┼────────────────────┤
│ -3 │ LINEWEIGHT_DEFAULT │
└────┴────────────────────┘
The validator function: ezdxf.lldxf.validator.is_valid_lineweight() returns True for valid lineweight
values otherwise False.
Sample script which shows all valid lineweights: valid_lineweights.dxf
You have to enable the option to show lineweights in your CAD application or viewer to see the effect on
screen, which is disabled by default, the same has to be done in the page setup options for plotting
lineweights.
Setting the HEADER variable $LWDISPLAY to 1, activates support for displaying lineweights on screen:
# activate on screen lineweight display
doc.header["$LWDISPLAY"] = 1
[image]
The lineweight value can be overridden by CTB or STB files.
SEE ALSO:
• Autodesk Knowledge Network: About Lineweights
• BricsCAD Help Center: Entity Lineweight
Coordinate Systems
AutoLISP Reference to Coordinate Systems provided by Autodesk.
To brush up you knowledge about vectors, watch the YouTube tutorials of 3Blue1Brown about Linear Algebra.
WCS
World coordinate system - the reference coordinate system. All other coordinate systems are defined
relative to the WCS, which never changes. Values measured relative to the WCS are stable across changes
to other coordinate systems.
UCS
User coordinate system - the working coordinate system defined by the user to make drawing tasks easier.
All points passed to AutoCAD commands, including those returned from AutoLISP routines and external
functions, are points in the current UCS. As far as I know, all coordinates stored in DXF files are
always WCS or OCS never UCS.
User defined coordinate systems are not just helpful for interactive CAD, therefore ezdxf provides a
converter class UCS to translate coordinates from UCS into WCS and vice versa, but always remember: store
only WCS or OCS coordinates in DXF files, because there is no method to determine which UCS was active or
used to create UCS coordinates.
SEE ALSO:
• Table entry UCS
• ezdxf.math.UCS - converter between WCS and UCS
OCS
Object coordinate system are coordinates relative to the object itself. The main goal of OCS is to
place 2D elements in 3D space and the OCS is defined by the extrusion vector of the entity. As long the
extrusion vector is (0, 0, 1) (the WCS z-axis) the OCS is coincident to the WCS, which means the OCS
coordinates are equal to the WCS coordinates, most of the time this is true for 2D entities.
OCS entities: ARC, CIRCLE, TEXT, LWPOLYLINE, HATCH, SOLID, TRACE, INSERT, IMAGE
Because ezdxf is just an interface to DXF, it does not automatically convert OCS into WCS, this is the
domain of the user/application. These lines convert the center of a 3D circle from OCS to WCS:
ocs = circle.ocs()
wcs_center = ocs.to_wcs(circle.dxf.center)
SEE ALSO:
• Object Coordinate System (OCS) - deeper insights into OCS
• ezdxf.math.OCS - converter between WCS and OCS
DCS
Display coordinate system - the coordinate system into which objects are transformed before they are
displayed. The origin of the DCS is the point stored in the AutoCAD system variable TARGET, and its
z-axis is the viewing direction. In other words, a viewport is always a plan view of its DCS. These
coordinates can be used to determine where something will be displayed to the AutoCAD user. Ezdxf does
not use or support DCS in any way.
Object Coordinate System (OCS)
• DXF Reference for OCS provided by Autodesk.
The points associated with each entity are expressed in terms of the entity’s own object coordinate
system (OCS). The OCS was referred to as ECS in previous releases of AutoCAD.
With OCS, the only additional information needed to describe the entity’s position in 3D space is the 3D
vector describing the z-axis of the OCS (often referenced as extrusion vector), and the elevation value,
which is the distance of the entity xy-plane to the WCS/OCS origin.
For a given z-axis (extrusion) direction, there are an infinite number of coordinate systems, defined by
translating the origin in 3D space and by rotating the x- and y-axis around the z-axis. However, for the
same z-axis direction, there is only one OCS. It has the following properties:
• Its origin coincides with the WCS origin.
• The orientation of the x- and y-axis within the xy-plane are calculated in an arbitrary but consistent
manner. AutoCAD performs this calculation using the arbitrary axis algorithm (see below).
• Because of the Arbitrary Axis Algorithm the OCS can only represent a right-handed coordinate system!
The following entities do not lie in a particular plane. All points are expressed in world coordinates.
Of these entities, only lines and points can be extruded. Their extrusion direction can differ from the
world z-axis.
• Line
• Point
• 3DFace
• Polyline (3D)
• Vertex (3D)
• Polymesh
• Polyface
• Viewport
These entities are planar in nature. All points are expressed in object coordinates. All of these
entities can be extruded. Their extrusion direction can differ from the world z-axis.
• Circle
• Arc
• Solid
• Trace
• Text
• Attrib
• Attdef
• Shape
• Insert
• Polyline (2D)
• Vertex (2D)
• LWPolyline
• Hatch
• Image
Some of a Dimension’s points are expressed in WCS and some in OCS.
Elevation
Elevation group code 38:
Exists only in output from versions prior to R11. Otherwise, Z coordinates are supplied as part of each
of the entity’s defining points.
Arbitrary Axis Algorithm
• DXF Reference for Arbitrary Axis Algorithm provided by Autodesk.
The arbitrary axis algorithm is used by AutoCAD internally to implement the arbitrary but consistent
generation of object coordinate systems for all entities that use object coordinates.
Given a unit-length vector to be used as the z-axis of a coordinate system, the arbitrary axis algorithm
generates a corresponding x-axis for the coordinate system. The y-axis follows by application of the
right-hand rule.
We are looking for the arbitrary x- and y-axis to go with the normal Az (the arbitrary z-axis). They will
be called Ax and Ay (using Vec3):
Az = Vec3(entity.dxf.extrusion).normalize() # normal (extrusion) vector
if (abs(Az.x) < 1/64.) and (abs(Az.y) < 1/64.):
Ax = Vec3(0, 1, 0).cross(Az).normalize() # the cross-product operator
else:
Ax = Vec3(0, 0, 1).cross(Az).normalize() # the cross-product operator
Ay = Az.cross(Ax).normalize()
WCS to OCS
def wcs_to_ocs(point):
px, py, pz = Vec3(point) # point in WCS
x = px * Ax.x + py * Ax.y + pz * Ax.z
y = px * Ay.x + py * Ay.y + pz * Ay.z
z = px * Az.x + py * Az.y + pz * Az.z
return Vec3(x, y, z)
OCS to WCS
Wx = wcs_to_ocs((1, 0, 0))
Wy = wcs_to_ocs((0, 1, 0))
Wz = wcs_to_ocs((0, 0, 1))
def ocs_to_wcs(point):
px, py, pz = Vec3(point) # point in OCS
x = px * Wx.x + py * Wx.y + pz * Wx.z
y = px * Wy.x + py * Wy.y + pz * Wy.z
z = px * Wz.x + py * Wz.y + pz * Wz.z
return Vec3(x, y, z)
SEE ALSO:
• ezdxf.math.OCS management class
• The ezdxf.entities.DXFGraphic.ocs() method returns the OCS of a graphical DXF entity.
• Tutorial for OCS/UCS Usage
DXF Units
The DXF reference has no explicit information how to handle units in DXF, any information in this section
is based on experiments with BricsCAD and may differ in other CAD applications, BricsCAD tries to be as
compatible with AutoCAD as possible. Therefore, this information should also apply to AutoCAD.
Please open an issue on github if you have any corrections or additional information about this topic.
Length Units
Any length or coordinate value in DXF is unitless in the first place, there is no unit information
attached to the value. The unit information comes from the context where a DXF entity is used. The
document/modelspace get the unit information from the header variable $INSUNITS, paperspace and block
layouts get their unit information from the attribute units. The modelspace object has also a units
property, but this value do not represent the modelspace units, this value is always set to 0 “unitless”.
Get and set document/modelspace units as enum by the Drawing property units:
import ezdxf
from ezdxf import units
doc = ezdxf.new()
# Set centimeter as document/modelspace units
doc.units = units.CM
# which is a shortcut (including validation) for
doc.header['$INSUNITS'] = units.CM
Block Units
As said each block definition can have independent units, but there is no implicit unit conversion
applied, not in CAD applications and not in ezdxf.
When inserting a block reference (INSERT) into the modelspace or another block layout with different
units, the scaling factor between these units must be applied explicit as DXF attributes (xscale, …) of
the Insert entity, e.g. modelspace in meters and block in centimeters, x-, y- and z-scaling has to be
0.01:
doc.units = units.M
my_block = doc.blocks.new('MYBLOCK')
my_block.units = units.CM
block_ref = msp.add_block_ref('MYBLOCK')
# Set uniform scaling for x-, y- and z-axis
block_ref.set_scale(0.01)
Use helper function conversion_factor() to calculate the scaling factor between units:
factor = units.conversion_factor(doc.units, my_block.units)
# factor = 100 for 1m is 100cm
# scaling factor = 1 / factor
block_ref.set_scale(1.0/factor)
HINT:
It is never a good idea to use different measurement system in one project, ask the NASA about their
Mars Climate Orbiter from 1999. The same applies for units of the same measurement system, just use
one unit like meters or inches.
Angle Units
Angles are always in degrees (360 deg = full circle) in counter-clockwise orientation, unless stated
explicit otherwise.
Display Format
How values are shown in the CAD GUI is controlled by the header variables $LUNITS and $AUNITS, but this
has no meaning for values stored in DXF files.
$INSUNITS
The most important setting is the header variable $INSUNITS, this variable defines the drawing units for
the modelspace and therefore for the DXF document if no further settings are applied.
The modelspace LAYOUT entity has a property units as any layout like object, but it seem to have no
meaning for the modelspace, BricsCAD set this property always to 0, which means unitless.
The most common units are 6 for meters and 1 for inches.
doc.header['$INSUNITS'] = 6
┌────┬───────────────────────┐
│ 0 │ Unitless │
├────┼───────────────────────┤
│ 1 │ Inches, units.IN │
├────┼───────────────────────┤
│ 2 │ Feet, units.FT │
├────┼───────────────────────┤
│ 3 │ Miles, units.MI │
├────┼───────────────────────┤
│ 4 │ Millimeters, units.MM │
├────┼───────────────────────┤
│ 5 │ Centimeters, units.CM │
├────┼───────────────────────┤
│ 6 │ Meters, units.M │
├────┼───────────────────────┤
│ 7 │ Kilometers, units.KM │
├────┼───────────────────────┤
│ 8 │ Microinches │
├────┼───────────────────────┤
│ 9 │ Mils │
├────┼───────────────────────┤
│ 10 │ Yards, units.YD │
├────┼───────────────────────┤
│ 11 │ Angstroms │
├────┼───────────────────────┤
│ 12 │ Nanometers │
├────┼───────────────────────┤
│ 13 │ Microns │
├────┼───────────────────────┤
│ 14 │ Decimeters, units.DM │
├────┼───────────────────────┤
│ 15 │ Decameters │
├────┼───────────────────────┤
│ 16 │ Hectometers │
├────┼───────────────────────┤
│ 17 │ Gigameters │
├────┼───────────────────────┤
│ 18 │ Astronomical units │
├────┼───────────────────────┤
│ 19 │ Light years │
├────┼───────────────────────┤
│ 20 │ Parsecs │
├────┼───────────────────────┤
│ 21 │ US Survey Feet │
├────┼───────────────────────┤
│ 22 │ US Survey Inch │
├────┼───────────────────────┤
│ 23 │ US Survey Yard │
├────┼───────────────────────┤
│ 24 │ US Survey Mile │
└────┴───────────────────────┘
See also enumeration ezdxf.enums.InsertUnits.
$MEASUREMENT
The header variable $MEASUREMENT controls whether the current drawing uses imperial or metric hatch
pattern and linetype files:
This setting is independent from $INSUNITS, it is possible to set the drawing units to inch and use
metric linetypes and hatch pattern.
In BricsCAD the base scaling of linetypes and hatch pattern is defined by the $MEASUREMENT value, the
value of $INSUNITS is ignored.
doc.header['$MEASUREMENT'] = 1
┌───┬─────────┐
│ 0 │ English │
├───┼─────────┤
│ 1 │ Metric │
└───┴─────────┘
See also enumeration ezdxf.enums.Measurement
$LUNITS
The header variable $LUNITS defines how CAD applications display linear values in the GUI and has no
meaning for ezdxf:
doc.header['$LUNITS'] = 2
┌───┬───────────────────┐
│ 1 │ Scientific │
├───┼───────────────────┤
│ 2 │ Decimal (default) │
├───┼───────────────────┤
│ 3 │ Engineering │
├───┼───────────────────┤
│ 4 │ Architectural │
├───┼───────────────────┤
│ 5 │ Fractional │
└───┴───────────────────┘
See also enumeration ezdxf.enums.LengthUnits
$AUNITS
The header variable $AUNITS defines how CAD applications display angular values in the GUI and has no
meaning for ezdxf, DXF angles are always stored as degrees in counter-clockwise orientation, unless
stated explicit otherwise:
doc.header['$AUNITS'] = 0
┌───┬─────────────────────────┐
│ 0 │ Decimal degrees │
├───┼─────────────────────────┤
│ 1 │ Degrees/minutes/seconds │
├───┼─────────────────────────┤
│ 2 │ Grad │
├───┼─────────────────────────┤
│ 3 │ Radians │
└───┴─────────────────────────┘
See also enumeration ezdxf.enums.AngularUnits
Helper Tools
ezdxf.units.conversion_factor(source_units: InsertUnits, target_units: InsertUnits) -> float
Returns the conversion factor to represent source_units in target_units.
E.g. millimeter in centimeter conversion_factor(MM, CM) returns 0.1, because 1 mm = 0.1 cm
ezdxf.units.unit_name(enum: int) -> str
Returns the name of the unit enum.
ezdxf.units.angle_unit_name(enum: int) -> str
Returns the name of the angle unit enum.
Modelspace
The modelspace contains the “real” world representation of the drawing subjects in real world units and
is displayed in the tab called “Model” in CAD applications. The modelspace is always present and can’t be
deleted.
The modelspace object is acquired by the method modelspace() of the Drawing class and new entities should
be added to the modelspace by factory methods: Thematic Index of Layout Factory Methods.
This is a common idiom for creating a new document and acquiring the modelspace:
import ezdxf
doc = ezdxf.new()
msp = doc.modelspace()
The modelspace can have one or more rectangular areas called modelspace viewports. The modelspace
viewports can be used for displaying different views of the modelspace from different locations of the
modelspace or viewing directions. It is important to know that modelspace viewports (VPort) are not the
same as paperspace viewport entities (Viewport).
SEE ALSO:
• Reference of class Modelspace
• Thematic Index of Layout Factory Methods
• Example for usage of modelspace viewports: tiled_window_setup.py
Paperspace
A paperspace layout is where the modelspace drawing content is assembled and organized for 2D output,
such as printing on a sheet of paper, or as a digital document, such as a PDF file.
Each DXF document can have one or more paperspace layouts but the DXF version R12 supports only one
paperspace layout and it is not recommended to rely on paperspace layouts in DXF version R12.
Graphical entities can be added to the paperspace by factory methods: Thematic Index of Layout Factory
Methods. Views or “windows” to the modelspace are added as Viewport entities, each viewport displays a
region of the modelspace and can have an individual scaling factor, rotation angle, clipping path, view
direction or overridden layer attributes.
SEE ALSO:
• Reference of class Paperspace
• Thematic Index of Layout Factory Methods
• Example for usage of paperspace viewports: viewports_in_paperspace.py
Blocks
Blocks are collections of DXF entities which can be placed multiple times as block references in
different layouts and other block definitions. The block reference (Insert) can be rotated, scaled,
placed in 3D space by OCS and arranged in a grid like manner, each Insert entity can have individual
attributes (Attrib) attached.
Block Attributes
A block attribute (Attrib) is a text annotation attached to a block reference with an associated tag.
Attributes are often used to add information to block references which can be evaluated and exported by
CAD applications.
Extended Block Features
Autodesk added many new features to BLOCKS (dynamic blocks, constraints) as undocumented DXF entities,
many of these features are not fully supported by other CAD application and ezdxf also has no support or
these features beyond the preservation of these undocumented DXF entities.
SEE ALSO:
• Blocks Section
• Tutorial for Blocks
Layout Extents and Limits
The extents and limits of an layout represents borders which can be referenced by the ZOOM command or
read from some header variables from the HeaderSection, if the creator application maintains these values
– ezdxf does this not automatically.
Extents
The extents of an layout are determined by the maximum extents of all DXF entities that are in this
layout. The command:
ZOOM extents
sets the current viewport to the extents of the currently selected layout.
A paperspace layout in an arbitrary zoom state: [image]
The same layout after the ZOOM extents command: [image]
Limits
Sets an invisible rectangular boundary in the drawing area that can limit the grid display and limit
clicking or entering point locations. The default limits for paperspace layouts is defined by the paper
size.
The layout from above after the ZOOM all command: [image]
SEE ALSO:
The AutoCAD online reference for the ZOOM and the LIMITS command.
Read Stored Values
The extents of the modelspace (the tab called “Model”) are stored in the header variable $EXTMIN and
$EXTMAX. The default values of $EXTMIN is (+1e20, +1e20, +1e20) and $EXTMAX is (-1e20, -1e20, -1e20),
which do not describe real borders. These values are copies of the extents attributes of the Layout
object as Layout.dxf.extmin and Layout.dxf.extmax.
The limits of the modelspace are stored in the header variables $LIMMIN and $LIMMAX and have default
values of (0, 0) and (420, 297), the default paper size of ezdxf in drawing units. These are copies of
the Layout attributes Layout.dxf.extmin and Layout.dxf.extmax.
The extents and the limits of the actual paperspace layout, which is the last activated paperspace layout
tab, are stored in the header variable $PEXTMIN, $PEXTMAX, $PLIMMIN and $PLIMMAX.
Each paperspace layout has its own values stored in the Layout attributes Layout.dxf.extmin,
Layout.dxf.extmax, Layout.dxf.limmin and Layout.dxf.limmax.
Setting Extents and Limits
Since v0.16 ezdxf it is sufficient to define the attributes for extents and limits (Layout.dxf.extmax,
Layout.dxf.limmin and Layout.dxf.limmax) of Layout object. The header variables are synchronized when
the document is saved.
The extents of a layout are not calculated automatically by ezdxf, as this can take a long time for large
documents and correct values are not required to create a valid DXF document.
SEE ALSO:
How to: Calculate Extents for the Modelspace
Font Resources
DXF relies on the infrastructure installed by AutoCAD like the included SHX files or True Type fonts.
There is no simple way to store additional information about a used fonts beside the plain file system
name like "arial.ttf". The CAD application or viewer which opens the DXF file has to have access to the
specified fonts used in your DXF document or it has to use an appropriate replacement font, which is not
that easy in the age of unicode. Later DXF versions can store font family names in the XDATA of the STYLE
entity but not all CAD application use this information.
TASKS
These topics provide brief overviews of how to complete specific tasks, but they’re not comprehensive
tutorials. For a deeper understanding, explore the beginner’s guide, explanations of basic concepts,
in-depth tutorials, the reference guide, example code, and even the source code itself.
Add Data
Add DXF Entities
Layout Factory Methods
Recommended way to create DXF entities.
For all supported entities exist at least one factory method in the ezdxf.layouts.BaseLayout class. All
factory methods have the prefix: add_...
import ezdxf
doc = ezdxf.new()
msp = doc.modelspace()
msp.add_line((0, 0, 0), (3, 0, 0), dxfattribs={"color": 2})
Thematic Index of Layout Factory Methods
DXF Primitives
• add_3dface()
• add_arc()
• add_circle()
• add_ellipse()
• add_hatch()
• add_helix()
• add_image()
• add_leader()
• add_line()
• add_lwpolyline()
• add_mesh()
• add_mline()
• add_mpolygon()
• add_multileader_mtext()
• add_multileader_block()
• add_point()
• add_polyface()
• add_polyline2d()
• add_polyline3d()
• add_polymesh()
• add_ray()
• add_shape()
• add_solid()
• add_trace()
• add_wipeout()
• add_xline()
Text Entities
• add_attdef()
• add_mtext_dynamic_auto_height_columns()
• add_mtext_dynamic_manual_height_columns()
• add_mtext_static_columns()
• add_mtext()
• add_text()
Spline Entity
• add_cad_spline_control_frame()
• add_open_spline()
• add_rational_spline()
• add_spline_control_frame()
• add_spline()
Block References and Underlays
• add_arrow_blockref()
• add_auto_blockref()
• add_blockref()
• add_underlay()
Viewport Entity
Only available in paper space layouts.
• add_viewport()
Dimension Entities
Linear Dimension
• add_aligned_dim()
• add_linear_dim()
• add_multi_point_linear_dim()
Radius and Diameter Dimension
• add_diameter_dim_2p()
• add_diameter_dim()
• add_radius_dim_2p()
• add_radius_dim_cra()
• add_radius_dim()
Angular Dimension
• add_angular_dim_2l()
• add_angular_dim_3p()
• add_angular_dim_arc()
• add_angular_dim_cra()
Arc Dimension
• add_arc_dim_3p()
• add_arc_dim_arc()
• add_arc_dim_cra()
Ordinate Dimension
• add_ordinate_dim()
• add_ordinate_x_dim()
• add_ordinate_y_dim()
Miscellaneous
• add_entity()
• add_foreign_entity()
• add_arrow()
ACIS Entities
The creation of the required ACIS data has do be done by an external library!
• add_3dsolid()
• add_body()
• add_extruded_surface()
• add_lofted_surface()
• add_region()
• add_revolved_surface()
• add_surface()
• add_swept_surface()
SEE ALSO:
Layout base class: BaseLayout
Factory Functions
Alternative way to create DXF entities for advanced ezdxf users.
The ezdxf.entities.factory module provides the new() function to create new DXF entities by their DXF
name and a dictionary of DXF attributes. This will bypass the validity checks in the factory methods of
the BaseLayout class.
This new created entities are virtual entities which are not assigned to any DXF document nor to any
layout. Add the entity to a layout (and document) by the layout method add_entity().
import ezdxf
from ezdxf.entities import factory
doc = ezdxf.new()
msp = doc.modelspace()
line = factory.new(
"LINE",
dxfattribs={
"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,
},
)
msp.add_entity(line)
Direct Object Instantiation
For advanced developers with knowledge about the internal design of ezdxf.
Import the entity classes from sub-package ezdxf.entities and instantiate them. This will bypass the
validity checks in the factory methods of the BaseLayout class and maybe additional required setup
procedures for some entities - study the source code!.
WARNING:
A refactoring of the internal ezdxf structures will break your code.
This new created entities are virtual entities which are not assigned to any DXF document nor to any
layout. Add the entity to a layout (and document) by the layout method add_entity().
import ezdxf
from ezdxf.entities import Line
doc = ezdxf.new()
msp = doc.modelspace()
line = Line.new(
dxfattribs={
"start": (0, 0, 0),
"end": (3, 0, 0),
"color": 2,
}
)
msp.add_entity(line)
Add Layouts and Blocks
Layouts are containers for DXF entities like LINE or CIRCLE. There exist three layouts types:
• Modelspace
• Paperspace
• Blocks
Modelspace
The Modelspace is unique. It is not possible to create another one.
Paperspace Layout
All DXF versions can have multiple paperspace layouts expect DXF R12.
Add a new paperspace layout to a DXF document:
doc.layouts.new("MyLayout")
The layout name is the name shown on the tab in CAD applications and has to be unique, otherwise a
DXFValueError will be raised.
It is possible to add multiple paperspace layouts to all DXF versions, but ezdxf exports for DXF R12 only
the active paperspace layout. Any paperspace layout can be set as the active paperspace layout by the
method: ezdxf.layouts.Layouts.set_active_layout().
• ezdxf.layouts.Layouts.new()
Block Definition
Add a new block definition to a DXF document:
doc.blocks.new("MyLayout")
The block name has to be unique, otherwise a DXFValueError will be raised.
Add an anonymous block definition:
my_block = doc.blocks.new_anonymous_block()
# store the block name, so you can create block references to this block
block_name = my_block.name
Anonymous blocks are used internally and do not show up in the insert dialog for block references in CAD
applications.
• ezdxf.sections.blocks.BlocksSection.new()
• ezdxf.sections.blocks.BlocksSection.new_anonymous_block()
SEE ALSO:
Tasks:
• Get Layouts and Blocks
• Delete Layouts and Blocks
• Add DXF Entities
• Copy or Move DXF Entities
• Delete DXF Entities
• Add Block References
Tutorials:
• Tutorial for Getting Data from DXF Files
• Tutorial for Blocks
• Tutorial for Creating DXF Drawings
• Tutorial for Viewports in Paperspace
Basics:
• Layout Types
• Modelspace
• Paperspace
• Blocks
Classes:
• ezdxf.layouts.BaseLayout - parent of all layouts
• ezdxf.layouts.Layout - parent of modelspace & paperspace
• ezdxf.layouts.Modelspace
• ezdxf.layouts.Paperspace
• ezdxf.layouts.BlockLayout
• ezdxf.layouts.Layouts - layout manager (Drawing.layouts attribute)
• ezdxf.sections.blocks.BlocksSection - blocks manager (Drawing.blocks attribute)
Add Block References
Blocks are collections of DXF entities which can be placed multiple times as block references in
different layouts and other block definitions. A block reference is represented by the INSERT entity.
Add Block Reference
Add a block reference to the modelspace for a block definition “BlockName”:
my_block_ref = msp.add_blockref('BlockName', location, dxfattribs={
'xscale': 1.0,
'yscale': 1.0,
'zscale': 1.0,
'rotation': angle,
})
Non-uniform scaling is supported by CAD applications. The rotations angle is in degrees (circle=360
degrees).
• ezdxf.layouts.BaseLayout.add_blockref()
Add Block Attribute
To avoid confusion, it’s important to distinguish block attributes (ATTRIB entities) from DXF attributes.
Block attributes are text annotations linked to a block reference. They have their own location and can
be attached to any block reference, even without a corresponding attribute definition (ATTDEF) in the
block layout.
Add a block attribute to my_block_ref:
my_attribute = my_block_ref.add_attrib("MY_TAG", "VALUE_STR")
my_attribute.set_placement(location)
• “MY_TAG”: a unique identifier or label for the attribute, unique in the context of the block reference
• “VALUE_STR”: the text content displayed by the attribute
Block attributes are a subtype of the TEXT entity. This means they inherit placement and editing
functionalities from the TEXT class.
• ezdxf.entities.Insert.add_attrib()
• ezdxf.entities.Text.set_placement()
Add Block Attribute from Template
Block definitions can include pre-defined templates for attributes using ATTDEF entities. The
add_auto_attribs() method simplifies adding these attributes to block references. It takes a dictionary
argument where:
• Keys: the attribute tags (e.g. “MY_TAG”).
• Values: the content for each attribute (e.g. “VALUE_STR”).
The add_auto_attribs() method automatically attaches attributes (ATTRIB entities) to the block reference.
These attributes inherit relevant DXF properties (layer, color, text style, etc.) from the corresponding
ATTDEF entities within the block definition.
The method also ensures that the relative position of each attribute within the block reference mirrors
the position of its corresponding ATTDEF entity relative to the block origin:
my_block_ref.add_auto_attrib({"MY_TAG": "VALUE_STR"})
• ezdxf.entities.Insert.add_auto_attribs()
SEE ALSO:
Tasks:
• Add DXF Entities
• Copy or Move DXF Entities
• Delete DXF Entities
Tutorials:
• Tutorial for Blocks
• Tutorial for Getting Data from DXF Files
• Tutorial for Creating DXF Drawings
Basics:
• Modelspace
• Paperspace
• Blocks
Classes:
• ezdxf.layouts.BlockLayout
• ezdxf.entities.BlockRecord
• ezdxf.entities.Block
• ezdxf.entities.Insert
• ezdxf.entities.Attrib
• ezdxf.entities.AttDef
• ezdxf.entities.Text
Add Resource Table Entries
All resources require a unique name in their category (names are case-insensitive).
Layer
A layer in a DXF document is a category that controls visual properties (like color and linetype) for
associated entities. It acts like a grouping tag, not a container.
Add a new layer to a DXF document:
doc.layers.add("MY_NEW_LAYER", color=1, linetype="DASHED")
DXF entities reference layers, but layers themselves don’t directly contain entities. Instead, each
entity has a dxf.layer attribute that specifies the layer by name it belongs to.
• ezdxf.sections.table.LayerTable.add()
Linetype
The linetype defines the rendering pattern of linear graphical entities like LINE, ARC, CIRCLE and so on.
Add a new linetype to a DXF document:
doc.linetypes.add("DOTTED", pattern=[0.2, 0.0, -0.2])
• ezdxf.sections.table.LinetypeTable.add()
Text Style
The text style defines the rendering font for text based entities like TEXT, ATTRIB and MTEXT.
Add a new text style to a DXF document:
doc.styles.add("ARIAL", font="arial.ttf")
• ezdxf.sections.table.TextstyleTable.add()
Dimension Style
The dimension style defines the initial properties for the DIMENSION entity.
Add a new dimension style to a DXF document:
doc.dimstyles.add("EZDXF")
• ezdxf.sections.table.DimStyleTable.add()
AppID
The XDATA section of DXF entities is grouped by AppIDs and these ids require an entry in the AppIDTable
otherwise the DXF file in invalid (for AutoCAD):
doc.appids.add("EZDXF")
• ezdxf.sections.table.AppIDTable.add()
SEE ALSO:
Tutorials:
• Tutorial for Layers
• Tutorial for Creating Linetype Pattern
• Tutorial for Text
• Tutorial for MText and MTextEditor
• Tutorial for Common Graphical Attributes
Basics:
• Layers
• Linetypes
• Lineweights
• AutoCAD Color Index (ACI)
• True Color
• Font Resources
Classes:
• ezdxf.entities.Layer
• ezdxf.entities.Linetype
• ezdxf.entities.Textstyle
• ezdxf.entities.DimStyle
• ezdxf.entities.Appid
• ezdxf.fonts.fonts
Add Custom and Extended Data
DXF supports storing custom data through various mechanisms.
Header Variables
Custom data can be stored in the HEADER section of a DXF file. Integer values are stored in variables
named $USERI1 to $USERI5, while floating-point values are stored in variables named $USERR1 to $USERR5.
Example:
doc.header["$USERI1"] = 17
XDATA Section
The XDATA section is a container for extended data associated with an entity. It’s essentially a way to
store additional information beyond the standard DXF properties for that particular entity. The XDATA
section is divided into sub-sections, each associated with an AppID.
It’s important that the AppID is registered in the AppID table:
doc.appids.add("YOUR_ID")
• ezdxf.sections.table.AppIDTable.add()
Example:
point = msp.add_point((10, 10))
point.set_xdata("YOUR_ID", (1040, 3.1415))
• ezdxf.entities.DXFEntity.set_xdata()
Extension Dictionaries
Each DXF entity can have an extension dictionary to attach custom data. The extension dictionary is a
Dictionary entity which stores references to other DXF entities in a key/value storage, mostly Dictionary
and XRecord entities.
Example:
point = msp.add_point((10, 10))
xdict = point.new_extension_dict()
• ezdxf.entities.DXFEntity.new_extension_dict()
Custom Data as XRECORD
The XRECORD is used to store arbitrary data. It is composed of DXF group codes ranging from 1 through
369. This object is similar in concept to XDATA but is not limited by size or order.
Example:
point = msp.add_point((10, 10))
xdict = point.new_extension_dict()
xrecord = xdict.add_xrecord("MyData")
xrecord.extend([(1, "MyText"), (40, 3.1415)])
• ezdxf.entities.xdict.ExtensionDict.add_xrecord()
• ezdxf.entities.xdict.ExtensionDict.add_dictionary()
• ezdxf.entities.xdict.ExtensionDict.add_dictionary_var()
SEE ALSO:
Tasks:
• Get Extended Data from DXF Entities
• Modify Extended Data
• Delete Extended Data
Tutorials:
• Storing Custom Data in DXF Files
Basics:
• Extended Data
• Extension Dictionary
• DXF Tags
Classes:
• ezdxf.entities.xdata.XData
• ezdxf.entities.xdict.ExtensionDict
• ezdxf.entities.XRecord
• ezdxf.entities.Dictionary
• ezdxf.entities.DictionaryVar
Helper-Classes:
• ezdxf.entities.xdata.XDataUserList
• ezdxf.entities.xdata.XDataUserDict
• ezdxf.urecord.UserRecord
• ezdxf.urecord.BinaryRecord
Query Data
Query Entities
DXF entities can be selected from layouts or arbitrary entity-sequences based on their DXF type and
attributes. Create new queries be the new() function or by the query() methods implemented by all
layouts.
SEE ALSO:
• Tutorial: Tutorial for Getting Data from DXF Files
• Reference: ezdxf.query module
Entity Query String
The query string is the combination of two queries, first the required entity query and second the
optional attribute query, enclosed in square brackets, append 'i' after the closing square bracket to
ignore case for strings.
Query Result
The EntityQuery class is the return type of all query() methods. EntityQuery contains all DXF entities
of the source collection, which matches one name of the entity query AND the whole attribute query. If a
DXF entity does not have or support a required attribute, the corresponding attribute search term is
False.
Select all LINE and CIRCLE entities with layer == “construction”:
result = msp.query('LINE CIRCLE[layer=="construction"]')
This result is always empty, because the LINE entity has no text attribute:
result = msp.query('LINE[text ? ".*"]')
Select all entities except those with layer == “construction” and color < 7:
result = msp.query('*[!(layer=="construction" & color<7)]')
Ignore case, selects all entities with layer == “construction”, “Construction”, “ConStruction” …:
result = msp.query('*[layer=="construction"]i')
Extended EntityQuery Features
The EntityQuery container supports the full Sequence protocol:
result = msp.query(...)
first = result[0]
last = result[-1]
Slices return a new EntityQuery container:
sequence = result[1:-2]
The __getitem__() function accepts also a DXF attribute name and returns all entities which support this
attribute, this is the base for supporting queries by relational operators. More on that later.
The __setitem__() method assigns a DXF attribute to all supported entities in the EntityQuery container:
result = msp.query(...)
result["layer"] = "MyLayer"
Entities which do not support an attribute are silently ignored:
result = msp.query(...)
result["center"] = (0, 0) # set center only of CIRCLE and ARC entities
The __delitem__() method discards DXF attributes from all entities in the EntityQuery container:
result = msp.query(...)
# reset the layer attribute from all entities in container result to the
# default layer "0"
del result["layer"]
Descriptors for DXF Attributes
For some basic DXF attributes exist descriptors in the EntityQuery class:
• layer: layer name as string
• color: AutoCAD Color Index (ACI), see ezdxf.colors
• linetype: linetype as string
• ltscale: linetype scaling factor as float value
• lineweight: Lineweights
• invisible: 0 if visible 1 if invisible, 0 is the default value
• true_color: true color as int value, see ezdxf.colors, has no default value
• transparency: transparency as int value, see ezdxf.colors, has no default value
A descriptor simplifies the attribute access through the EntityQuery container and has auto-completion
support from IDEs:
result = msp.query(...)
# set attribute of all entities in result
result.layer = "MyLayer"
# delete attribute from all entities in result
del result.layer
# and for selector usage, see following section
assert len(result.layer == "MyLayer") == 1
Relational Selection Operators
The attribute selection by __getitem__() allows further selections by relational operators:
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "MyLayer})
lines = msp.query("LINE")
# select all entities on layer "MyLayer"
entities = lines["layer"] == "MyLayer"
assert len(entities) == 1
# or select all entities except the entities on layer "MyLayer"
entities = lines["layer"] != "MyLayer"
These operators work only with real DXF attributes, for instance the rgb attribute of graphical entities
is not a real DXF attribute either the vertices of the LWPOLYLINE entity.
The selection by relational operators is case insensitive by default, because all names of DXF table
entries are handled case insensitive. But if required the selection mode can be set to case sensitive:
lines = msp.query("LINE")
# use case sensitive selection: "MyLayer" != "MYLAYER"
lines.ignore_case = False
entities = lines["layer"] == "MYLAYER"
assert len(entities) == 0
# the result container has the default setting:
assert entities.ignore_case is True
Supported selection operators are:
• == equal “value”
• != not equal “value”
• < lower than “value”
• <= lower or equal than “value”
• > greater than “value”
• >= greater or equal than “value”
The relational operators <, >, <= and >= are not supported for vector-based attributes such as center or
insert and raise a TypeError.
NOTE:
These operators are selection operators and not logic operators, therefore the logic operators and, or
and not are not applicable. The methods union(), intersection(), difference() and
symmetric_difference() can be used to combine selection. See section Query Set Operators and Build
Custom Filters.
Regular Expression Selection
The EntityQuery.match() method returns all entities where the selected DXF attribute matches the given
regular expression. This methods work only on string based attributes, raises TypeError otherwise.
From here on I use only descriptors for attribute selection if possible.
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Lay1"})
msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "Lay2"})
lines = msp.query("LINE")
# select all entities at layers starting with "Lay",
# selection is also case insensitive by default:
assert len(lines.layer.match("^Lay.*")) == 2
Build Custom Filters
The method EntityQuery.filter can be used to build operators for none-DXF attributes or for complex logic
expressions.
Find all MTEXT entities in modelspace containing “SearchText”. All MText entities have a text attribute,
no need for a safety check:
mtext = msp.query("MTEXT").filter(lambda e: "SearchText" in e.text)
This filter checks the non-DXF attribute rgb. The filter has to check if the rgb attributes exist to
avoid exceptions, because not all entities in modelspace may have the rgb attribute e.g. the
DXFTagStorage entities which preserve unknown DXF entities:
result = msp.query().filter(
lambda e: hasattr(e, "rgb") and e.rgb == (0, 0, 0)
)
Build 1-pass logic filters for complex queries, which would require otherwise multiple passes:
result = msp.query().filter(lambda e: e.dxf.color < 7 and e.dxf.layer == "0")
Combine filters for more complex operations. The first filter passes only valid entities and the second
filter does the actual check:
def validator(entity):
return True # if entity is valid and has all required attributes
def check(entity):
return True # if entity passes the attribute checks
result = msp.query().filter(validator).filter(check)
Query Set Operators
The | operator or EntityQuery.union() returns a new EntityQuery with all entities from both queries. All
entities are unique - no duplicates. This operator acts like the logical or operator.
entities = msp.query()
# select all entities with color < 2 or color > 7
result = (entities.color < 2 ) | (entities.color > 7)
The & operator or EntityQuery.intersection() returns a new EntityQuery with entities common to self and
other. This operator acts like the logical and operator.
entities = msp.query()
# select all entities with color > 1 and color < 7
result = (entities.color > 1) & (entities.color < 7)
The - operator or EntityQuery.difference() returns a new EntityQuery with all entities from self that are
not in other.
entities = msp.query()
# select all entities with color > 1 and not layer == "MyLayer"
result = (entities.color > 1) - (entities.layer != "MyLayer")
The ^ operator or EntityQuery.symmetric_difference() returns a new EntityQuery with entities in either
self or other but not both.
entities = msp.query()
# select all entities with color > 1 or layer == "MyLayer", exclusive
# entities with color > 1 and layer == "MyLayer"
result = (entities.color > 1) ^ (entities.layer == "MyLayer")
Groupby Function
SEE ALSO:
Tutorial: Retrieve entities by groupby() function
ezdxf.groupby.groupby(entities: Iterable[DXFEntity], dxfattrib: str = '', key: KeyFunc | None = None) ->
dict[Hashable, list[DXFEntity]]
Groups a sequence of DXF entities by a DXF attribute like 'layer', returns a dict with dxfattrib
values as key and a list of entities matching this dxfattrib. A key function can be used to
combine some DXF attributes (e.g. layer and color) and should return a hashable data type like a
tuple of strings, integers or floats, key function example:
def group_key(entity: DXFEntity):
return entity.dxf.layer, entity.dxf.color
For not suitable DXF entities return None to exclude this entity, in this case it’s not required,
because groupby() catches DXFAttributeError exceptions to exclude entities, which do not provide
layer and/or color attributes, automatically.
Result dict for dxfattrib = 'layer' may look like this:
{
'0': [ ... list of entities ],
'ExampleLayer1': [ ... ],
'ExampleLayer2': [ ... ],
...
}
Result dict for key = group_key, which returns a (layer, color) tuple, may look like this:
{
('0', 1): [ ... list of entities ],
('0', 3): [ ... ],
('0', 7): [ ... ],
('ExampleLayer1', 1): [ ... ],
('ExampleLayer1', 2): [ ... ],
('ExampleLayer1', 5): [ ... ],
('ExampleLayer2', 7): [ ... ],
...
}
All entity containers (modelspace, paperspace layouts and blocks) and the EntityQuery object have
a dedicated groupby() method.
Parameters
• entities – sequence of DXF entities to group by a DXF attribute or a key function
• dxfattrib – grouping DXF attribute like 'layer'
• key – key function, which accepts a DXFEntity as argument and returns a hashable grouping
key or None to ignore this entity
Selection Tools
The ezdxf.select module provides entity selection capabilities, allowing users to select entities based
on various shapes such as windows, points, circles, polygons, and fences.
The selection functions bbox_inside() and bbox_outside() work similarly to the inside and outside
selection tools in CAD applications but the selection is based on the bounding box of the DXF entities
rather than their actual geometry.
The bbox_overlap() function works similarly to crossing selection in CAD applications. Entities that are
outside the selection shape but whose bounding box overlapps the selection shape are included in the
selection. This is not the case with crossing selection in CAD applications.
The selection functions accept any iterable of DXF entities as input and return an
ezdxf.query.EntityQuery container, that provides further selection tools based on entity type and DXF
attributes.
Usage
Select all entities from the modelspace inside a window defined by two opposite vertices:
import ezdxf
from ezdxf import select
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
# Define a window for selection
window = select.Window((0, 0), (10, 10))
# Select entities inside the window from modelspace
selected_entities = select.bbox_inside(window, msp)
# Iterate over selected entities
for entity in selected_entities:
print(entity)
SEE ALSO:
• Tutorial for Entity Selection
Selection Functions
The following selection functions are implemented:
• bbox_inside()
• bbox_outside()
• bbox_overlap()
• bbox_chained()
• bbox_crosses_fence()
• point_in_bbox()
ezdxf.select.bbox_inside(shape: SelectionShape, entities: Iterable[DXFEntity], *, cache: Cache | None =
None) -> EntityQuery
Selects entities whose bounding box lies withing the selection shape.
Parameters
• shape – seclection shape
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance
ezdxf.select.bbox_outside(shape: SelectionShape, entities: Iterable[DXFEntity], *, cache: Cache | None =
None) -> EntityQuery
Selects entities whose bounding box is completely outside the selection shape.
Parameters
• shape – seclection shape
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance
ezdxf.select.bbox_overlap(shape: SelectionShape, entities: Iterable[DXFEntity], *, cache: Cache | None =
None) -> EntityQuery
Selects entities whose bounding box overlaps the selection shape.
Parameters
• shape – seclection shape
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance
ezdxf.select.bbox_chained(start: DXFEntity, entities: Iterable[DXFEntity], *, cache: Cache | None = None)
-> EntityQuery
Selects elements that are directly or indirectly connected to each other by overlapping bounding
boxes. The selection begins at the specified starting element.
Warning: the current implementation has a complexity of O(n²).
Parameters
• start – first entity of selection
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance
ezdxf.select.bbox_crosses_fence(vertices: Iterable[TypeAliasForwardRef('UVec')], entities:
Iterable[DXFEntity], *, cache: Cache | None = None) -> EntityQuery
Selects entities whose bounding box intersects an open polyline.
All entities are projected on the xy-plane.
A single point can not be selected by a fence polyline by definition.
Parameters
• vertices – vertices of the selection polyline
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance
ezdxf.select.point_in_bbox(location: UVec, entities: Iterable[DXFEntity], *, cache: Cache | None = None)
-> EntityQuery
Selects entities where the selection point lies within the bounding box. All entities are
projected on the xy-plane.
Parameters
• point – selection point
• entities – iterable of DXFEntities
• cache – optional ezdxf.bbox.Cache instance
Selection Shapes
The following selection shapes are implemented:
• Window
• Circle
• Polygon
class ezdxf.select.Window(p1: UVec, p2: UVec)
This selection shape tests entities against a rectangular and axis-aligned 2D window. All
entities are projected on the xy-plane.
Parameters
• p1 – first corner of the window
• p2 – second corner of the window
class ezdxf.select.Circle(center: UVec, radius: float)
This selection shape tests entities against a circle. All entities are projected on the xy-plane.
Parameters
• center – center of the circle
• radius – radius of the circle
class ezdxf.select.Polygon(vertices: Iterable[TypeAliasForwardRef('UVec')])
This selection shape tests entities against an arbitrary closed polygon. All entities are
projected on the xy-plane. Complex concave polygons may not work as expected.
Planar Search Index
Added in version 1.4.
class ezdxf.select.PlanarSearchIndex(entities: Iterable[DXFEntity], cache: Cache | None = None,
max_node_size=5)
Spatial Search Index for DXF Entities
This class implements a spatial search index for DXF entities based on their bounding boxes except
for POINT and LINE. It operates strictly within the two-dimensional (2D) space of the xy-plane.
The index is built once and cannot be extended afterward.
The index can be used to pre-select DXF entities from a certain area to reduce the search space
for other selection tools of this module.
Functionality
• The index relies on the bounding boxes of DXF entities, and only the corner vertices of these
bounding boxes are indexed except for POINT and LINE.
• It can only find DXF entities that have at least one bounding box vertex located within the
search area. Entities whose bounding boxes overlap the search area but have no vertices inside
it will not be found (e.g., a circle whose center point is inside the search area but none of
its bounding box vertices will not be included).
• The detection behavior can be customized by overriding the detection_points() method.
Recommendations
Since this index is intended to be used in conjunction with other selection tools within this
module, it’s recommended to maintain a bounding box cache to avoid the computational cost of
recalculating them frequently. This class creates a new bounding box cache if none is specified.
This cache can be accessed through the public attribute cache.
detection_point_in_circle(center: UVec, radius: float) -> Sequence[DXFEntity]
Returns all DXF entities that have at least one detection point located around center with
a max. distance of radius.
detection_point_in_rect(p1: UVec, p2: UVec) -> Sequence[DXFEntity]
Returns all DXF entities that have at least one detection point located inside or at the
border of the rectangle defined by the two given corner points.
detection_points(entity: DXFEntity) -> Sequence[Vec2]
Returns the detection points for a given DXF entity.
The detection points must be 2D points projected onto the xy-plane (ignore z-axis). This
implementation returns the corner vertices of the entity bounding box.
Override this method to return more sophisticated detection points (e.g., the vertices of
LWPOLYLINE and POLYLINE or equally spaced raster points for block references).
Get DXF Entity Type
The dxftype() method returns the entity type as defined by the DXF reference as an uppercase string.
e = msp.add_line((0, 0), (1, 0))
assert e.dxftype() == "LINE"
SEE ALSO:
• DXF Reference for DXF R2018
Get DXF Attributes From Entities
All DXF attributes of an entity are grouped in the namespace attribute dxf:
e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer
The dxf namespace attribute has a get() method, which can return a default value if the attribute doesn’t
exist:
e.dxf.get('color', 9)
The attribute has to be supported by the DXF type otherwise a DXFAttributeError will be raised. You can
check if an DXF attribute is supported by the method dxf.is_supported():
line = msp.add_line((0, 0), (1, 0))
assert line.dxf.is_supported("text") is False
Optional DXF Attributs
Many DXF attributes are optional, you can check if an attribute exists by the hasattrib() method:
assert line.dxf.hasattrib("linetype") is False
Default Values
Some DXF attributes have default values and this default value will be returned if the DXF attribute
doesn’t exist:
assert line.dxf.linetype == "BYLAYER"
SEE ALSO:
Tasks:
• Common graphical DXF attributes
• Modify DXF Attributes of Entities
• Delete DXF Attributes from Entities
Tutorials:
• Tutorial for Common Graphical Attributes
• Tutorial for Getting Data from DXF Files
Get Content From DXF Entities
TEXT Entity
The content of the TEXT entity is stored in a single DXF attribute Text.dxf.text and has an empty string
as default value:
for text in msp.query("TEXT"):
print(text.dxf.text)
The plain_text() method returns the content of the TEXT entity without formatting codes.
SEE ALSO:
Classes
• ezdxf.entities.Text
Tutorials
• Tutorial for Text
MTEXT Entity
The content of the MTEXT entity is stored in multiple DXF attributes. The content can be accessed by the
read/write property text and the DXF attribute MText.dxf.text and has an empty string as default value:
for mtext in msp.query("MTEXT"):
print(mtext.text)
# is the same as:
print(mtext.dxf.text)
IMPORTANT:
The line ending character \n will be replaced automatically by the MTEXT line ending \P.
The plain_text() method returns the content of the MTEXT entity without inline formatting codes.
SEE ALSO:
Classes
• ezdxf.entities.MText
• ezdxf.tools.text.MTextEditor
Tutorials
• Tutorial for MText and MTextEditor
MLEADER Entity
The content of MLEADER entities is stored in the MultiLeader.context object. The MLEADER contains text
content if the context.mtext attribute is not None and block content if the context.block attribute is
not None
SEE ALSO:
Classes
• ezdxf.entities.MultiLeader
• ezdxf.entities.MLeaderContext
• ezdxf.entities.MTextData
• ezdxf.entities.BlockData
• ezdxf.entities.AttribData
Tutorials
• Tutorial for MultiLeader
Text Content
for mleader in msp.query("MLEADER MULTILEADER"):
mtext = mleader.context.mtext
if mtext:
print(mtext.insert) # insert location
print(mtext.default_content) # text content
The text content supports the same formatting features as the MTEXT entity.
Block Content
The INSERT (block reference) attributes are stored in MultiLeader.context.block as BlockData.
for mleader in msp.query("MLEADER MULTILEADER"):
block = mleader.context.block
if block:
print(block.insert) # insert location
The ATTRIB attributes are stored outside the context object in MultiLeader.block_attribs as AttribData.
for mleader in msp.query("MLEADER MULTILEADER"):
for attrib in mleader.block_attribs:
print(attrib.text) # text content of the ATTRIB entity
DIMENSION Entity
Get real measurement determined by definition points:
for dimension in msp.query("DIMENSION"):
print(str(dimension))
print(f"Dimension Type: {dimension.dimtype}")
print(f"Measurement: {dimension.get_measurement()}")
┌──────┬──────────────────────────────┬──────────────────────────┐
│ Type │ Dimension Type │ Measurement │
├──────┼──────────────────────────────┼──────────────────────────┤
│ 0 │ Linear and Rotated Dimension │ length in drawing units │
├──────┼──────────────────────────────┼──────────────────────────┤
│ 1 │ Aligned Dimension │ length in drawing units │
├──────┼──────────────────────────────┼──────────────────────────┤
│ 2 │ Angular Dimension │ angle in degree │
├──────┼──────────────────────────────┼──────────────────────────┤
│ 3 │ Diameter Dimension │ length in drawing units │
├──────┼──────────────────────────────┼──────────────────────────┤
│ 4 │ Radius Dimension │ length in drawing units │
├──────┼──────────────────────────────┼──────────────────────────┤
│ 5 │ Angular 3P Dimension │ angle in degree │
├──────┼──────────────────────────────┼──────────────────────────┤
│ 6 │ Ordinate Dimension │ feature location as Vec3 │
└──────┴──────────────────────────────┴──────────────────────────┘
Get measurement text. This is how the measurement text was rendered into the associated geometry block by
the CAD application as the DIMENSION entity was created:
for dimension in msp.query("DIMENSION"):
print(str(dimension))
print(f"Measurement Text: {dimension.dxf.text}")
┌───────┬───────────────────────────────────────┐
│ Text │ Measurement text rendered by CAD │
│ │ application │
├───────┼───────────────────────────────────────┤
│ "<>" │ actual measurement │
├───────┼───────────────────────────────────────┤
│ "" │ (empty string) actual measurement │
├───────┼───────────────────────────────────────┤
│ " " │ (space) measurement text is │
│ │ suppressed │
├───────┼───────────────────────────────────────┤
│ other │ measurement text entered by the CAD │
│ │ user │
└───────┴───────────────────────────────────────┘
Get measurement text from text entities in the associated geometry block. This is the actual measurement
text displayed by CAD applications:
for dimension in msp.query("DIMENSION"):
print(str(dimension))
block = dimension.get_geometry_block()
if block is None:
print("Geometry block not found.")
continue
for entity in block.query("TEXT MTEXT"):
print(f"{str(entity)}: {entity.dxf.text}")
SEE ALSO:
Tutorials:
• Tutorial for Linear Dimensions
Classes:
• ezdxf.entities.Dimension
ACAD_TABLE Entity
The helper function read_acad_table_content() returns the content of an ACAD_TABLE entity as list of
table rows. If the count of table rows or table columns is missing the complete content is stored in the
first row. All cells contain strings.
from ezdxf.entities.acad_table import read_acad_table_content
...
for acad_table in msp.query("ACAD_TABLE"):
content = read_acad_table_content(acad_table)
for n, row in enumerate(content):
for m, value in enumerate(row):
print(f"cell [{n}, {m}] = '{value}'")
IMPORTANT:
The ACAD_TABLE entity has only limited support to preserve the entity. There is no support for adding
a new ACAD_TABLE entity or modifying it’s content.
INSERT Entity - Block References
Get Block Attributes
Get a block attribute by tag:
diameter = insert.get_attrib('diameter')
if diameter is not None:
print(f"diameter = {diameter.dxf.text}")
Iterate over all block attributes:
for attrib in insert.attribs:
print(f"{attrib.dxf.tag} = {attrib.dxf.text}")
IMPORTANT:
Do not confuse block attributes and DXF entity attributes, these are different concepts!
Get Block Entities
Get block entities as virtual DXF entities from an Insert entity:
for insert in msp.query("INSERT"):
for entity in insert.virtual_entities():
print(str(entity))
Get Transformation Matrix
m = insert.matrix44()
This transformation matrix transforms the virtual block entities from the block reference coordinate
system into the WCS.
SEE ALSO:
Tasks:
• Add Block References
• Explode Block References
Tutorials:
• Tutorial for Blocks
Basics:
• Blocks
Classes:
• ezdxf.entities.Insert
• ezdxf.entities.Attrib
• ezdxf.entities.AttDef
• ezdxf.math.Matrix44
Get Extended Data from DXF Entities
HEADER Variables
i1 = doc.header["$USERI1"] # integer
r1 = doc.header["$USERR1"] # float
XDATA Section
The structure of XDATA is arbitrary and only some structures used by AutoCAD are documented in the DXF
reference. Use the Browse command to explore these structures directly in DXF files.
my_app_id = "MY_APP_1"
if line.has_xdata(my_app_id):
tags = line.get_xdata(my_app_id)
print(f"{str(line)} has {len(tags)} tags of XDATA for AppID {my_app_id!r}")
for tag in tags:
print(tag)
• ezdxf.entities.DXFEntity.get_xdata()
Extension Dictionaries
Like XDATA the structure of extension dictionaries is arbitrary and not documented by the DXF reference.
for line in msp.query("LINE"):
if line.has_extension_dict:
# get the extension dictionary
xdict = line.get_extension_dict()
• ezdxf.entities.DXFEntity.get_extension_dict()
SEE ALSO:
Tasks:
• Add Custom and Extended Data
• Modify Extended Data
• Delete Extended Data
Tutorials:
• Storing Custom Data in DXF Files
Basics:
• Extended Data
• Extension Dictionary
• DXF Tags
Classes:
• ezdxf.entities.xdata.XData
• ezdxf.entities.xdict.ExtensionDict
• ezdxf.entities.XRecord
• ezdxf.entities.Dictionary
• ezdxf.entities.DictionaryVar
Helper-Classes:
• ezdxf.entities.xdata.XDataUserList
• ezdxf.entities.xdata.XDataUserDict
• ezdxf.urecord.UserRecord
• ezdxf.urecord.BinaryRecord
Get Layouts and Blocks
Layouts and blocks contain all the graphical entities likes LINE, CIRCLE and so on.
Get all paperspace and modelspace layout names in arbitrary order:
layout_names = doc.layout_names()
Get all paperspace and modelspace layout names in tab-order of CAD applications:
layout_names = doc.layout_names_in_taborder()
Modelspace
Each DXF document has one and only one Modelspace layout.
The modelspace() method of the Drawing class returns the Modelspace object.
msp = doc.modelspace()
Paperspace Layouts
Each DXF document has one or more Paperspace layout. DXF R12 supports only one paperspace layout.
Get the active (default) paperspace layout:
psp = doc.paperspace()
Get a paperspace layout by name:
psp = doc.paperspace("Layout0")
The name argument is the name shown in the tabs of CAD applications.
Block Layouts
Blocks are collections of DXF entities which can be placed multiple times as block references in
different layouts and other block definitions.
Iterate over all block definitions:
for block in doc.blocks:
print(block.name)
Get block definition by name:
block = doc.blocks.get("MyBlock")
if block is None:
print("block not found.")
Count block references:
from ezdxf import blkrefs
...
counter = blkrefs.BlockReferenceCounter(doc)
count = counter.by_name("MyBlock")
print(f"MyBlock is referenced {count} times."
Find unused (unreferenced) block definitions:
Added in version 1.3.5.
from ezdxf import blkrefs
...
for name in blkrefs.find_unreferenced_blocks(doc)
block = doc.blocks.get(name)
SEE ALSO:
Tasks:
• Add Layouts and Blocks
• Delete Layouts and Blocks
• Add Block References
• Delete DXF Entities
Tutorials:
• Tutorial for Blocks
Basics:
• Layout Types
• Modelspace
• Paperspace
• Blocks
Classes:
• ezdxf.layouts.Modelspace
• ezdxf.layouts.Paperspace
• ezdxf.layouts.BlockLayout
• ezdxf.sections.blocks.BlocksSection
• ezdxf.document.Drawing
Modules:
• ezdxf.blkrefs
Modify Data
Modify DXF Attributes of Entities
All DXF attributes of an entity are grouped in the namespace attribute dxf. You can modify/set a DXF
attribute by assignment:
e.dxf.layer = "MyLayer"
e.dxf.color = 9
… or by the set() method:
e.dxf.set('color', 9)
The attribute has to be supported by the DXF type otherwise a DXFAttributeError will be raised. You can
check if an DXF attribute is supported by the method dxf.is_supported():
line = msp.add_line((0, 0), (1, 0))
assert line.dxf.is_supported("text") is False
SEE ALSO:
Tasks
• Common graphical DXF attributes
• Get DXF Attributes From Entities
• Delete DXF Attributes from Entities
Tutorials:
• Tutorial for Common Graphical Attributes
Modify Resource Table Entries
TODO
Layer
TODO
Linetype
TODO
Text Style
TODO
Dimension Style
TODO
Modify Geometry of DXF Entities
TODO
LINE
TODO
CIRCLE
TODO
ARC
TODO
ELLIPSE
TODO
SPLINE
TODO
LWPOLYLINE
TODO
POLYLINE
TODO
MESH
TODO
HATCH
TODO
DIMENSION
Delete the existing DIMENSION and create a new one.
MLEADER
Delete the existing MLEADER and create a new one.
ACAD_TABLE
Not supported.
Transform Entities and Layouts
TODO
Transform DXF Entities
TODO
Transform Layouts
TODO
Copy or Move DXF Entities
TODO
Duplicate DXF Entities
TODO
Move DXF Entities between Layouts
TODO
Modify Block References
TODO
Modify Block attributes
TODO
Clip Block References
TODO
Modify Entity Content
TODO
TEXT Entity
TODO
MTEXT Entity
TODO
DIMENSION Entity
Delete the existing DIMENSION and create a new one.
MLEADER Entity
Delete the existing MLEADER and create a new one.
ACAD_TABLE Entity
Not supported.
Modify Header Variables
TODO
Modify Extended Data
TODO
SEE ALSO:
Tasks:
• Add Custom and Extended Data
• Get Extended Data from DXF Entities
• Delete Extended Data
Tutorials:
• Storing Custom Data in DXF Files
Basics:
• Extended Data
• Extension Dictionary
• DXF Tags
Classes:
• ezdxf.entities.xdata.XData
• ezdxf.entities.xdict.ExtensionDict
• ezdxf.entities.XRecord
• ezdxf.entities.Dictionary
• ezdxf.entities.DictionaryVar
Helper-Classes:
• ezdxf.entities.xdata.XDataUserList
• ezdxf.entities.xdata.XDataUserDict
• ezdxf.urecord.UserRecord
• ezdxf.urecord.BinaryRecord
Delete Data
Delete DXF Attributes from Entities
All DXF attributes of an entity are grouped in the namespace attribute dxf. You can delete a DXF
attribute by the del operator:
line = msp.add_line((0, 0), (1, 0))
line.dxf.layer = "MyLayer"
del line.dxf.layer
assert line.dxf.layer == "0" # the default layer for all entities
The del operator raises an DXFAttributeError if the attribute doesn’t exist or isn’t supported. The
discard() method ignores these errors:
line.dxf.discard('text') # doesn't raise an exception
SEE ALSO:
Tasks
• Common graphical DXF attributes
• Get DXF Attributes From Entities
• Modify DXF Attributes of Entities
Tutorials:
• Tutorial for Common Graphical Attributes
Delete DXF Entities
TODO
Delete Entities from Layouts
TODO
Delete Block Reference Attributes
TODO
Delete Resource Table Entries
TODO
Layer
TODO
Linetype
TODO
Text Style
TODO
Dimension Style
TODO
Delete Layouts and Blocks
Modelspace
This is not possible.
Paperspace Layouts
Delete a paperspace layout and it’s entities.
name = "MyLayout"
try:
doc.layouts.delete(name)
except ezdxf.DXFKeyError:
print(f"layout '{name}' not found")
except ezdxf.DXFValueError:
print(f"layout '{name}' cannot be deleted")
# modelspace or last remaining paperspace layout
Block Definitions
Delete a block definition:
try:
doc.blocks.delete_block(name, safe=True)
except ezdxf.DXFBlockInUseError:
print(f"cannot delete block '{name}'")
Raises a DXFBlockInUseError exception if the block is referenced by an INSERT entity or if it is an
anonymous/special block.
Purge/delete unused (unreferenced) block definitions:
Added in version 1.3.5.
from ezdxf import blkrefs
...
for name in blkrefs.find_unreferenced_blocks(doc)
doc.blocks.delete_block(name, safe=False)
SEE ALSO:
Tasks:
• Add Layouts and Blocks
• Get Layouts and Blocks
• Add Block References
• Delete DXF Entities
Tutorials:
• Tutorial for Blocks
Basics:
• Layout Types
• Modelspace
• Paperspace
• Blocks
Classes:
• ezdxf.layouts.Layouts
• ezdxf.document.Drawing
Modules:
• ezdxf.blkrefs
Delete Extended Data
TODO
SEE ALSO:
Tasks:
• Add Custom and Extended Data
• Get Extended Data from DXF Entities
• Modify Extended Data
Tutorials:
• Storing Custom Data in DXF Files
Basics:
• Extended Data
• Extension Dictionary
• DXF Tags
Classes:
• ezdxf.entities.xdata.XData
• ezdxf.entities.xdict.ExtensionDict
• ezdxf.entities.XRecord
• ezdxf.entities.Dictionary
• ezdxf.entities.DictionaryVar
Helper-Classes:
• ezdxf.entities.xdata.XDataUserList
• ezdxf.entities.xdata.XDataUserDict
• ezdxf.urecord.UserRecord
• ezdxf.urecord.BinaryRecord
Explode Entities
Explode DXF Entities
TODO
POINT
TODO
POLYLINE & LWPOLYLINE
TODO
MESH
TODO
INSERT (Block References)
Explode Block References
DIMENSION
TODO
MLEADER
TODO
MLINE
TODO
ACAD_TABLE
TODO
Proxy Graphic
TODO
Explode Block References
TODO
Flatten DXF Entities
TODO
EXTERNAL REFERENCES (XREF)
Added in version 1.1.
Attached XREFs are links to the modelspace of a specified drawing file. Changes made to the referenced
drawing are automatically reflected in the current drawing when it’s opened or if the XREF is reloaded.
XREFs can be nested within other XREFs: that is, you can attach an XREF that contains another XREF. You
can attach as many copies of an XREF as you want, and each copy can have a different position, scale, and
rotation.
You can also overlay an XREF on your drawing. Unlike an attached XREF, an overlaid XREF is not included
when the drawing is itself attached or overlaid as an XREF to another drawing.
DXF Files as Attached XREFs
IMPORTANT:
AutoCAD can only display DWG files as attached XREFs but ezdxf can only create DXF files.
Consequently, any DXF file attached as an XREF to a DXF document must be converted to DWG in order to
be viewed in AutoCAD. Fortunately, other CAD applications are more cooperative, BricsCAD has no
problem displaying DXF files as XREFs, although it is not possible to attach a DXF file as an XREF in
the BricsCAD application itself.
The ezdxf.xref module provides an interface for working with XREFs.
• attach() - attach a DXF/DWG file as XREF
• detach() - detach a BLOCK definition as XREF
• embed() - embed an XREF as a BLOCK definition
• dxf_info() - scans a DXF file for basic settings and properties
For loading the content of DWG files is a loading function required, which loads the DWG file as Drawing
document. The odafc add-on module provides such a function: readfile()
SEE ALSO:
• Tutorial for External References
XREF Structures
An XREF is a normal block definition located in the BLOCKS section with special flags set and a filename
to the referenced DXF/DWG file and without any content, the block content is the modelspace of the
referenced file. An XREF can be referenced (inserted) by one or multiple INSERT entities.
Find block definitions in the BLOCKS section:
for block_layout in doc.blocks:
block = block_layout.block # the BLOCK entity
if block.is_xref:
handle_xref(block_layout)
elif block.is_xref_overlay:
handle_xref_overlay(block_layout)
Find XREF references in modelspace:
for insert in msp.query("INSERT"):
if insert.is_xref:
handle_xref_reference(insert)
# ... or get the XREF definition
block_layout = insert.block()
if block_layout is not None:
handle_xref_definition(block_layout)
Use the helper function define() to create your own XREF definition, the attach() creates this definition
automatically and raises an exception if the block already exists.
Supported Entities
The current implementation supports only copyable and transformable DXF entities, these are all basic
entity types as LINE, CIRCLE, … and block references and their associated required table entries and
objects from the OBJECTS section.
Unsupported is the ACAD_TABLE entity and preserved unknown entities wrapped in a DXFTagStorage class like
proxy entities and objects. Support for these entities may be added in a later version of ezdxf.
Unsupported entities are ignored and do not raise exceptions.
Most document features stored in the HEADER and OBJECTS sections are not supported by this module like
GROUPS, LAYER_FILTER, GEODATA, SUN.
Added in version 1.3.0: Support for ACIS based entities was added.
Importing Data and Resources
The ezdxf.xref module replaces the Importer add-on.
The basic functionality of the ezdxf.xref module is loading data from external files including their
required resources, which is an often requested feature by users for importing data from other DXF files
into the current document.
The Importer add-on was very limited and removed many resources, where the ezdxf.xref module tries to
preserve as much information as possible.
• load_modelspace() - loads the modelspace content from another DXF document
• load_paperspace() - loads a paperspace layout from another DXF document
• write_block() - writes entities into the modelspace of a new DXF document
• Loader - low level loading interface
High Level Functions
ezdxf.xref.attach(doc: Drawing, *, block_name: str, filename: str, insert: UVec = (0, 0, 0), scale: float
= 1.0, rotation: float = 0.0, overlay=False) -> Insert
Attach the file filename to the host document as external reference (XREF) and creates a default
block reference for the XREF in the modelspace of the document. The function raises an
XrefDefinitionError exception if the block definition already exist, but an XREF can be inserted
multiple times by adding additional block references:
msp.add_blockref(block_name, insert=another_location)
IMPORTANT:
If the XREF has different drawing units than the host document, the scale factor between these
units must be applied as a uniform scale factor to the block reference! Unfortunately the XREF
drawing units can only be detected by scanning the HEADER section of a document by the function
dxf_info() and is therefore not done automatically by this function. Advice: always use the
same units for all drawings of a project!
Parameters
• doc – host DXF document
• block_name – name of the XREF definition block
• filename – file name of the XREF
• insert – location of the default block reference
• scale – uniform scaling factor
• rotation – rotation angle in degrees
• overlay – creates an XREF overlay if True and an XREF attachment otherwise
Returns
default block reference for the XREF
Return type
Insert
Raises XrefDefinitionError – block with same name exist
Added in version 1.1.
ezdxf.xref.define(doc: Drawing, block_name: str, filename: str, overlay=False) -> None
Add an external reference (xref) definition to a document.
XREF attachment types:
• attached: the XREF that’s inserted into this drawing is also present in a document to which this
document is inserted as an XREF.
• overlay: the XREF that’s inserted into this document is not present in a document to which this
document is inserted as an XREF.
Parameters
• doc – host document
• block_name – name of the xref block
• filename – external reference filename
• overlay – creates an XREF overlay if True and an XREF attachment otherwise
Raises XrefDefinitionError – block with same name exist
Added in version 1.1.
ezdxf.xref.detach(block: BlockLayout, *, xref_filename: str | PathLike, overlay=False) -> Drawing
Write the content of block into the modelspace of a new DXF document and convert block to an
external reference (XREF). The new DXF document has to be written by the caller:
xref_doc.saveas(xref_filename). This way it is possible to convert the DXF document to DWG by the
odafc add-on if necessary:
xref_doc = xref.detach(my_block, "my_block.dwg")
odafc.export_dwg(xref_doc, "my_block.dwg")
It’s recommended to clean up the entity database of the host document afterwards:
doc.entitydb.purge()
The function does not create any block references. These references should already exist and do
not need to be changed since references to blocks and XREFs are the same.
Parameters
• block – block definition to detach
• xref_filename – name of the external referenced file
• overlay – creates an XREF overlay if True and an XREF attachment otherwise
Added in version 1.1.
ezdxf.xref.dxf_info(filename: str | PathLike) -> DXFInfo
Scans the HEADER section of a DXF document and returns a DXFInfo object, which contains
information about the DXF version, text encoding, drawing units and insertion base point.
Raises IOError – not a DXF file or a generic IO error
ezdxf.xref.embed(xref: BlockLayout, *, load_fn: Callable[[str], Drawing] | None = None, search_paths:
Iterable[Path | str] = tuple(), conflict_policy=ConflictPolicy.XREF_PREFIX) -> None
Loads the modelspace of the XREF as content into a block layout.
The loader function loads the XREF as Drawing object, by default the function ezdxf.readfile() is
used to load DXF files. To load DWG files use the readfile() function from the ezdxf.addons.odafc
add-on. The ezdxf.recover.readfile() function is very robust for reading DXF files with errors.
If the XREF path isn’t absolute the XREF is searched in the folder of the host DXF document and in
the search_path folders.
Parameters
• xref – BlockLayout of the XREF document
• load_fn – function to load the content of the XREF as Drawing object
• search_paths – list of folders to search for XREFS, default is the folder of the host
document or the current directory if no filepath is set
• conflict_policy – how to resolve name conflicts
Raises
• XrefDefinitionError – argument xref is not a XREF definition
• FileNotFoundError – XREF file not found
• DXFVersionError – cannot load a XREF with a newer DXF version than the host
document, try the odafc add-on to downgrade the XREF
document or upgrade the host document
Added in version 1.1.
ezdxf.xref.load_modelspace(sdoc: Drawing, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None =
None, conflict_policy=ConflictPolicy.KEEP) -> None
Loads the modelspace content of the source document into the modelspace of the target document.
The filter function filter_fn gets every source entity as input and returns True to load the
entity or False otherwise.
Parameters
• sdoc – source document
• tdoc – target document
• filter_fn – optional function to filter entities from the source modelspace
• conflict_policy – how to resolve name conflicts
Added in version 1.1.
ezdxf.xref.load_paperspace(psp: Paperspace, tdoc: Drawing, filter_fn: Callable[[DXFEntity], bool] | None
= None, conflict_policy=ConflictPolicy.KEEP) -> None
Loads the paperspace layout psp into the target document. The filter function filter_fn gets
every source entity as input and returns True to load the entity or False otherwise.
Parameters
• psp – paperspace layout to load
• tdoc – target document
• filter_fn – optional function to filter entities from the source paperspace layout
• conflict_policy – how to resolve name conflicts
Added in version 1.1.
ezdxf.xref.write_block(entities: Sequence[DXFEntity], *, origin: UVec = (0, 0, 0)) -> Drawing
Write entities into the modelspace of a new DXF document.
This function is called “write_block” because the new DXF document can be used as an external
referenced block. This function is similar to the WBLOCK command in CAD applications.
Virtual entities are not supported, because each entity needs a real database- and owner handle.
Parameters
• entities – DXF entities to write
• origin – block origin, defines the point in the modelspace which will be inserted at the
insert location of the block reference
Raises EntityError – virtual entities are not supported
Added in version 1.1.
Conflict Policy
class ezdxf.xref.ConflictPolicy(*values)
These conflict policies define how to handle resource name conflicts.
Added in version 1.1.
KEEP Keeps the existing resource name of the target document and ignore the resource from the
source document.
XREF_PREFIX
This policy handles the resource import like CAD applications by always renaming the loaded
resources to <xref>$0$<name>, where xref is the name of source document, the $0$ part is a
number to create a unique resource name and <name> is the name of the resource itself.
NUM_PREFIX
This policy renames the loaded resources to $0$<name> only if the resource <name> already
exists. The $0$ prefix is a number to create a unique resource name and <name> is the name
of the resource itself.
Low Level Loading Interface
The Loader class is the basic building block for loading entities and resources. The class manages a list
of loading commands which is executed at once by calling the Loader.execute() method. It is important to
execute the commands at once to get a consistent renaming of resources when using resource name prefixes
otherwise the loaded resources would get a new unique name at each loading process even when the
resources are loaded from the same document.
class ezdxf.xref.Loader(sdoc: Drawing, tdoc: Drawing, conflict_policy=ConflictPolicy.KEEP)
Load entities and resources from the source DXF document sdoc into the target DXF document.
Parameters
• sdoc – source DXF document
• tdoc – target DXF document
• conflict_policy – ConflictPolicy
load_modelspace(target_layout: BaseLayout | None = None, filter_fn: Callable[[DXFEntity], bool] |
None = None) -> None
Loads the content of the modelspace of the source document into a layout of the target
document, the modelspace of the target document is the default target layout. The filter
function filter_fn is used to skip source entities, the function should return False for
entities to ignore and True otherwise.
Parameters
• target_layout – target layout can be any layout: modelspace, paperspace layout or
block layout.
• filter_fn – function to filter source entities
load_paperspace_layout(psp: Paperspace, filter_fn: Callable[[DXFEntity], bool] | None = None) ->
None
Loads a paperspace layout as a new paperspace layout into the target document. If a
paperspace layout with same name already exists the layout will be renamed to “<layout
name> (2)” or “<layout name> (3)” and so on. The filter function filter_fn is used to skip
source entities, the function should return False for entities to ignore and True
otherwise.
The content of the modelspace which may be displayed through a VIEWPORT entity will not be
loaded!
Parameters
• psp – the source paperspace layout
• filter_fn – function to filter source entities
load_paperspace_layout_into(psp: Paperspace, target_layout: BaseLayout, filter_fn:
Callable[[DXFEntity], bool] | None = None) -> None
Loads the content of a paperspace layout into an existing layout of the target document.
The filter function filter_fn is used to skip source entities, the function should return
False for entities to ignore and True otherwise.
The content of the modelspace which may be displayed through a VIEWPORT entity will not be
loaded!
Parameters
• psp – the source paperspace layout
• target_layout – target layout can be any layout: modelspace, paperspace layout or
block layout.
• filter_fn – function to filter source entities
load_block_layout(block_layout: BlockLayout) -> None
Loads a block layout (block definition) as a new block layout into the target document. If
a block layout with the same name exists the conflict policy will be applied. This method
cannot load modelspace or paperspace layouts.
Parameters
block_layout – the source block layout
load_block_layout_into(block_layout: BlockLayout, target_layout: BaseLayout) -> None
Loads the content of a block layout (block definition) into an existing layout of the
target document. This method cannot load the content of modelspace or paperspace layouts.
Parameters
• block_layout – the source block layout
• target_layout – target layout can be any layout: modelspace, paperspace layout or
block layout.
load_layers(names: Sequence[str]) -> None
Loads the layers defined by the argument names into the target document. In the case of a
name conflict the conflict policy will be applied.
load_linetypes(names: Sequence[str]) -> None
Loads the linetypes defined by the argument names into the target document. In the case of
a name conflict the conflict policy will be applied.
load_text_styles(names: Sequence[str]) -> None
Loads the TEXT styles defined by the argument names into the target document. In the case
of a name conflict the conflict policy will be applied.
load_dim_styles(names: Sequence[str]) -> None
Loads the DIMENSION styles defined by the argument names into the target document. In the
case of a name conflict the conflict policy will be applied.
load_mline_styles(names: Sequence[str]) -> None
Loads the MLINE styles defined by the argument names into the target document. In the case
of a name conflict the conflict policy will be applied.
load_mleader_styles(names: Sequence[str]) -> None
Loads the MULTILEADER styles defined by the argument names into the target document. In the
case of a name conflict the conflict policy will be applied.
load_materials(names: Sequence[str]) -> None
Loads the MATERIALS defined by the argument names into the target document. In the case of
a name conflict the conflict policy will be applied.
execute(xref_prefix: str = '') -> None
Execute all loading commands. The xref_prefix string is used as XREF name when the conflict
policy ConflictPolicy.XREF_PREFIX is applied.
ADD-ONS
Drawing / Export Add-on
This add-on provides the functionality to render a DXF document to produce a rasterized or vector-graphic
image which can be saved to a file or viewed interactively depending on the backend being used.
The module provides two example scripts in the folder examples/addons/drawing which can be run to save
rendered images to files or view an interactive visualisation.
$ ./draw_cad.py --supported_formats
# will list the file formats supported by the matplotlib backend.
# Many formats are supported including vector graphics formats
# such as pdf and svg
$ ./draw_cad.py <my_file.dxf> --out image.png
# draw a layout other than the model space
$ ./draw_cad.py <my_file.dxf> --layout Layout1 --out image.png
# opens a GUI application to view CAD files
$ ./cad_viewer.py
SEE ALSO:
How-to section for the FAQ about the Drawing Add-on.
Design
The implementation of the drawing add-on is divided into a frontend and multiple backends. The frontend
handles the translation of DXF features and properties into simplified structures, which are then
processed by the backends.
Common Limitations to all Backends
• rich text formatting of the MTEXT entity is close to AutoCAD but not pixel perfect
• relative size of POINT entities cannot be replicated exactly
• rendering of ACIS entities is not supported
• no 3D rendering engine, therefore:
• 3D entities are projected into the xy-plane and 3D text is not supported
• only top view rendering of the modelspace
• VIEWPORTS are always rendered as top view
• no VISUALSTYLE support
• only basic support for:
• infinite lines (rendered as lines with a finite length)
• OLE2FRAME entities (rendered as rectangles)
• vertical text (will render as horizontal text)
• rendering of additional MTEXT columns may be incorrect
MatplotlibBackend
The MatplotlibBackend is used by the Draw command of the ezdxf launcher.
Example for the usage of the Matplotlib backend:
import sys
import matplotlib.pyplot as plt
from ezdxf import recover
from ezdxf.addons.drawing import RenderContext, Frontend
from ezdxf.addons.drawing.matplotlib import MatplotlibBackend
# Safe loading procedure (requires ezdxf v0.14):
try:
doc, auditor = recover.readfile('your.dxf')
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file.')
sys.exit(2)
# The auditor.errors attribute stores severe errors,
# which may raise exceptions when rendering.
if not auditor.has_errors:
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
ctx = RenderContext(doc)
out = MatplotlibBackend(ax)
Frontend(ctx, out).draw_layout(doc.modelspace(), finalize=True)
fig.savefig('your.png', dpi=300)
Simplified render workflow but with less control:
from ezdxf import recover
from ezdxf.addons.drawing import matplotlib
# Exception handling left out for compactness:
doc, auditor = recover.readfile('your.dxf')
if not auditor.has_errors:
matplotlib.qsave(doc.modelspace(), 'your.png')
PyQtBackend
class ezdxf.addons.drawing.pyqt.PyQtBackend(scene=None)
Backend which uses the PySide6 package to implement an interactive viewer. The PyQt5 package can
be used as fallback if the PySide6 package is not available.
Parameters
scene -- drawing canvas of type QtWidgets.QGraphicsScene, if None a new canvas will be
created
The PyQtBackend is used by the View command of the ezdxf launcher.
SEE ALSO:
The qtviewer.py module implements the core of a simple DXF viewer and the cad_viewer.py example is a
skeleton to show how to launch the CADViewer class.
Recorder
Added in version 1.1.
This is a special backend which records the output of the Frontend class in compact numpy arrays and
these recordings and can be played by a Player instance on one or more backends. The recorded numpy
arrays support measurement of bounding boxes and transformations which is for some backends a requirement
to place the DXF content on size limited pages.
class ezdxf.addons.drawing.recorder.Recorder
Records the output of the Frontend class.
The class implements the BackendInterface but does not record enter_entity(), exit_entity() and
clear() events.
player() -> Player
Returns a Player instance with the original recordings! Make a copy of this player to
protect the original recordings from being modified:
safe_player = recorder.player().copy()
class ezdxf.addons.drawing.recorder.Player
Plays the recordings of the Recorder backend on another backend.
bbox() -> BoundingBox2d
Returns the bounding box of all records as BoundingBox2d.
copy() -> Self
Returns a copy of the player with non-shared recordings.
crop_rect(p1: UVec, p2: UVec, distance: float) -> None
Crop recorded shapes inplace by a rectangle defined by two points.
The argument distance defines the approximation precision for paths which have to be
approximated as polylines for cropping but only paths which are really get cropped are
approximated, paths that are fully inside the crop box will not be approximated.
Parameters
• p1 -- first corner of the clipping rectangle
• p2 -- second corner of the clipping rectangle
• distance -- maximum distance from the center of the curve to the center of the
line segment between two approximation points to determine if a segment should be
subdivided.
recordings() -> Iterator[tuple[DataRecord, BackendProperties]]
Yields all recordings as (DataRecord, BackendProperties) tuples.
replay(backend: BackendInterface, override: Callable[[BackendProperties], Override] | None = None)
-> None
Replay the recording on another backend that implements the BackendInterface. The optional
override function can be used to override the properties and state of data records, it gets
the BackendProperties as input and must return an Override instance.
transform(m: Matrix44) -> None
Transforms the recordings inplace by a transformation matrix m of type Matrix44.
class ezdxf.addons.drawing.recorder.Override(properties: BackendProperties, is_visible: bool = True)
Represents the override state for a data record.
properties
original or modified BackendProperties
Type ezdxf.addons.drawing.properties.BackendProperties
is_visible
override visibility e.g. switch layers on/off
Type bool
Layout
Added in version 1.1.
The Layout class builds the page layout and the matrix to transform the DXF content to page coordinates
according to the layout Settings. The DXF coordinate transformation is required for PDF and HPGL/2 which
expects the output coordinates in the first quadrant and SVG which has an inverted y-axis.
The Layout class uses following classes and enums for configuration:
• Page - page definition
• Margins - page margins definition
• Settings - configuration settings
• Units - enum for page units
class ezdxf.addons.drawing.layout.Page(width: float, height: float, units: Units = Units.mm, margins:
Margins = (0, 0, 0, 0), max_width: float = 0.0, max_height: float = 0.0)
Page definition class
width page width, 0 for auto-detect
Type float
height page height, 0 for auto-detect
Type float
units page units as enum Units
Type ezdxf.addons.drawing.layout.Units
margins
page margins in page units
Type ezdxf.addons.drawing.layout.Margins
max_width
limit width for auto-detection, 0 for unlimited
Type float
max_height
limit height for auto-detection, 0 for unlimited
Type float
property is_landscape: bool
Returns True if the page has landscape orientation.
property is_portrait: bool
Returns True if the page has portrait orientation. (square is portrait)
classmethod from_dxf_layout(layout: DXFLayout) -> Self
Returns the Page based on the DXF attributes stored in the LAYOUT entity. The modelspace
layout often doesn't have usable page settings!
Parameters
layout -- any paperspace layout or the modelspace layout
get_margin_rect(top_origin=True) -> tuple[Vec2, Vec2]
Returns the bottom-left and the top-right corner of the page margins in mm. The origin (0,
0) is the top-left corner of the page if top_origin is True or in the bottom-left corner
otherwise.
to_landscape() -> None
Converts the page to landscape orientation.
to_portrait() -> None
Converts the page to portrait orientation.
class ezdxf.addons.drawing.layout.Margins(top: float, right: float, bottom: float, left: float)
Page margins definition class
top
Type float
left
Type float
bottom
Type float
right
Type float
classmethod all(margin: float) -> Self
Returns a page margins definition class with four equal margins.
classmethod all2(top_bottom: float, left_right: float) -> Self
Returns a page margins definition class with equal top-bottom and left-right margins.
scale(factor: float) -> Self
class ezdxf.addons.drawing.layout.PageAlignment(*values)
Page alignment of content as enum.
TOP_LEFT
TOP_CENTER
TOP_RIGHT
MIDDLE_LEFT
MIDDLE_CENTER
MIDDLE_RIGHT
BOTTOM_LEFT
BOTTOM_CENTER
BOTTOM_RIGHT
class ezdxf.addons.drawing.layout.Settings(content_rotation: int = 0, fit_page: bool = True, scale: float
= 1.0, page_alignment: PageAlignment = PageAlignment.MIDDLE_CENTER, crop_at_margins: bool = False,
max_stroke_width: float = 0.001, min_stroke_width: float = 0.05, fixed_stroke_width: float = 0.15,
output_coordinate_space: float = 1000000, output_layers: bool = True)
The Layout settings.
content_rotation
Rotate content about 0, 90, 180 or 270 degrees
Type int
fit_page
Scale content to fit the page.
Type bool
page_alignment
Supported by backends that use the Page class to define the size of the output media,
default alignment is PageAlignment.MIDDLE_CENTER
Type ezdxf.addons.drawing.layout.PageAlignment
crop_at_margins
crops the content at the page margins if True, when supported by the backend, default is
False
Type bool
scale Factor to scale the DXF units of model- or paperspace, to represent 1mm in the rendered
output drawing. Only uniform scaling is supported.
e.g. scale 1:100 and DXF units are meters, 1m = 1000mm corresponds 10mm in the output
drawing = 10 / 1000 = 0.01;
e.g. scale 1:1; DXF units are mm = 1 / 1 = 1.0 the default value
The value is ignored if the page size is defined and the content fits the page and the
value is also used to determine missing page sizes (width or height).
Type float
max_stroke_width
Used for LineweightPolicy.RELATIVE policy, max_stroke_width is defined as percentage of the
content extents, e.g. 0.001 is 0.1% of max(page-width, page-height)
Type float
min_stroke_width
Used for LineweightPolicy.RELATIVE policy, min_stroke_width is defined as percentage of
max_stroke_width, e.g. 0.05 is 5% of max_stroke_width
Type float
fixed_stroke_width
Used for LineweightPolicy.RELATIVE_FIXED policy, fixed_stroke_width is defined as
percentage of max_stroke_width, e.g. 0.15 is 15% of max_stroke_width
Type float
output_coordinate_space
expert feature to map the DXF coordinates to the output coordinate system [0,
output_coordinate_space]
Type float
output_layers
For supported backends, separate the entities into 'layers' in the output
Type bool
class ezdxf.addons.drawing.layout.Units(*values)
Page units as enum.
inch 25.4 mm
px 1/96 inch
pt 1/72 inch
mm
cm
SVGBackend
Added in version 1.1.
class ezdxf.addons.drawing.svg.SVGBackend
This is a native SVG rendering backend and does not require any external packages to render SVG
images other than the core dependencies. This backend support content cropping at page margins.
get_xml_root_element(page: Page, *, settings: Settings = layout.Settings(), render_box:
BoundingBox2d | None = None) -> Element
get_string(page: Page, *, settings: Settings = layout.Settings(), render_box: BoundingBox2d | None
= None, xml_declaration=True) -> str
Returns the XML data as unicode string.
Parameters
• page -- page definition, see Page
• settings -- layout settings, see Settings
• render_box -- set explicit region to render, default is content bounding box
• xml_declaration -- inserts the "<?xml version='1.0' encoding='utf-8'?>" string in
front of the <svg> element
Usage:
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, svg
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
backend = svg.SVGBackend()
Frontend(RenderContext(doc), backend).draw_layout(msp)
with open("your.svg", "wt") as fp:
fp.write(backend.get_string(layout.Page(0, 0))
PyMuPdfBackend
Added in version 1.1.
class ezdxf.addons.drawing.pymupdf.PyMuPdfBackend
This backend uses the PyMuPdf package to create PDF, PNG, PPM and PBM output. This backend
support content cropping at page margins.
PyMuPDF is licensed under the AGPL. Sorry, but it's the best package for the job I've found so
far.
Install package:
pip install pymupdf
get_pdf_bytes(page: Page, *, settings: Settings = layout.Settings(), render_box: BoundingBox2d |
None = None) -> bytes
Returns the PDF document as bytes.
Parameters
• page -- page definition, see Page
• settings -- layout settings, see Settings
• render_box -- set explicit region to render, default is content bounding box
get_pixmap_bytes(page: Page, *, fmt='png', settings: Settings = layout.Settings(), dpi: int = 96,
alpha=False, render_box: BoundingBox2d | None = None) -> bytes
Returns a pixel image as bytes, supported image formats:
┌─────┬────────────────────────────────────┐
│ png │ Portable Network Graphics │
├─────┼────────────────────────────────────┤
│ ppm │ Portable Pixmap (no alpha channel) │
├─────┼────────────────────────────────────┤
│ pbm │ Portable Bitmap (no alpha channel) │
└─────┴────────────────────────────────────┘
Parameters
• page -- page definition, see Page
• fmt -- image format
• settings -- layout settings, see Settings
• dpi -- output resolution in dots per inch
• alpha -- add alpha channel (transparency)
• render_box -- set explicit region to render, default is content bounding box
Usage:
import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, pymupdf
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
backend = pymupdf.PyMuPdfBackend()
Frontend(RenderContext(doc), backend).draw_layout(msp)
with open("your.pdf", "wb") as fp:
fp.write(backend.get_pdf_bytes(layout.Page(0, 0))
Load the output of the PyMuPdfBackend into the Image class of the Pillow package for further processing
or to output additional image formats:
import io
from PIL import Image
... # see above
# the ppm format is faster to process than png
fp = io.BytesIO(backend.get_pixmap_bytes(layout.Page(0, 0), fmt="ppm", dpi=300))
image = Image.open(fp, formats=["ppm"])
PlotterBackend
Added in version 1.1.
class ezdxf.addons.drawing.hpgl2.PlotterBackend
The PlotterBackend creates HPGL/2 plot files for output on raster plotters. This backend does not
need any additional packages. This backend support content cropping at page margins.
The plot files are tested by the plot file viewer ViewCompanion Standard but not on real hardware
- please use with care and give feedback.
get_bytes(page: Page, *, settings: Settings = layout.Settings(), render_box: BoundingBox2d | None
= None, curves=True, decimal_places: int = 1, base=64) -> bytes
Returns the HPGL/2 data as bytes.
Parameters
• page -- page definition, see Page
• settings -- layout settings, see Settings
• render_box -- set explicit region to render, default is content bounding box
• curves -- use Bèzier curves for HPGL/2 output
• decimal_places -- HPGL/2 output precision, less decimal places creates smaller
files but for the price of imprecise curves (text)
• base -- base for polyline encoding, 32 for 7 bit encoding or 64 for 8 bit encoding
compatible(page: Page, settings: Settings = layout.Settings()) -> bytes
Returns the HPGL/2 data as 7-bit encoded bytes curves as approximated polylines and
coordinates are rounded to integer values. Has often the smallest file size and should be
compatible to all output devices but has a low quality text rendering.
low_quality(page: Page, settings: Settings = layout.Settings()) -> bytes
Returns the HPGL/2 data as 8-bit encoded bytes, curves as Bézier curves and coordinates are
rounded to integer values. Has a smaller file size than normal quality and the output
device must support 8-bit encoding and Bèzier curves.
normal_quality(page: Page, settings: Settings = layout.Settings()) -> bytes
Returns the HPGL/2 data as 8-bit encoded bytes, curves as Bézier curves and coordinates are
floats rounded to one decimal place. Has a smaller file size than high quality and the
output device must support 8-bit encoding, Bèzier curves and fractional coordinates.
high_quality(page: Page, settings: Settings = layout.Settings()) -> bytes
Returns the HPGL/2 data as 8-bit encoded bytes and all curves as Bézier curves and
coordinates are floats rounded to two decimal places. Has the largest file size and the
output device must support 8-bit encoding, Bèzier curves and fractional coordinates.
Usage:
import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, hpgl2
doc = ezdxf.readfile("your.dxf")
psp = doc.paperspace("Layout1")
backend = hpgl2.PlotterBackend()
Frontend(RenderContext(doc), backend).draw_layout(psp)
page = layout.Page.from_dxf_layout(psp)
with open("your.plt", "wb") as fp:
fp.write(backend.normal_quality(page)
You can check the output by the HPGL/2 viewer:
ezdxf hpgl your.plt
DXFBackend
Added in version 1.1.
class ezdxf.addons.drawing.dxf.DXFBackend(layout: BaseLayout, color_mode: ColorMode = ColorMode.RGB)
The DXFBackend creates simple DXF files of POINT, LINE, LWPOLYLINE and HATCH entities. This
backend does ot need any additional packages.
Parameters
• layout -- a DXF BaseLayout
• color_mode -- see ColorMode
class ezdxf.addons.drawing.dxf.ColorMode(*values)
This enum is used to define the color output mode of the DXFBackend.
ACI the color is set as AutoCAD Color Index (ACI) and assigned by layer
RGB the color is set as RGB true color value
Render a paperspace layout into modelspace:
import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext
from ezdxf.addons.drawing import layout, dxf
doc = ezdxf.readfile("your.dxf")
layout1 = doc.paperspace("Layout1")
output_doc = ezdxf.new()
output_msp = output_doc.modelspace()
backend = dxf.DXFBackend(output_msp)
Frontend(RenderContext(doc), backend).draw_layout(layout1)
output_doc.saveas("layout1_in_modelspace.dxf")
GeoJSONBackend
Added in version 1.3.0.
class ezdxf.addons.drawing.json.GeoJSONBackend(properties_maker: Callable[[str, float, str], Dict[str,
Any]] = properties_maker, transform_func: Callable[[Vec2], Tuple[float, float]] = no_transform)
Creates a JSON-like output according the GeoJSON scheme. GeoJSON uses a geographic coordinate
reference system, World Geodetic System 1984 EPSG:4326, and units of decimal degrees.
• Latitude: -90 to +90 (South/North)
• Longitude: -180 to +180 (East/West)
So most DXF files will produce invalid coordinates and it is the job of the package-user to
provide a function to transfrom the input coordinates to EPSG:4326! The Recorder and Player
classes can help to detect the extents of the DXF content.
Default implementation:
no_transform(location: Vec2) -> tuple[float, float]
Dummy transformation function. Does not apply any transformations and just returns the
input coordinates.
Factory function to make a transform function from WGS84 World Mercator EPSG:3395 coordinates to
WGS84 (GPS) EPSG:4326.
make_world_mercator_to_gps_function(tol: float = 1e-6) -> Callable[[Vec2], Tuple[float, float]]
Returns a function to transform WGS84 World Mercator EPSG:3395 location given as cartesian
2D coordinates x, y in meters into WGS84 decimal degrees as longitude and latitude ‐
EPSG:4326 as used by GPS.
Parameters
tol -- accuracy for latitude calculation
The GeoJSON format supports only straight lines so curved shapes are flattened to polylines and
polygons.
The properties are handled as a foreign member feature and is therefore not defined in the GeoJSON
specs. It is possible to provide a custom function to create these property objects.
Default implementation:
properties_maker(color: str, stroke_width: float, layer: str) -> dict[str, Any]
Returns the property dict:
{
"color": color,
"stroke-width": stroke_width,
"layer": layer,
}
Returning an empty dict prevents properties in the GeoJSON output and also avoids wraping
entities into "Feature" objects.
Parameters
properties_maker -- function to create a properties dict.
Class Methods
get_json_data() -> dict[str, Any]
Returns the result as a JSON-like data structure according the GeoJSON specs.
get_string(*, indent: int | str = 2) -> str
Returns the result as a JSON string.
Added in version 1.3.0.
CustomJSONBackend
Added in version 1.3.0.
class ezdxf.addons.drawing.json.CustomJSONBackend(orient_paths=False)
Creates a JSON-like output with a custom JSON scheme. This scheme supports curved shapes by a
SVG-path like structure and coordinates are not limited in any way. This backend can be used to
send geometries from a web-backend to a frontend.
The JSON scheme is documented in the source code:
https://github.com/mozman/ezdxf/blob/master/src/ezdxf/addons/drawing/json.py
Parameters
orient_paths -- orient exterior and hole paths on demand, exterior paths have
counter-clockwise orientation and holes have clockwise orientation.
Class Methods
get_json_data() -> list[dict[str, Any]]
Returns the result as a JSON-like data structure.
get_string(*, indent: int | str = 2) -> str
Returns the result as a JSON string.
Added in version 1.3.0.
Configuration
Additional options for the drawing add-on can be passed by the config argument of the Frontend
constructor __init__(). Not every option will be supported by all backends.
Usage:
my_config = Configuration(lineweight_scaling=2)
class ezdxf.addons.drawing.config.Configuration(pdsize: int | None = None, pdmode: int | None = None,
measurement: Measurement | None = None, show_defpoints: bool = False, proxy_graphic_policy:
ProxyGraphicPolicy = ProxyGraphicPolicy.SHOW, line_policy: LinePolicy = LinePolicy.ACCURATE,
hatch_policy: HatchPolicy = HatchPolicy.NORMAL, infinite_line_length: float = 20, lineweight_scaling:
float = 1.0, min_lineweight: float | None = None, min_dash_length: float = 0.1, max_flattening_distance:
float = 0.01, circle_approximation_count: int = 128, hatching_timeout: float = 30.0,
min_hatch_line_distance: float = 0.0001, color_policy: ColorPolicy = ColorPolicy.COLOR, custom_fg_color:
str = '#000000', background_policy: BackgroundPolicy = BackgroundPolicy.DEFAULT, custom_bg_color: str =
'#ffffff', lineweight_policy: LineweightPolicy = LineweightPolicy.ABSOLUTE, text_policy: TextPolicy =
TextPolicy.FILLING, image_policy: ImagePolicy = ImagePolicy.DISPLAY)
Configuration options for the drawing add-on.
pdsize the size to draw POINT entities (in drawing units) set to None to use the $PDSIZE value
from the dxf document header
┌──────┬───────────────────────────────────────┐
│ 0 │ 5% of draw area height │
├──────┼───────────────────────────────────────┤
│ <0 │ Specifies a percentage of the │
│ │ viewport size │
├──────┼───────────────────────────────────────┤
│ >0 │ Specifies an absolute size │
├──────┼───────────────────────────────────────┤
│ None │ use the $PDMODE value from the dxf │
│ │ document header │
└──────┴───────────────────────────────────────┘
Type int | None
pdmode point styling mode (see POINT documentation)
see Point class documentation
Type int | None
measurement
whether to use metric or imperial units as enum ezdxf.enums.Measurement
┌──────┬───────────────────────────────────────┐
│ 0 │ use imperial units (in, ft, yd, ...) │
├──────┼───────────────────────────────────────┤
│ 1 │ use metric units (ISO meters) │
├──────┼───────────────────────────────────────┤
│ None │ use the $MEASUREMENT value from the │
│ │ dxf document header │
└──────┴───────────────────────────────────────┘
Type ezdxf.enums.Measurement | None
show_defpoints
whether to show or filter out POINT entities on the defpoints layer
Type bool
proxy_graphic_policy
the action to take when a proxy graphic is encountered
Type ezdxf.addons.drawing.config.ProxyGraphicPolicy
line_policy
the method to use when drawing styled lines (eg dashed, dotted etc)
Type ezdxf.addons.drawing.config.LinePolicy
hatch_policy
the method to use when drawing HATCH entities
Type ezdxf.addons.drawing.config.HatchPolicy
infinite_line_length
the length to use when drawing infinite lines
Type float
lineweight_scaling
multiplies every lineweight by this factor; set this factor to 0.0 for a constant minimum
line width defined by the min_lineweight setting for all lineweights; the correct DXF
lineweight often looks too thick in SVG, so setting a factor < 1 can improve the visual
appearance
Type float
min_lineweight
the minimum line width in 1/300 inch; set to None for let the backend choose.
Type float | None
min_dash_length
the minimum length for a dash when drawing a styled line (default value is arbitrary)
Type float
max_flattening_distance
Max flattening distance in drawing units see Path.flattening documentation. The backend
implementation should calculate an appropriate value, like 1 screen- or paper pixel on the
output medium, but converted into drawing units. Sets Path() approximation accuracy
Type float
circle_approximation_count
Approximate a full circle by n segments, arcs have proportional less segments. Only used
for approximation of arcs in banded polylines.
Type int
hatching_timeout
hatching timeout for a single entity, very dense hatching patterns can cause a very long
execution time, the default timeout for a single entity is 30 seconds.
Type float
min_hatch_line_distance
minimum hatch line distance to render, narrower pattern lines are rendered as solid filling
Type float
color_policy
Type ezdxf.addons.drawing.config.ColorPolicy
custom_fg_color
Used for ColorPolicy.custom policy, custom foreground color as "#RRGGBBAA" color string
(RGB+alpha)
Type str
background_policy
Type ezdxf.addons.drawing.config.BackgroundPolicy
custom_bg_color
Used for BackgroundPolicy.custom policy, custom background color as "#RRGGBBAA" color
string (RGB+alpha)
Type str
lineweight_policy
Type ezdxf.addons.drawing.config.LineweightPolicy
text_policy
Type ezdxf.addons.drawing.config.TextPolicy
image_policy
the method for drawing IMAGE entities
Type ezdxf.addons.drawing.config.ImagePolicy
with_changes()
Returns a new frozen Configuration object with modified values.
BackgroundPolicy
class ezdxf.addons.drawing.config.BackgroundPolicy(*values)
This enum is used to define the background color.
DEFAULT
as resolved by the Frontend class
WHITE white background
BLACK black background
PAPERSPACE
default paperspace background
MODELSPACE
default modelspace background
OFF fully transparent background
CUSTOM custom background color by Configuration.custom_bg_color
ColorPolicy
class ezdxf.addons.drawing.config.ColorPolicy(*values)
This enum is used to define how to determine the line/fill color.
COLOR as resolved by the Frontend class
COLOR_SWAP_BW
as resolved by the Frontend class but swaps black and white
COLOR_NEGATIVE
invert all colors
MONOCHROME
maps all colors to gray scale in range [0%, 100%]
MONOCHROME_DARK_BG
maps all colors to gray scale in range [30%, 100%], brightens colors for dark backgrounds
MONOCHROME_LIGHT_BG
maps all colors to gray scale in range [0%, 70%], darkens colors for light backgrounds
BLACK maps all colors to black
WHITE maps all colors to white
CUSTOM maps all colors to custom color Configuration.custom_fg_color
HatchPolicy
class ezdxf.addons.drawing.config.HatchPolicy(*values)
The action to take when a HATCH entity is encountered
NORMAL render pattern and solid fillings
IGNORE do not show HATCH entities at all
SHOW_OUTLINE
show only the outline of HATCH entities
SHOW_SOLID
show HATCH entities as solid filling regardless of the pattern
ImagePolicy
class ezdxf.addons.drawing.config.ImagePolicy(*values)
This enum is used to define the image rendering.
DISPLAY
display images as they would appear in a regular CAD application
RECT display images as rectangles
MISSING
images are always rendered as-if they are missing (rectangle + path text)
PROXY images are rendered using their proxy representations (rectangle)
IGNORE ignore images entirely
LinePolicy
class ezdxf.addons.drawing.config.LinePolicy(*values)
This enum is used to define how to render linetypes.
NOTE:
Text and shapes in linetypes are not supported.
SOLID draw all lines as solid regardless of the linetype style
ACCURATE
render styled lines as accurately as possible
APPROXIMATE
ignored since v0.18.1 - uses always ACCURATE by default
LineweightPolicy
class ezdxf.addons.drawing.config.LineweightPolicy(*values)
This enum is used to define how to determine the lineweight.
ABSOLUTE
in mm as resolved by the Frontend class
RELATIVE
lineweight is relative to page size
RELATIVE_FIXED
fixed lineweight relative to page size for all strokes
ProxyGraphicPolicy
class ezdxf.addons.drawing.config.ProxyGraphicPolicy(*values)
The action to take when an entity with a proxy graphic is encountered
NOTE:
To get proxy graphics support proxy graphics have to be loaded: Set the global option
ezdxf.options.load_proxy_graphics to True, which is the default value.
This can not prevent drawing proxy graphic inside of blocks, because this is beyond the domain
of the drawing add-on!
IGNORE do not display proxy graphics (skip_entity will be called instead)
SHOW if the entity cannot be rendered directly (e.g. if not implemented) but a proxy is present:
display the proxy
PREFER display proxy graphics even for entities where direct rendering is available
TextPolicy
class ezdxf.addons.drawing.config.TextPolicy(*values)
This enum is used to define the text rendering.
FILLING
text is rendered as solid filling (default)
OUTLINE
text is rendered as outline paths
REPLACE_RECT
replace text by a rectangle
REPLACE_FILL
replace text by a filled rectangle
IGNORE ignore text entirely
Properties
class ezdxf.addons.drawing.properties.Properties
An implementation agnostic representation of DXF entity properties like color and linetype. These
properties represent the actual values after resolving all DXF specific rules like "by layer", "by
block" and so on.
color The actual color value of the DXF entity as "#RRGGBB" or "#RRGGBBAA" string. An alpha value
of "00" is opaque and "ff" is fully transparent.
rgb RGB values extract from the color value as tuple of integers.
luminance
Perceived luminance calculated from the color value as float in the range [0.0, 1.0].
linetype_name
The actual linetype name as string like "CONTINUOUS"
linetype_pattern
The simplified DXF linetype pattern as tuple of floats, all line elements and gaps are
values greater than 0.0 and 0.0 represents a point. Line or point elements do always
alternate with gap elements: line-gap-line-gap-point-gap and the pattern always ends with a
gap. The continuous line is an empty tuple.
linetype_scale
The scaling factor as float to apply to the linetype_pattern.
lineweight
The absolute lineweight to render in mm as float.
is_visible
Visibility flag as bool.
layer The actual layer name the entity resides on as UPPERCASE string.
font The FontFace used for text rendering or None.
filling
The actual Filling properties of the entity or None.
units The actual drawing units as InsertUnits enum.
LayerProperties
class ezdxf.addons.drawing.properties.LayerProperties
Actual layer properties, inherits from class Properties.
is_visible
Modified meaning: whether entities belonging to this layer should be drawn
layer Modified meaning: stores real layer name (mixed case)
LayoutProperties
class ezdxf.addons.drawing.properties.LayoutProperties
Actual layout properties.
name Layout name as string
units Layout units as InsertUnits enum.
property LayoutProperties.background_color: str
Returns the default layout background color.
property LayoutProperties.default_color: str
Returns the default layout foreground color.
property LayoutProperties.has_dark_background: bool
Returns True if the actual background-color is "dark".
LayoutProperties.set_colors(bg: str, fg: str | None = None) -> None
Setup default layout colors.
Required color format "#RRGGBB" or including alpha transparency "#RRGGBBAA".
RenderContext
class ezdxf.addons.drawing.properties.RenderContext(doc: Drawing | None = None, *, ctb: str | CTB = '',
export_mode: bool = False)
The render context for the given DXF document. The RenderContext resolves the properties of DXF
entities from the context they reside in to actual values like RGB colors, transparency, linewidth
and so on.
A given ctb file (plot style file) overrides the default properties for all layouts, which means
the plot style table stored in the layout is always ignored.
Parameters
• doc -- DXF document
• ctb -- path to a plot style table or a ColorDependentPlotStyles instance
• export_mode -- Whether to render the document as it would look when exported (plotted) by
a CAD application to a file such as pdf, or whether to render the document as it would
appear inside a CAD application.
resolve_aci_color(aci: int, resolved_layer: str) -> str
Resolve the aci color as hex color string: "#RRGGBB"
resolve_all(entity: DXFGraphic) -> Properties
Resolve all properties of entity.
resolve_color(entity: DXFGraphic, *, resolved_layer: str | None = None) -> str
Resolve the rgb-color of entity as hex color string: "#RRGGBB" or "#RRGGBBAA".
resolve_filling(entity: DXFGraphic) -> Filling | None
Resolve filling properties (SOLID, GRADIENT, PATTERN) of entity.
resolve_font(entity: DXFGraphic) -> FontFace | None
Resolve the text style of entity to a font name. Returns None for the default font.
resolve_layer(entity: DXFGraphic) -> str
Resolve the layer of entity, this is only relevant for entities inside of block references.
resolve_layer_properties(layer: Layer) -> LayerProperties
Resolve layer properties.
resolve_linetype(entity: DXFGraphic, *, resolved_layer: str | None = None) -> tuple[str,
Sequence[float]]
Resolve the linetype of entity. Returns a tuple of the linetype name as upper-case string
and the simplified linetype pattern as tuple of floats.
resolve_lineweight(entity: DXFGraphic, *, resolved_layer: str | None = None) -> float
Resolve the lineweight of entity in mm.
DXF stores the lineweight in mm times 100 (e.g. 0.13mm = 13). The smallest line weight is
0 and the biggest line weight is 211. The DXF/DWG format is limited to a fixed value
table, see: ezdxf.lldxf.const.VALID_DXF_LINEWEIGHTS
CAD applications draw lineweight 0mm as an undefined small value, to prevent backends to
draw nothing for lineweight 0mm the smallest return value is 0.01mm.
resolve_units() -> InsertUnits
resolve_visible(entity: DXFGraphic, *, resolved_layer: str | None = None) -> bool
Resolve the visibility state of entity. Returns True if entity is visible.
set_current_layout(layout: Layout, ctb: str | CTB = '')
Set the current layout and update layout specific properties.
Parameters
• layout -- modelspace or a paperspace layout
• ctb -- path to a plot style table or a ColorDependentPlotStyles instance
set_layer_properties_override(func: Callable[[Sequence[LayerProperties]], None] | None = None)
The function func is called with the current layer properties as argument after resetting
them, so the function can override the layer properties.
The RenderContext class can be used isolated from the drawing add-on to resolve DXF properties.
Frontend
class ezdxf.addons.drawing.frontend.Frontend(ctx: RenderContext, out: BackendInterface, config:
Configuration = Configuration.defaults(), bbox_cache: ezdxf.bbox.Cache = None)
Drawing frontend for 2D backends, responsible for decomposing entities into graphic primitives and
resolving entity properties.
By passing the bounding box cache of the modelspace entities can speed up paperspace rendering,
because the frontend can filter entities which are not visible in the VIEWPORT. Even passing in an
empty cache can speed up rendering time when multiple viewports need to be processed.
Parameters
• ctx -- the properties relevant to rendering derived from a DXF document
• out -- the 2D backend to draw to
• config -- settings to configure the drawing frontend and backend
• bbox_cache -- bounding box cache of the modelspace entities or an empty cache which will
be filled dynamically when rendering multiple viewports or None to disable bounding box
caching at all
log_message(message: str)
Log given message - override to alter behavior.
skip_entity(entity: DXFEntity, msg: str) -> None
Called for skipped entities - override to alter behavior.
override_properties(entity: DXFGraphic, properties: Properties) -> None
This method can change the resolved properties of an DXF entity.
The method has access to the DXF entity attributes, the current render context and the
resolved properties. It is recommended to modify only the resolved properties in this
method, because the DXF entities are not copies - except for virtual entities.
Changed in version 1.3.0: This method is the first function in the stack of new property
override functions. It is possible to push additional override functions onto this stack,
see also push_property_override_function().
push_property_override_function(override_fn: Callable[[DXFGraphic, Properties], None]) -> None
The override function can change the resolved properties of an DXF entity.
The override function has access to the DXF entity attributes and the resolved properties.
It is recommended to modify only the resolved properties in this function, because the DXF
entities are not copies - except for virtual entities.
The override functions are called after resolving the DXF attributes of an entity and
before the Frontend.draw_entity() method in the order from first to last.
Added in version 1.3.0.
pop_property_override_function() -> None
Remove the last function from the property override stack.
Does not raise an exception if the override stack is empty.
Added in version 1.3.0.
draw_layout(layout: Layout, finalize: bool = True, *, filter_func: Callable[[DXFGraphic], bool] |
None = None, layout_properties: LayoutProperties | None = None) -> None
Draw all entities of the given layout.
Draws the entities of the layout in the default or redefined redraw-order and calls the
finalize() method of the backend if requested. The default redraw order is the ascending
handle order not the order the entities are stored in the layout.
The method skips invisible entities and entities for which the given filter function
returns False.
Parameters
• layout -- layout to draw of type Layout
• finalize -- True if the finalize() method of the backend should be called
automatically
• filter_func -- function to filter DXf entities, the function should return False
if a given entity should be ignored
• layout_properties -- override the default layout properties
BackendInterface
class ezdxf.addons.drawing.backend.BackendInterface
Public interface definition for 2D rendering backends.
For more information read the source code: backend.py
Backend
class ezdxf.addons.drawing.backend.Backend
Abstract base class for concrete backend implementations and implements some default features.
For more information read the source code: backend.py
Details
The rendering is performed in two stages. The frontend traverses the DXF document structure, converting
each encountered entity into primitive drawing commands. These commands are fed to a backend which
implements the interface: Backend.
Although the resulting images will not be pixel-perfect with AutoCAD (which was taken as the ground truth
when developing this add-on) great care has been taken to achieve similar behavior in some areas:
• The algorithm for determining color should match AutoCAD. However, the color palette is not stored in
the DXF file, so the chosen colors may be different to what is expected. The RenderContext class
supports passing a plot style table (CTB-file) as custom color palette but uses the same palette as
AutoCAD by default.
• Text rendering is quite accurate, text positioning, alignment and word wrapping are very faithful.
Differences may occur if a different font from what was used by the CAD application but even in that
case, for supported backends, measurements are taken of the font being used to match text as closely as
possible.
• Visibility determination (based on which layers are visible) should match AutoCAD
SEE ALSO:
• draw_cad.py for a simple use of this module
• cad_viewer.py for an advanced use of this module
• Notes on Rendering DXF Content for additional behaviours documented during the development of this
add-on.
Geo Interface
Intended Usage
The intended usage of the ezdxf.addons.geo module is as tool to work with geospatial data in conjunction
with dedicated geospatial applications and libraries and the module can not and should not replicate
their functionality.
The only reimplemented feature is the most common WSG84 EPSG:3395 World Mercator projection, for
everything else use the dedicated packages like:
• pyproj - Cartographic projections and coordinate transformations library.
• Shapely - Manipulation and analysis of geometric objects in the Cartesian plane.
• PyShp - The Python Shapefile Library (PyShp) reads and writes ESRI Shapefiles in pure Python.
• GeoJSON - GeoJSON interface for Python.
• GDAL - Tools for programming and manipulating the GDAL Geospatial Data Abstraction Library.
• Fiona - Fiona is GDAL’s neat and nimble vector API for Python programmers.
• QGIS - A free and open source geographic information system.
• and many more …
This module provides support for the __geo_interface__: https://gist.github.com/sgillies/2217756
Which is also supported by Shapely, for supported types see the GeoJSON Standard and examples in ‐
Appendix-A.
SEE ALSO:
Tutorial for the Geo Add-on for loading GPX data into DXF files with an existing geo location
reference and exporting DXF entities as GeoJSON data.
Proxy From Mapping
The GeoProxy represents a __geo_interface__ mapping, create a new proxy by GeoProxy.parse() from an
external __geo_interface__ mapping. GeoProxy.to_dxf_entities() returns new DXF entities from this
mapping. Returns “Point” as Point entity, “LineString” as LWPolyline entity and “Polygon” as Hatch
entity or as separated LWPolyline entities (or both) and new in v0.16.6 as MPolygon. Supports
“MultiPoint”, “MultiLineString”, “MultiPolygon”, “GeometryCollection”, “Feature” and
“FeatureCollection”. Add new DXF entities to a layout by the Layout.add_entity() method.
Proxy From DXF Entity
The proxy() function or the constructor GeoProxy.from_dxf_entities() creates a new GeoProxy object from a
single DXF entity or from an iterable of DXF entities, entities without a corresponding representation
will be approximated.
Supported DXF entities are:
• POINT as “Point”
• LINE as “LineString”
• LWPOLYLINE as “LineString” if open and “Polygon” if closed
• POLYLINE as “LineString” if open and “Polygon” if closed, supports only 2D and 3D polylines, POLYMESH
and POLYFACE are not supported
• SOLID, TRACE, 3DFACE as “Polygon”
• CIRCLE, ARC, ELLIPSE and SPLINE by approximation as “LineString” if open and “Polygon” if closed
• HATCH and MPOLYGON as “Polygon”, holes are supported
WARNING:
This module does no extensive validity checks for “Polygon” objects and because DXF has different
requirements for HATCH boundary paths than the GeoJSON Standard, it is possible to create invalid
“Polygon” objects. It is recommended to check critical objects by a sophisticated geometry library
like Shapely.
Module Functions
ezdxf.addons.geo.proxy(entity: DXFGraphic | Iterable[DXFGraphic], distance: float =
MAX_FLATTENING_DISTANCE, force_line_string: bool = False) -> GeoProxy
Returns a GeoProxy object.
Parameters
• entity – a single DXF entity or iterable of DXF entities
• distance – maximum flattening distance for curve approximations
• force_line_string – by default this function returns Polygon objects for closed
geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument
force_line_string to True, this entities will be returned as LineString objects.
ezdxf.addons.geo.dxf_entities(geo_mapping: MutableMapping[str, Any], polygon=PolygonConversion.HATCH,
dxfattribs=None, *, post_process: Callable[[DXFGraphic, MutableMapping[str, Any]], None] | None = None)
-> Iterator[DXFGraphic]
Returns __geo_interface__ mappings as DXF entities.
The enum polygon determines the method to convert polygons, use PolygonConversion.HATCH for Hatch
entity, PolygonConversion.POLYLINE for LWPolyline or PolygonConversion.HATCH_AND_POLYLINE for
both. Option PolygonConversion.POLYLINE returns for the exterior path and each hole a separated
LWPolyline entity. The Hatch entity supports holes, but has no explicit borderline.
Yields Hatch always before LWPolyline entities.
PolygonConversion.MPOLYGON support was added in v0.16.6, which is like a Hatch entity with
additional borderlines, but the MPOLYGON entity is not a core DXF entity and DXF viewers,
applications and libraries my not support this entity. The DXF attribute color defines the
borderline color and fill_color the color of the solid filling.
The returned DXF entities can be added to a layout by the Layout.add_entity() method.
Parameters
• geo_mapping – __geo__interface__ mapping as dict or a Python object with a
__geo__interface__ property
• polygon – see PolygonConversion
• dxfattribs – dict with additional DXF attributes
• post_process – post process function of type PostProcessFunc that get the created DXF
entity and the geo mapping as input, see reference implementation assign_layers()
ezdxf.addons.geo.gfilter(entities: Iterable[DXFGraphic]) -> Iterator[DXFGraphic]
Filter DXF entities from iterable entities, which are incompatible to the __geo_reference__
interface.
GeoProxy Class
class ezdxf.addons.geo.GeoProxy(geo_mapping: MutableMapping[str, Any], places: int = 6)
Stores the __geo_interface__ mapping in a parsed and compiled form.
Stores coordinates as Vec3 objects and represents “Polygon” always as tuple (exterior, holes) even
without holes.
The GeoJSON specification recommends 6 decimal places for latitude and longitude which equates to
roughly 10cm of precision. You may need slightly more for certain applications, 9 decimal places
would be sufficient for professional survey-grade GPS coordinates.
Parameters
• geo_mapping – parsed and compiled __geo_interface__ mapping
• places – decimal places to round for __geo_interface__ export
__geo_interface__
Returns the __geo_interface__ compatible mapping as dict.
geotype
Property returns the top level entity type or None.
classmethod parse(geo_mapping: MutableMapping[str, Any]) -> Self
Parse and compile a __geo_interface__ mapping as dict or a Python object with a
__geo_interface__ property, does some basic syntax checks, converts all coordinates into
Vec3 objects, represents “Polygon” always as tuple (exterior, holes) even without holes.
classmethod from_dxf_entities(entity: DXFGraphic | Iterable[DXFGraphic], distance: float =
MAX_FLATTENING_DISTANCE, force_line_string: bool = False) -> GeoProxy
Constructor from a single DXF entity or an iterable of DXF entities.
Parameters
• entity – DXF entity or entities
• distance – maximum flattening distance for curve approximations
• force_line_string – by default this function returns Polygon objects for closed
geometries like CIRCLE, SOLID, closed POLYLINE and so on, by setting argument
force_line_string to True, this entities will be returned as LineString objects.
to_dxf_entities(polygon=PolygonConversion.HATCH, dxfattribs=None, *, post_process:
Callable[[DXFGraphic, MutableMapping[str, Any]], None] | None = None) -> Iterator[DXFGraphic]
Returns stored __geo_interface__ mappings as DXF entities.
The polygon argument determines the method to convert polygons, use 1 for Hatch entity, 2
for LWPolyline or 3 for both. Option 2 returns for the exterior path and each hole a
separated LWPolyline entity. The Hatch entity supports holes, but has no explicit
borderline.
Yields Hatch always before LWPolyline entities.
MPolygon support was added in v0.16.6, which is like a Hatch entity with additional
borderlines, but the MPOLYGON entity is not a core DXF entity and DXF viewers, applications
and libraries my not support this entity. The DXF attribute color defines the borderline
color and fill_color the color of the solid filling.
The returned DXF entities can be added to a layout by the Layout.add_entity() method.
Parameters
• polygon – see PolygonConversion
• dxfattribs – dict with additional DXF attributes
• post_process – post process function of type PostProcesFunc that get the created
DXF entity and the geo mapping as input, see reference implementation
assign_layers()
copy() -> GeoProxy
Returns a deep copy.
__iter__() -> Iterator[MutableMapping[str, Any]]
Iterate over all geometry entities.
Yields only “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString” and
“MultiPolygon” objects, returns the content of “GeometryCollection”, “FeatureCollection”
and “Feature” as geometry objects (“Point”, …).
wcs_to_crs(crs: Matrix44) -> None
Transform all coordinates recursive from WCS coordinates into Coordinate Reference System
(CRS) by transformation matrix crs inplace.
The CRS is defined by the GeoData entity, get the GeoData entity from the modelspace by
method get_geodata(). The CRS transformation matrix can be acquired form the GeoData
object by get_crs_transformation() method:
doc = ezdxf.readfile('file.dxf')
msp = doc.modelspace()
geodata = msp.get_geodata()
if geodata:
matrix, axis_ordering = geodata.get_crs_transformation()
If axis_ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON
(see chapter 3.1.1).
Parameters
crs – transformation matrix of type Matrix44
crs_to_wcs(crs: Matrix44) -> None
Transform all coordinates recursive from CRS into WCS coordinates by transformation matrix
crs inplace, see also GeoProxy.wcs_to_crs().
Parameters
crs – transformation matrix of type Matrix44
globe_to_map(func: Callable[[Vec3], Vec3] | None = None) -> None
Transform all coordinates recursive from globe representation in longitude and latitude in
decimal degrees into 2D map representation in meters.
Default is WGS84 EPSG:4326 (GPS) to WGS84 EPSG:3395 World Mercator function
wgs84_4326_to_3395().
Use the pyproj package to write a custom projection function as needed.
Parameters
func – custom transformation function, which takes one Vec3 object as argument and
returns the result as a Vec3 object.
map_to_globe(func: Callable[[Vec3], Vec3] | None = None) -> None
Transform all coordinates recursive from 2D map representation in meters into globe
representation as longitude and latitude in decimal degrees.
Default is WGS84 EPSG:3395 World Mercator to WGS84 EPSG:4326 GPS function
wgs84_3395_to_4326().
Use the pyproj package to write a custom projection function as needed.
Parameters
func – custom transformation function, which takes one Vec3 object as argument and
returns the result as a Vec3 object.
apply(func: Callable[[Vec3], Vec3]) -> None
Apply the transformation function func recursive to all coordinates.
Parameters
func – transformation function as Callable[[Vec3], Vec3]
filter(func: Callable[[GeoProxy], bool]) -> None
Removes all mappings for which func() returns False. The function only has to handle
Point, LineString and Polygon entities, other entities like MultiPolygon are divided into
separate entities also any collection.
Helper Functions
ezdxf.addons.geo.wgs84_4326_to_3395(location: Vec3) -> Vec3
Transform WGS84 EPSG:4326 location given as latitude and longitude in decimal degrees as used by
GPS into World Mercator cartesian 2D coordinates in meters EPSG:3395.
Parameters
location – Vec3 object, x-attribute represents the longitude value (East-West) in decimal
degrees and the y-attribute represents the latitude value (North-South) in decimal degrees.
ezdxf.addons.geo.wgs84_3395_to_4326(location: Vec3, tol: float = 1e-6) -> Vec3
Transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordinates x, y in meters
into WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS.
Parameters
• location – Vec3 object, z-axis is ignored
• tol – accuracy for latitude calculation
ezdxf.addons.geo.dms2dd(d: float, m: float = 0, s: float = 0) -> float
Convert degree, minutes, seconds into decimal degrees.
ezdxf.addons.geo.dd2dms(dd: float) -> tuple[float, float, float]
Convert decimal degrees into degree, minutes, seconds.
ezdxf.addons.geo.assign_layers(entity: DXFGraphic, mapping: MutableMapping[str, Any]) -> None
Reference implementation for a post_process() function.
SEE ALSO:
dxf_entities()
def assign_layers(entity: DXFGraphic, mapping: GeoMapping) -> None:
properties = mapping.get("properties)
if properties is None:
return
layer = properties.get("layer")
if layer:
entity.dxf.layer = layer
Types
class ezdxf.addons.geo.PolygonConversion(*values)
Polygon conversion types as IntEnum.
HATCH
POLYLINE
HATCH_AND_POLYLINE
MPOLYGON
ezdxf.addons.geo.GeoMapping
alias of MutableMapping[str, Any]
ezdxf.addons.geo.PostProcessFunc
alias of Callable[[DXFGraphic, MutableMapping[str, Any]], None]
Importer
NOTE:
This module exists for compatibility reasons only and is superseded by the newer and more robust core
module ezdxf.xref. For information on how to use it, see the Importing Data and Resources section.
This add-on is no longer maintained and will not receive updates or bug fixes.
This add-on is meant to import graphical entities from another DXF drawing and their required table
entries like LAYER, LTYPE or STYLE.
Because of complex extensibility of the DXF format and the lack of sufficient documentation, I decided to
remove most of the possible source drawing dependencies from imported entities, therefore imported
entities may not look the same as the original entities in the source drawing, but at least the geometry
should be the same and the DXF file does not break.
Removed data which could contain source drawing dependencies: Extension Dictionaries, AppData and XDATA.
WARNING:
DON’T EXPECT PERFECT RESULTS!
The Importer supports following data import:
• entities which are really safe to import: LINE, POINT, CIRCLE, ARC, TEXT, SOLID, TRACE, 3DFACE,
SHAPE, POLYLINE, ATTRIB, ATTDEF, INSERT, ELLIPSE, MTEXT, LWPOLYLINE, SPLINE, HATCH, MESH, XLINE,
RAY, DIMENSION, LEADER, VIEWPORT
• table and table entry import is restricted to LAYER, LTYPE, STYLE, DIMSTYLE
• import of BLOCK definitions is supported
• import of paper space layouts is supported
Import of DXF objects from the OBJECTS section is not supported.
DIMSTYLE override for entities DIMENSION and LEADER is not supported.
Example:
import ezdxf
from ezdxf.addons import Importer
sdoc = ezdxf.readfile('original.dxf')
tdoc = ezdxf.new()
importer = Importer(sdoc, tdoc)
# import all entities from source modelspace into modelspace of the target drawing
importer.import_modelspace()
# import all paperspace layouts from source drawing
importer.import_paperspace_layouts()
# import all CIRCLE and LINE entities from source modelspace into an arbitrary target layout.
# create target layout
tblock = tdoc.blocks.new('SOURCE_ENTS')
# query source entities
ents = sdoc.modelspace().query('CIRCLE LINE')
# import source entities into target block
importer.import_entities(ents, tblock)
# This is ALWAYS the last & required step, without finalizing the target drawing is maybe invalid!
# This step imports all additional required table entries and block definitions.
importer.finalize()
tdoc.saveas('imported.dxf')
class ezdxf.addons.importer.Importer(source: Drawing, target: Drawing)
The Importer class is central element for importing data from other DXF documents.
Parameters
• source – source Drawing
• target – target Drawing
source source DXF document
target target DXF document
used_layers
Set of used layer names as string, AutoCAD accepts layer names without a LAYER table entry.
used_linetypes
Set of used linetype names as string, these linetypes require a TABLE entry or AutoCAD will
crash.
used_styles
Set of used text style names, these text styles require a TABLE entry or AutoCAD will
crash.
used_dimstyles
Set of used dimension style names, these dimension styles require a TABLE entry or AutoCAD
will crash.
finalize() -> None
Finalize the import by importing required table entries and BLOCK definitions, without
finalization the target document is maybe invalid for AutoCAD. Call the finalize() method
as last step of the import process.
import_block(block_name: str, rename=True) -> str
Import one BLOCK definition from source document.
If the BLOCK already exist the BLOCK will be renamed if argument rename is True, otherwise
the existing BLOCK in the target document will be used instead of the BLOCK in the source
document. Required name resolving for imported block references (INSERT), will be done in
the Importer.finalize() method.
To replace an existing BLOCK in the target document, just delete it before importing data:
target.blocks.delete_block(block_name, safe=False)
Parameters
• block_name – name of BLOCK to import
• rename – rename BLOCK if a BLOCK with the same name already exist in target
document
Returns: (renamed) BLOCK name
Raises ValueError – BLOCK in source document not found (defined)
import_blocks(block_names: Iterable[str], rename=False) -> None
Import all BLOCK definitions from source document.
If a BLOCK already exist the BLOCK will be renamed if argument rename is True, otherwise
the existing BLOCK in the target document will be used instead of the BLOCK from the source
document. Required name resolving for imported BLOCK references (INSERT), will be done in
the Importer.finalize() method.
Parameters
• block_names – names of BLOCK definitions to import
• rename – rename BLOCK if a BLOCK with the same name already exist in target
document
Raises ValueError – BLOCK in source document not found (defined)
import_entities(entities: Iterable[DXFEntity], target_layout: BaseLayout | None = None) -> None
Import all entities into target_layout or the modelspace of the target document, if
target_layout is None.
Parameters
• entities – Iterable of DXF entities
• target_layout – any layout (modelspace, paperspace or block) from the target
document
Raises DXFStructureError – target_layout is not a layout of target document
import_entity(entity: DXFEntity, target_layout: BaseLayout | None = None) -> None
Imports a single DXF entity into target_layout or the modelspace of the target document, if
target_layout is None.
Parameters
• entity – DXF entity to import
• target_layout – any layout (modelspace, paperspace or block) from the target
document
Raises DXFStructureError – target_layout is not a layout of target document
import_modelspace(target_layout: BaseLayout | None = None) -> None
Import all entities from source modelspace into target_layout or the modelspace of the
target document, if target_layout is None.
Parameters
target_layout – any layout (modelspace, paperspace or block) from the target
document
Raises DXFStructureError – target_layout is not a layout of target document
import_paperspace_layout(name: str) -> Layout
Import paperspace layout name into the target document.
Recreates the source paperspace layout in the target document, renames the target
paperspace if a paperspace with same name already exist and imports all entities from the
source paperspace into the target paperspace.
Parameters
name – source paper space name as string
Returns: new created target paperspace Layout
Raises
• KeyError – source paperspace does not exist
• DXFTypeError – invalid modelspace import
import_paperspace_layouts() -> None
Import all paperspace layouts and their content into the target document. Target layouts
will be renamed if a layout with the same name already exist. Layouts will be imported in
original tab order.
import_shape_files(fonts: set[str]) -> None
Import shape file table entries from the source document into the target document. Shape
file entries are stored in the styles table but without a name.
import_table(name: str, entries: str | Iterable[str] = '*', replace=False) -> None
Import specific table entries from the source document into the target document.
Parameters
• name – valid table names are “layers”, “linetypes” and “styles”
• entries – Iterable of table names as strings, or a single table name or “*” for
all table entries
• replace – True to replace the already existing table entry else ignore existing
entries
Raises TypeError – unsupported table type
import_tables(table_names: str | Iterable[str] = '*', replace=False) -> None
Import DXF tables from the source document into the target document.
Parameters
• table_names – iterable of tables names as strings, or a single table name as
string or “*” for all supported tables
• replace – True to replace already existing table entries else ignore existing
entries
Raises TypeError – unsupported table type
recreate_source_layout(name: str) -> Layout
Recreate source paperspace layout name in the target document. The layout will be renamed
if name already exist in the target document. Returns target modelspace for layout name
“Model”.
Parameters
name – layout name as string
Raises KeyError – if source layout name not exist
dxf2code
Translate DXF entities and structures into Python source code.
Short example:
import ezdxf
from ezdxf.addons.dxf2code import entities_to_code, block_to_code
doc = ezdxf.readfile('original.dxf')
msp = doc.modelspace()
source = entities_to_code(msp)
# create source code for a block definition
block_source = block_to_code(doc.blocks['MyBlock'])
# merge source code objects
source.merge(block_source)
with open('source.py', mode='wt') as f:
f.write(source.import_str())
f.write('\n\n')
f.write(source.code_str())
f.write('\n')
ezdxf.addons.dxf2code.entities_to_code(entities: Iterable[DXFEntity], layout: str = 'layout', ignore:
Iterable[str] | None = None) -> Code
Translates DXF entities into Python source code to recreate this entities by ezdxf.
Parameters
• entities – iterable of DXFEntity
• layout – variable name of the layout (model space or block) as string
• ignore – iterable of entities types to ignore as strings like ['IMAGE', 'DIMENSION']
Returns
Code
ezdxf.addons.dxf2code.block_to_code(block: BlockLayout, drawing: str = 'doc', ignore: Iterable[str] |
None = None) -> Code
Translates a BLOCK into Python source code to recreate the BLOCK by ezdxf.
Parameters
• block – block definition layout
• drawing – variable name of the drawing as string
• ignore – iterable of entities types to ignore as strings like [‘IMAGE’, ‘DIMENSION’]
Returns
Code
ezdxf.addons.dxf2code.table_entries_to_code(entities: Iterable[DXFEntity], drawing='doc') -> Code
ezdxf.addons.dxf2code.black(code: str, line_length=88, fast: bool = True) -> str
Returns the source code as a single string formatted by Black
Requires the installed Black formatter:
pip3 install black
Parameters
• code – source code
• line_length – max. source code line length
• fast – True for fast mode, False to check that the reformatted code is valid
Raises ImportError – Black is not available
class ezdxf.addons.dxf2code.Code
Source code container.
code Source code line storage, store lines without line ending \\n
imports
source code line storage for global imports, store lines without line ending \\n
layers Layers used by the generated source code, AutoCAD accepts layer names without a LAYER table
entry.
linetypes
Linetypes used by the generated source code, these linetypes require a TABLE entry or
AutoCAD will crash.
styles Text styles used by the generated source code, these text styles require a TABLE entry or
AutoCAD will crash.
dimstyles
Dimension styles used by the generated source code, these dimension styles require a TABLE
entry or AutoCAD will crash.
blocks Blocks used by the generated source code, these blocks require a BLOCK definition in the
BLOCKS section or AutoCAD will crash.
code_str(indent: int = 0) -> str
Returns the source code as a single string.
Parameters
indent – source code indentation count by spaces
black_code_str(line_length=88) -> str
Returns the source code as a single string formatted by Black
Parameters
line_length – max. source code line length
Raises ImportError – Black is not available
import_str(indent: int = 0) -> str
Returns required imports as a single string.
Parameters
indent – source code indentation count by spaces
merge(code: Code, indent: int = 0) -> None
Add another Code object.
add_import(statement: str) -> None
Add import statement, identical import statements are merged together.
add_line(code: str, indent: int = 0) -> None
Add a single source code line without line ending \n.
add_lines(code: Iterable[str], indent: int = 0) -> None
Add multiple source code lines without line ending \n.
iterdxf
This add-on allows iterating over entities of the modelspace of really big (> 5GB) DXF files which do not
fit into memory by only loading one entity at the time. Only ASCII DXF files are supported.
The entities are regular DXFGraphic objects with access to all supported DXF attributes, this entities
can be written to new DXF files created by the IterDXF.export() method. The new add_foreign_entity()
method allows also to add this entities to new regular ezdxf drawings (except for the INSERT entity), but
resources like linetype and style are removed, only layer will be preserved but only with default
attributes like color 7 and linetype CONTINUOUS.
The following example shows how to split a big DXF files into several separated DXF files which contains
only LINE, TEXT or POLYLINE entities.
from ezdxf.addons import iterdxf
doc = iterdxf.opendxf('big.dxf')
line_exporter = doc.export('line.dxf')
text_exporter = doc.export('text.dxf')
polyline_exporter = doc.export('polyline.dxf')
try:
for entity in doc.modelspace():
if entity.dxftype() == 'LINE':
line_exporter.write(entity)
elif entity.dxftype() == 'TEXT':
text_exporter.write(entity)
elif entity.dxftype() == 'POLYLINE':
polyline_exporter.write(entity)
finally:
line_exporter.close()
text_exporter.close()
polyline_exporter.close()
doc.close()
Supported DXF types:
3DFACE, ARC, ATTDEF, ATTRIB, CIRCLE, DIMENSION, ELLIPSE, HATCH, HELIX, IMAGE, INSERT, LEADER, LINE,
LWPOLYLINE, MESH, MLEADER, MLINE, MTEXT, POINT, POLYLINE, RAY, SHAPE, SOLID, SPLINE, TEXT, TRACE, VERTEX,
WIPEOUT, XLINE
Transfer simple entities to another DXF document, this works for some supported entities, except for
entities with strong dependencies to the original document like INSERT look at add_foreign_entity() for
all supported types:
newdoc = ezdxf.new()
msp = newdoc.modelspace()
# line is an entity from a big source file
msp.add_foreign_entity(line)
# and so on ...
msp.add_foreign_entity(lwpolyline)
msp.add_foreign_entity(mesh)
msp.add_foreign_entity(polyface)
Transfer MESH and POLYFACE (dxftype for POLYFACE and POLYMESH is POLYLINE!) entities into a new DXF
document by the MeshTransformer class:
from ezdxf.render import MeshTransformer
# mesh is MESH from a big source file
t = MeshTransformer.from_mesh(mesh)
# create a new MESH entity from MeshTransformer
t.render(msp)
# polyface is POLYFACE from a big source file
t = MeshTransformer.from_polyface(polyface)
# create a new POLYMESH entity from MeshTransformer
t.render_polyface(msp)
Another way to import entities from a big source file into new DXF documents is to split the big file
into smaller parts and use the Importer add-on for a more safe entity import.
ezdxf.addons.iterdxf.opendxf(filename: Path | str, errors: str = 'surrogateescape') -> IterDXF
Open DXF file for iterating, be sure to open valid DXF files, no DXF structure checks will be
applied.
Use this function to split up big DXF files as shown in the example above.
Parameters
• filename – DXF filename of a seekable DXF file.
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• DXFStructureError – invalid or incomplete DXF file
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
ezdxf.addons.iterdxf.modelspace(filename: Path | str, types: Iterable[str] | None = None, errors: str =
'surrogateescape') -> Iterable[DXFGraphic]
Iterate over all modelspace entities as DXFGraphic objects of a seekable file.
Use this function to iterate “quick” over modelspace entities of a DXF file, filtering DXF types
may speed up things if many entity types will be skipped.
Parameters
• filename – filename of a seekable DXF file
• types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all
supported types.
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• DXFStructureError – invalid or incomplete DXF file
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
ezdxf.addons.iterdxf.single_pass_modelspace(stream: BinaryIO, types: Iterable[str] | None = None, errors:
str = 'surrogateescape') -> Iterable[DXFGraphic]
Iterate over all modelspace entities as DXFGraphic objects in a single pass.
Use this function to ‘quick’ iterate over modelspace entities of a not seekable binary DXF stream,
filtering DXF types may speed up things if many entity types will be skipped.
Parameters
• stream – (not seekable) binary DXF stream
• types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all
supported types.
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• DXFStructureError – Invalid or incomplete DXF file
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
class ezdxf.addons.iterdxf.IterDXF
export(name: Path | str) -> IterDXFWriter
Returns a companion object to export parts from the source DXF file into another DXF file,
the new file will have the same HEADER, CLASSES, TABLES, BLOCKS and OBJECTS sections, which
guarantees all necessary dependencies are present in the new file.
Parameters
name – filename, no special requirements
modelspace(types: Iterable[str] | None = None) -> Iterable[DXFGraphic]
Returns an iterator for all supported DXF entities in the modelspace. These entities are
regular DXFGraphic objects but without a valid document assigned. It is not possible to add
these entities to other ezdxf documents.
It is only possible to recreate the objects by factory functions base on attributes of the
source entity. For MESH, POLYMESH and POLYFACE it is possible to use the MeshTransformer
class to render (recreate) this objects as new entities in another document.
Parameters
types – DXF types like ['LINE', '3DFACE'] which should be returned, None returns all
supported types.
close()
Safe closing source DXF file.
class ezdxf.addons.iterdxf.IterDXFWriter
write(entity: DXFGraphic)
Write a DXF entity from the source DXF file to the export file.
Don’t write entities from different documents than the source DXF file, dependencies and
resources will not match, maybe it will work once, but not in a reliable way for different
DXF documents.
close()
Safe closing of exported DXF file. Copying of OBJECTS section happens only at closing the
file, without closing the new DXF file is invalid.
ODA File Converter Support
Use an installed ODA File Converter for converting between different versions of .dwg, .dxb and .dxf.
WARNING:
Execution of an external application is a big security issue! Especially when the path to the
executable can be altered.
To avoid this problem delete the ezdxf.addons.odafc.py module.
Install ODA File Converter
The ODA File Converter has to be installed by the user, the application is available for Windows XP,
Windows 7 or later, Mac OS X, and Linux in 32/64-bit RPM and DEB format.
AppImage Support
The option “unix_exec_path” defines an executable for Linux and macOS, this executable overrides the
default command ODAFileConverter. Assign an absolute path to the executable to that key and if the
executable is not found the add-on falls back to the ODAFileConverter command.
The option “unix_exec_path” also adds support for AppImages provided by the Open Design Alliance.
Download the AppImage file and store it in a folder of your choice (e.g. ~/Apps) and make the file
executable:
chmod a+x ~/Apps/ODAFileConverter_QT5_lnxX64_8.3dll_23.9.AppImage
Add the absolute path as config option “unix_exec_path” to the “odafc-addon” section:
[odafc-addon]
win_exec_path = "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe"
unix_exec_path = "/home/<your user name>/Apps/ODAFileConverter_QT5_lnxX64_8.3dll_23.9.AppImage"
This overrides the default command ODAFileConverter and if the executable is not found the add-on falls
back to the ODAFileConverter command.
SEE ALSO:
For more information about config files see section: Global Options Object
Suppressed GUI
On Windows the GUI of the ODA File Converter is suppressed, on Linux you may have to install the xvfb
package to prevent this, for macOS is no solution known.
Supported DXF and DWG Versions
ODA File Converter version strings, you can use any of this strings to specify a version, 'R..' and
'AC....' strings will be automatically mapped to 'ACAD....' strings:
┌──────────┬───────────────┬─────────┐
│ ODAFC │ ezdxf │ Version │
├──────────┼───────────────┼─────────┤
│ ACAD9 │ not supported │ AC1004 │
├──────────┼───────────────┼─────────┤
│ ACAD10 │ not supported │ AC1006 │
├──────────┼───────────────┼─────────┤
│ ACAD12 │ R12 │ AC1009 │
├──────────┼───────────────┼─────────┤
│ ACAD13 │ R13 │ AC1012 │
├──────────┼───────────────┼─────────┤
│ ACAD14 │ R14 │ AC1014 │
├──────────┼───────────────┼─────────┤
│ ACAD2000 │ R2000 │ AC1015 │
├──────────┼───────────────┼─────────┤
│ ACAD2004 │ R2004 │ AC1018 │
├──────────┼───────────────┼─────────┤
│ ACAD2007 │ R2007 │ AC1021 │
├──────────┼───────────────┼─────────┤
│ ACAD2010 │ R2010 │ AC1024 │
├──────────┼───────────────┼─────────┤
│ ACAD2013 │ R2013 │ AC1027 │
├──────────┼───────────────┼─────────┤
│ ACAD2018 │ R2018 │ AC1032 │
└──────────┴───────────────┴─────────┘
Config
On Windows the path to the ODAFileConverter.exe executable is stored in the config file (see
ezdxf.options) in the “odafc-addon” section as key “win_exec_path”, the default entry is:
[odafc-addon]
win_exec_path = "C:\Program Files\ODA\ODAFileConverter\ODAFileConverter.exe"
unix_exec_path =
On Linux and macOS the ODAFileConverter command is located by the shutil.which() function but can be
overridden since version 1.0 by the key “linux_exec_path”.
Usage
from ezdxf.addons import odafc
# Load a DWG file
doc = odafc.readfile('my.dwg')
# Use loaded document like any other ezdxf document
print(f'Document loaded as DXF version: {doc.dxfversion}.')
msp = doc.modelspace()
...
# Export document as DWG file for AutoCAD R2018
odafc.export_dwg(doc, 'my_R2018.dwg', version='R2018')
ezdxf.addons.odafc.win_exec_path
Path to installed ODA File Converter executable on Windows systems, default is "C:\Program
Files\ODA\ODAFileConverter\ODAFileConverter.exe".
ezdxf.addons.odafc.unix_exec_path
Absolute path to a Linux or macOS executable if set, otherwise an empty string and the default
command ODAFileConverter is used.
ezdxf.addons.odafc.is_installed() -> bool
Returns True if the ODAFileConverter is installed.
ezdxf.addons.odafc.readfile(filename: str | PathLike, version: str | None = None, *, audit: bool = False)
-> Drawing
Uses an installed ODA File Converter to convert a DWG/DXB/DXF file into a temporary DXF file and
load this file by ezdxf.
Parameters
• filename – file to load by ODA File Converter
• version – load file as specific DXF version, by default the same version as the source
file or if not detectable the latest by ezdxf supported version.
• audit – audit source file before loading
Raises
• FileNotFoundError – source file not found
• odafc.UnknownODAFCError – conversion failed for unknown reasons
• odafc.UnsupportedVersion – invalid DWG version specified
• odafc.UnsupportedFileFormat – unsupported file extension
• odafc.ODAFCNotInstalledError – ODA File Converter not installed
ezdxf.addons.odafc.export_dwg(doc: Drawing, filename: str | PathLike, version: str | None = None, *,
audit: bool = False, replace: bool = False) -> None
Uses an installed ODA File Converter to export the DXF document doc as a DWG file.
A temporary DXF file will be created and converted to DWG by the ODA File Converter. If version is
not specified the DXF version of the source document is used.
Parameters
• doc – ezdxf DXF document as Drawing object
• filename – output DWG filename, the extension will be set to “.dwg”
• version – DWG version to export, by default the same version as the source document.
• audit – audit source file by ODA File Converter at exporting
• replace – replace existing DWG file if True
Raises
• FileExistsError – target file already exists, and argument replace is
False
• FileNotFoundError – parent directory of target file does not exist
• odafc.UnknownODAFCError – exporting DWG failed for unknown reasons
• odafc.ODAFCNotInstalledError – ODA File Converter not installed
ezdxf.addons.odafc.convert(source: str | PathLike, dest: str | PathLike = '', *, version='R2018',
audit=True, replace=False)
Convert source file to dest file.
The file extension defines the target format e.g. convert("test.dxf", "Test.dwg") converts the
source file to a DWG file. If dest is an empty string the conversion depends on the source file
format and is DXF to DWG or DWG to DXF. To convert DXF to DXF an explicit destination filename is
required: convert("r12.dxf", "r2013.dxf", version="R2013")
Parameters
• source – source file
• dest – destination file, an empty string uses the source filename with the extension of
the target format e.g. “test.dxf” -> “test.dwg”
• version – output DXF/DWG version e.g. “ACAD2018”, “R2018”, “AC1032”
• audit – audit files
• replace – replace existing destination file
Raises
• FileNotFoundError – source file or destination folder does not exist
• FileExistsError – destination file already exists and argument replace
is False
• odafc.UnsupportedVersion – invalid DXF version specified
• odafc.UnsupportedFileFormat – unsupported file extension
• odafc.UnknownODAFCError – conversion failed for unknown reasons
• odafc.ODAFCNotInstalledError – ODA File Converter not installed
R12 Export
Added in version 1.1.
This module exports any DXF file as a simple DXF R12 file. Many complex entities will be converted into
DXF primitives. This exporter is intended for creating a simple file format as an input format for other
software such as laser cutters. In order to get a file that can be edited well in a CAD application, the
results of the ODA file converter are much better.
Usage
import ezdxf
from ezdxf.addons import r12export
doc = ezdxf.readfile("any.dxf")
r12export.saveas(doc, "r12.dxf")
Converted Entity Types
┌─────────────┬───────────────────────────────────────┐
│ LWPOLYLINE │ translated to POLYLINE │
├─────────────┼───────────────────────────────────────┤
│ MESH │ translated to POLYLINE (PolyfaceMesh) │
├─────────────┼───────────────────────────────────────┤
│ SPLINE │ flattened to POLYLINE │
├─────────────┼───────────────────────────────────────┤
│ ELLIPSE │ flattened to POLYLINE │
├─────────────┼───────────────────────────────────────┤
│ MTEXT │ exploded into DXF primitives │
├─────────────┼───────────────────────────────────────┤
│ LEADER │ exploded into DXF primitives │
├─────────────┼───────────────────────────────────────┤
│ MLEADER │ exploded into DXF primitives │
├─────────────┼───────────────────────────────────────┤
│ MULTILEADER │ exploded into DXF primitives │
├─────────────┼───────────────────────────────────────┤
│ MLINE │ exploded into DXF primitives │
├─────────────┼───────────────────────────────────────┤
│ HATCH │ exploded into DXF primitives │
├─────────────┼───────────────────────────────────────┤
│ MPOLYGON │ exploded into DXF primitives │
├─────────────┼───────────────────────────────────────┤
│ ACAD_TABLE │ export of pre-rendered BLOCK content │
└─────────────┴───────────────────────────────────────┘
For proxy- or unknown entities the available proxy graphic will be exported as DXF primitives.
Limitations
• Explosion of MTEXT into DXF primitives is not perfect
• Pattern rendering for complex HATCH entities has issues
• Solid fill rendering for complex HATCH entities has issues
ODA File Converter
The advantage of the r12export module is that the ODA file converter isn’t needed, but the ODA file
converter will produce a much better result:
from ezdxf.addons import odafc
odafc.convert("any.dxf", "r12.dxf", version="R12")
Functions
┌─────────┬───────────────────────────────────────┐
│ write │ Write a DXF document as DXF version │
│ │ R12 to a text stream. │
├─────────┼───────────────────────────────────────┤
│ saveas │ Write a DXF document as DXF version │
│ │ R12 to a file. │
├─────────┼───────────────────────────────────────┤
│ convert │ Export and reload DXF document as DXF │
│ │ version R12. │
└─────────┴───────────────────────────────────────┘
ezdxf.addons.r12export.write(doc: Drawing, stream: TextIO, *, max_sagitta: float = MAX_SAGITTA) -> None
Write a DXF document as DXF version R12 to a text stream. The max_sagitta argument determines the
accuracy of the curve flatting for SPLINE and ELLIPSE entities.
Parameters
• doc – DXF document to export
• stream – output stream, use doc.encoding as encoding
• max_sagitta – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.
ezdxf.addons.r12export.saveas(doc: Drawing, filepath: str | PathLike, *, max_sagitta: float =
MAX_SAGITTA) -> None
Write a DXF document as DXF version R12 to a file. The max_sagitta argument determines the
accuracy of the curve flatting for SPLINE and ELLIPSE entities.
Parameters
• doc – DXF document to export
• filepath – output filename
• max_sagitta – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.
ezdxf.addons.r12export.convert(doc: Drawing, *, max_sagitta: float = MAX_SAGITTA) -> Drawing
Export and reload DXF document as DXF version R12.
Writes the DXF document into a temporary file at the file-system and reloads this file by the
ezdxf.readfile() function.
r12writer
The fast file/stream writer creates simple DXF R12 drawings with just an ENTITIES section. The HEADER,
TABLES and BLOCKS sections are not present except FIXED-TABLES are written. Only LINE, CIRCLE, ARC, TEXT,
POINT, SOLID, 3DFACE and POLYLINE entities are supported. FIXED-TABLES is a predefined TABLES section,
which will be written, if the init argument fixed_tables of R12FastStreamWriter is True.
The R12FastStreamWriter writes the DXF entities as strings direct to the stream without creating an
in-memory drawing and therefore the processing is very fast.
Because of the lack of a BLOCKS section, BLOCK/INSERT can not be used. Layers can be used, but this
layers have a default setting color = 7 (black/white) and linetype = 'Continuous'. If writing the
FIXED-TABLES, some predefined text styles and line types are available, else text style is always
'STANDARD' and line type is always 'ByLayer'.
If using FIXED-TABLES, following predefined line types are available:
• CONTINUOUS
• CENTER ____ _ ____ _ ____ _ ____ _ ____ _ ____
• CENTERX2 ________ __ ________ __ ________
• CENTER2 ____ _ ____ _ ____ _ ____ _ ____
• DASHED __ __ __ __ __ __ __ __ __ __ __ __ __ _
• DASHEDX2 ____ ____ ____ ____ ____ ____
• DASHED2 _ _ _ _ _ _ _ _ _ _ _ _ _ _
• PHANTOM ______ __ __ ______ __ __ ______
• PHANTOMX2 ____________ ____ ____ ____________
• PHANTOM2 ___ _ _ ___ _ _ ___ _ _ ___ _ _ ___
• DASHDOT __ . __ . __ . __ . __ . __ . __ . __
• DASHDOTX2 ____ . ____ . ____ . ____
• DASHDOT2 _ . _ . _ . _ . _ . _ . _ . _
• DOT . . . . . . . . . . . . . . . .
• DOTX2 . . . . . . . .
• DOT2 . . . . . . . . . . . . . . . . . . .
• DIVIDE __ . . __ . . __ . . __ . . __ . . __
• DIVIDEX2 ____ . . ____ . . ____ . . ____
• DIVIDE2 _ . _ . _ . _ . _ . _ . _ . _
If using FIXED-TABLES, following predefined text styles are available:
• OpenSans
• OpenSansCondensed-Light
Tutorial
A simple example with different DXF entities:
from random import random
from ezdxf.addons import r12writer
with r12writer("quick_and_dirty_dxf_r12.dxf") as dxf:
dxf.add_line((0, 0), (17, 23))
dxf.add_circle((0, 0), radius=2)
dxf.add_arc((0, 0), radius=3, start=0, end=175)
dxf.add_solid([(0, 0), (1, 0), (0, 1), (1, 1)])
dxf.add_point((1.5, 1.5))
# 2d polyline, new in v0.12
dxf.add_polyline_2d([(5, 5), (7, 3), (7, 6)])
# 2d polyline with bulge value, new in v0.12
dxf.add_polyline_2d([(5, 5), (7, 3, 0.5), (7, 6)], format='xyb')
# 3d polyline only, changed in v0.12
dxf.add_polyline([(4, 3, 2), (8, 5, 0), (2, 4, 9)])
dxf.add_text("test the text entity", align="MIDDLE_CENTER")
A simple example of writing really many entities in a short time:
from random import random
from ezdxf.addons import r12writer
MAX_X_COORD = 1000.0
MAX_Y_COORD = 1000.0
CIRCLE_COUNT = 1000000
with r12writer("many_circles.dxf") as dxf:
for i in range(CIRCLE_COUNT):
dxf.add_circle((MAX_X_COORD*random(), MAX_Y_COORD*random()), radius=2)
Show all available line types:
import ezdxf
LINETYPES = [
'CONTINUOUS', 'CENTER', 'CENTERX2', 'CENTER2',
'DASHED', 'DASHEDX2', 'DASHED2', 'PHANTOM', 'PHANTOMX2',
'PHANTOM2', 'DASHDOT', 'DASHDOTX2', 'DASHDOT2', 'DOT',
'DOTX2', 'DOT2', 'DIVIDE', 'DIVIDEX2', 'DIVIDE2',
]
with r12writer('r12_linetypes.dxf', fixed_tables=True) as dxf:
for n, ltype in enumerate(LINETYPES):
dxf.add_line((0, n), (10, n), linetype=ltype)
dxf.add_text(ltype, (0, n+0.1), height=0.25, style='OpenSansCondensed-Light')
Reference
ezdxf.addons.r12writer.r12writer(stream: TextIO | BinaryIO | str, fixed_tables=False, fmt='asc') ->
R12FastStreamWriter
Context manager for writing DXF entities to a stream/file. stream can be any file like object with
a write() method or just a string for writing DXF entities to the file system. If fixed_tables is
True, a standard TABLES section is written in front of the ENTITIES section and some predefined
text styles and line types can be used.
Set argument fmt to “asc” to write ASCII DXF file (default) or “bin” to write Binary DXF files.
ASCII DXF require a TextIO stream and Binary DXF require a BinaryIO stream.
class ezdxf.addons.r12writer.R12FastStreamWriter(stream: TextIO, fixed_tables=False)
Fast stream writer to create simple DXF R12 drawings.
Parameters
• stream – a file like object with a write() method.
• fixed_tables – if fixed_tables is True, a standard TABLES section is written in front of
the ENTITIES section and some predefined text styles and line types can be used.
close() -> None
Writes the DXF tail. Call is not necessary when using the context manager r12writer().
add_line(start: Sequence[float], end: Sequence[float], layer: str = '0', color: int | None = None,
linetype: str | None = None) -> None
Add a LINE entity from start to end.
Parameters
• start – start vertex as (x, y[, z]) tuple
• end – end vertex as as (x, y[, z]) tuple
• layer – layer name as string, without a layer definition the assigned color = 7
(black/white) and line type is 'Continuous'.
• color – color as AutoCAD Color Index (ACI) in the range from 0 to 256, 0 is
ByBlock and 256 is ByLayer, default is ByLayer which is always color = 7
(black/white) without a layer definition.
• linetype – line type as string, if FIXED-TABLES are written some predefined line
types are available, else line type is always ByLayer, which is always
'Continuous' without a LAYERS table.
add_circle(center: Sequence[float], radius: float, layer: str = '0', color: int | None = None,
linetype: str | None = None) -> None
Add a CIRCLE entity.
Parameters
• center – circle center point as (x, y) tuple
• radius – circle radius as float
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_arc(center: Sequence[float], radius: float, start: float = 0, end: float = 360, layer: str =
'0', color: int | None = None, linetype: str | None = None) -> None
Add an ARC entity. The arc goes counter-clockwise from start angle to end angle.
Parameters
• center – arc center point as (x, y) tuple
• radius – arc radius as float
• start – arc start angle in degrees as float
• end – arc end angle in degrees as float
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_point(location: Sequence[float], layer: str = '0', color: int | None = None, linetype: str |
None = None) -> None
Add a POINT entity.
Parameters
• location – point location as (x, y [,z]) tuple
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_3dface(vertices: Iterable[Sequence[float]], invisible: int = 0, layer: str = '0', color: int |
None = None, linetype: str | None = None) -> None
Add a 3DFACE entity. 3DFACE is a spatial area with 3 or 4 vertices, all vertices have to be
in the same plane.
Parameters
• vertices – iterable of 3 or 4 (x, y, z) vertices.
• invisible –
bit coded flag to define the invisible edges,
1. edge = 1
2. edge = 2
3. edge = 4
4. edge = 8
Add edge values to set multiple edges invisible, 1. edge + 3. edge = 1 + 4 = 5,
all edges = 15
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_solid(vertices: Iterable[Sequence[float]], layer: str = '0', color: int | None = None,
linetype: str | None = None) -> None
Add a SOLID entity. SOLID is a solid filled area with 3 or 4 edges and SOLID is a 2D
entity.
Parameters
• vertices – iterable of 3 or 4 (x, y[, z]) tuples, z-axis will be ignored.
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_polyline_2d(points: Iterable[Sequence], format: str = 'xy', closed: bool = False, start_width:
float = 0, end_width: float = 0, layer: str = '0', color: int | None = None, linetype: str | None
= None) -> None
Add a 2D POLYLINE entity with start width, end width and bulge value support.
Format codes:
┌───┬──────────────────────────────────┐
│ x │ x-coordinate │
├───┼──────────────────────────────────┤
│ y │ y-coordinate │
├───┼──────────────────────────────────┤
│ s │ start width │
├───┼──────────────────────────────────┤
│ e │ end width │
├───┼──────────────────────────────────┤
│ b │ bulge value │
├───┼──────────────────────────────────┤
│ v │ (x, y) tuple (z-axis is ignored) │
└───┴──────────────────────────────────┘
Parameters
• points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple, value
order according to the format string, unset values default to 0
• format – format: format string, default is 'xy'
• closed – True creates a closed polyline
• start_width – default start width, default is 0
• end_width – default end width, default is 0
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_polyline(vertices: Iterable[Sequence[float]], closed: bool = False, layer: str = '0', color:
int | None = None, linetype: str | None = None) -> None
Add a 3D POLYLINE entity.
Parameters
• vertices – iterable of (x, y[, z]) tuples, z-axis is 0 by default
• closed – True creates a closed polyline
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_polyface(vertices: Iterable[Sequence[float]], faces: Iterable[Sequence[int]], layer: str =
'0', color: int | None = None, linetype: str | None = None) -> None
Add a POLYFACE entity. The POLYFACE entity supports only faces of maximum 4 vertices, more
indices will be ignored. A simple square would be:
v0 = (0, 0, 0)
v1 = (1, 0, 0)
v2 = (1, 1, 0)
v3 = (0, 1, 0)
dxf.add_polyface(vertices=[v0, v1, v2, v3], faces=[(0, 1, 2, 3)])
All 3D form functions of the ezdxf.render.forms module return MeshBuilder objects, which
provide the required vertex and face lists.
See sphere example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py
Parameters
• vertices – iterable of (x, y, z) tuples
• faces – iterable of 3 or 4 vertex indices, indices have to be 0-based
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_polymesh(vertices: Iterable[Sequence[float]], size: tuple[int, int], closed=(False, False),
layer: str = '0', color: int | None = None, linetype: str | None = None) -> None
Add a POLYMESH entity. A POLYMESH is a mesh of m rows and n columns, each mesh vertex has
its own x-, y- and z coordinates. The mesh can be closed in m- and/or n-direction. The
vertices have to be in column order: (m0, n0), (m0, n1), (m0, n2), (m1, n0), (m1, n1),
(m1, n2), …
See example: https://github.com/mozman/ezdxf/blob/master/examples/r12writer.py
Parameters
• vertices – iterable of (x, y, z) tuples, in column order
• size – mesh dimension as (m, n)-tuple, requirement: len(vertices) == m*n
• closed – (m_closed, n_closed) tuple, for closed mesh in m and/or n direction
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
• linetype – line type as string see add_line()
add_text(text: str, insert: Sequence[float] = (0, 0), height: float = 1.0, width: float = 1.0,
align: str = 'LEFT', rotation: float = 0.0, oblique: float = 0.0, style: str = 'STANDARD', layer:
str = '0', color: int | None = None) -> None
Add a one line TEXT entity.
Parameters
• text – the text as string
• insert – insert location as (x, y) tuple
• height – text height in drawing units
• width – text width as factor
• align – text alignment, see table below
• rotation – text rotation in degrees as float
• oblique – oblique in degrees as float, vertical = 0 (default)
• style – text style name as string, if FIXED-TABLES are written some predefined
text styles are available, else text style is always 'STANDARD'.
• layer – layer name as string see add_line()
• color – color as AutoCAD Color Index (ACI) see add_line()
┌────────────┬─────────────┬───────────────┬──────────────┐
│ Vert/Horiz │ Left │ Center │ Right │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Baseline │ LEFT │ CENTER │ RIGHT │
└────────────┴─────────────┴───────────────┴──────────────┘
The special alignments ALIGNED and FIT are not available.
text2path
Tools to convert text strings and text based DXF entities into outer- and inner linear paths as Path
objects. At the moment only the TEXT and the ATTRIB entity can be converted into paths and hatches.
Added in version 1.1: Text rendering is done by the fontTools package, which is a hard dependency of
ezdxf. Support for stroke fonts, these are the basic vector fonts included in CAD applications, like
.shx, .shp or .lff fonts was added but these fonts cannot be rendered as HATCH entities.
The required font files are not included with ezdxf as they are copyrighted or, in the case of the
LibreCAD font format, licensed under the “GPL v2 and later”. Set the paths to such stroke fonts in the
config file, see option ezdxf.options.support_dirs:
[core]
support_dirs =
"C:\Program Files\Bricsys\BricsCAD V23 en_US\Fonts",
~/shx_fonts,
~/shp_fonts,
~/lff_fonts,
Don’t expect a 100% match compared to CAD applications but the results with fontTools are better than the
previous Matplotlib renderings.
Text Alignments
The text alignments are enums of type ezdxf.enums.TextEntityAlignment
┌──────────┬─────────────┬───────────────┬──────────────┐
│ Vertical │ Left │ Center │ Right │
├──────────┼─────────────┼───────────────┼──────────────┤
│ Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │
├──────────┼─────────────┼───────────────┼──────────────┤
│ Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │
├──────────┼─────────────┼───────────────┼──────────────┤
│ Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │
├──────────┼─────────────┼───────────────┼──────────────┤
│ Baseline │ LEFT │ CENTER │ RIGHT │
└──────────┴─────────────┴───────────────┴──────────────┘
The vertical middle alignments (MIDDLE_XXX), center the text vertically in the middle of the uppercase
letter “X” (cap height).
Special alignments, where the horizontal alignment is always in the center of the text:
• ALIGNED: text is scaled to match the given length, scales x- and y-direction by the same factor.
• FIT: text is scaled to match the given length, but scales only in x-direction.
• MIDDLE: insertion point is the center of the total height (cap height + descender height) without
scaling, the length argument is ignored.
Font Face Definition
A font face is defined by the Matplotlib compatible FontFace object by font-family, font-style,
font-stretch and font-weight.
SEE ALSO:
• Font Anatomy
• Font Properties
String Functions
ezdxf.addons.text2path.make_path_from_str(s: str, font: FontFace, size: float = 1.0,
align=TextEntityAlignment.LEFT, length: float = 0, m: Matrix44 = None) -> Path
Convert a single line string s into a Multi-Path object. The text size is the height of the
uppercase letter “X” (cap height). The paths are aligned about the insertion point at (0, 0).
BASELINE means the bottom of the letter “X”.
Parameters
• s – text to convert
• font – font face definition as FontFace object
• size – text size (cap height) in drawing units
• align – alignment as ezdxf.enums.TextEntityAlignment, default is LEFT
• length – target length for the ALIGNED and FIT alignments
• m – transformation Matrix44
ezdxf.addons.text2path.make_paths_from_str(s: str, font: FontFace, size: float = 1.0,
align=TextEntityAlignment.LEFT, length: float = 0, m: Matrix44 = None) -> list[Path]
Convert a single line string s into a list of Path objects. All paths are returned as a list of
Single-Path objects. The text size is the height of the uppercase letter “X” (cap height). The
paths are aligned about the insertion point at (0, 0). BASELINE means the bottom of the letter
“X”.
Parameters
• s – text to convert
• font – font face definition as FontFace object
• size – text size (cap height) in drawing units
• align – alignment as ezdxf.enums.TextEntityAlignment, default is LEFT
• length – target length for the ALIGNED and FIT alignments
• m – transformation Matrix44
ezdxf.addons.text2path.make_hatches_from_str(s: str, font: FontFace, size: float = 1.0,
align=TextEntityAlignment.LEFT, length: float = 0, dxfattribs=None, m: Matrix44 = None) -> list[Hatch]
Convert a single line string s into a list of virtual Hatch entities. The text size is the height
of the uppercase letter “X” (cap height). The paths are aligned about the insertion point at (0,
0). The HATCH entities are aligned to this insertion point. BASELINE means the bottom of the
letter “X”.
IMPORTANT:
Returns an empty list for .shx, .shp and .lff fonts a.k.a. stroke fonts.
Parameters
• s – text to convert
• font – font face definition as FontFace object
• size – text size (cap height) in drawing units
• align – alignment as ezdxf.enums.TextEntityAlignment, default is LEFT
• length – target length for the ALIGNED and FIT alignments
• dxfattribs – additional DXF attributes
• m – transformation Matrix44
Entity Functions
class ezdxf.addons.text2path.Kind(*values)
The Kind enum defines the DXF types to create as bit flags, e.g. 1+2 to get HATCHES as filling and
SPLINES and POLYLINES as outline:
┌─────┬─────────────┬──────────────────────────────┐
│ Int │ Enum │ Description │
├─────┼─────────────┼──────────────────────────────┤
│ 1 │ HATCHES │ Hatch entities as filling │
├─────┼─────────────┼──────────────────────────────┤
│ 2 │ SPLINES │ Spline and 3D Polyline │
│ │ │ entities as outline │
├─────┼─────────────┼──────────────────────────────┤
│ 4 │ LWPOLYLINES │ LWPolyline entities as │
│ │ │ approximated (flattened) │
│ │ │ outline │
└─────┴─────────────┴──────────────────────────────┘
ezdxf.addons.text2path.virtual_entities(entity: Text | Attrib, kind: int = Kind.HATCHES) -> EntityQuery
Convert the text content of DXF entities TEXT and ATTRIB into virtual SPLINE and 3D POLYLINE
entities or approximated LWPOLYLINE entities as outlines, or as HATCH entities as fillings.
Returns the virtual DXF entities as an EntityQuery object.
Parameters
• entity – TEXT or ATTRIB entity
• kind – kind of entities to create as bit flags, see enum Kind
ezdxf.addons.text2path.explode(entity: Text | Attrib, kind: int = Kind.HATCHES, target=None) ->
EntityQuery
Explode the text entity into virtual entities, see virtual_entities(). The source entity will be
destroyed.
The target layout is given by the target argument, if target is None, the target layout is the
source layout of the text entity.
Returns the created DXF entities as an EntityQuery object.
Parameters
• entity – TEXT or ATTRIB entity to explode
• kind – kind of entities to create as bit flags, see enum Kind
• target – target layout for new created DXF entities, None for the same layout as the
source entity.
ezdxf.addons.text2path.make_path_from_entity(entity: Text | Attrib) -> Path
Convert text content from DXF entities TEXT and ATTRIB into a Multi-Path object. The paths are
located at the location of the source entity.
ezdxf.addons.text2path.make_paths_from_entity(entity: Text | Attrib) -> list[Path]
Convert text content from DXF entities TEXT and ATTRIB into a list of Path objects. All paths are
returned as a list of Single-Path objects. The paths are located at the location of the source
entity.
MTextExplode
This tool is meant to explode MTEXT entities into single line TEXT entities by replicating the MTEXT
layout as close as possible. This tool requires the optional Matplotlib package to create usable results,
nonetheless it also works without Matplotlib, but then uses a mono-spaced replacement font for text size
measuring which leads to very inaccurate results.
The supported MTEXT features are:
• changing text color
• text strokes: underline, overline and strike through
• changing text size, width and oblique
• changing font faces
• stacked text (fractions)
• multi-column support
• background color
• text frame
The tool requires an initialized DXF document io implement all these features by creating additional text
styles. When exploding multiple MTEXT entities, they can share this new text styles. Call the
MTextExplode.finalize() method just once after all MTEXT entities are processed to create the required
text styles, or use MTextExplode as context manager by using the with statement, see examples below.
There are also many limitations:
• A 100% accurate result cannot be achieved.
• Character tracking is not supported.
• Tabulator stops have only limited support for LEFT and JUSTIFIED aligned paragraphs to support numbered
and bullet lists. An excessive use of tabs will lead to incorrect results.
• The DISTRIBUTED alignment will be replaced by the JUSTIFIED alignment.
• Text flow is always “left to right”.
• The line spacing mostly corresponds to the “EXACT” style, except for stacked text (fractions), which
corresponds more to the “AT LEAST” style, but not precisely. This behavior maybe will improve in the
future.
• FIELDS are not evaluated by ezdxf.
class ezdxf.addons.MTextExplode(layout, doc=None, spacing_factor=1.0)
The MTextExplode class is a tool to disassemble MTEXT entities into single line TEXT entities and
additional LINE entities if required to emulate strokes.
The layout argument defines the target layout for “exploded” parts of the MTEXT entity. Use
argument doc if the target layout has no DXF document assigned like virtual layouts. The
spacing_factor argument is an advanced tuning parameter to scale the size of space chars.
explode(mtext: MText, destroy=True)
Explode mtext and destroy the source entity if argument destroy is True.
finalize()
Create required text styles. This method is called automatically if the class is used as
context manager. This method does not work with virtual layouts if no document was assigned
at initialization!
Example to explode all MTEXT entities in the DXF file “mtext.dxf”:
import ezdxf
from ezdxf.addons import MTextExplode
doc = ezdxf.readfile("mtext.dxf")
msp = doc.modelspace()
with MTextExplode(msp) as xpl:
for mtext in msp.query("MTEXT"):
xpl.explode(mtext)
doc.saveas("xpl_mtext.dxf")
Explode all MTEXT entities into the block “EXPLODE”:
import ezdxf
from ezdxf.addons import MTextExplode
doc = ezdxf.readfile("mtext.dxf")
msp = doc.modelspace()
blk = doc.blocks.new("EXPLODE")
with MTextExplode(blk) as xpl:
for mtext in msp.query("MTEXT"):
xpl.explode(mtext)
msp.add_block_ref("EXPLODE", (0, 0))
doc.saveas("xpl_into_block.dxf")
HPGL/2 Converter Add-on
Added in version 1.1.
The hpgl2 add-on provides tools to process and convert HPGL/2 plot files.
What are HPGL/2 Plot Files?
The Hewlett-Packard Graphics Language (HPGL) is a vector graphics language originally developed by
Hewlett-Packard in the 1970s. HPGL is widely used for controlling pen plotters and other output devices,
and it has become a de facto standard for communicating between computers and output devices in the field
of computer-aided design (CAD) and drafting.
HPGL is a command-driven language that consists of a series of commands that control the movement of the
plotter pen, the selection of pens and other output parameters, and the drawing of geometric shapes such
as lines, arcs, circles, and text. The language is interpreted by the plotter or other output device and
translated into physical pen movements on the drawing surface.
HPGL has evolved over the years, and various extensions have been added to support more complex graphics
operations and to improve compatibility with other graphics languages. Despite the development of newer
graphics languages and file formats, HPGL remains a widely used format for vector-based graphics,
particularly in the engineering and architectural fields.
The Goal of This Add-on
An HPGL/2 plot file contains all of the data generated by a CAD application that has been sent to a
plotter to print an engineering drawing. In the past, the only way to access this data was to view it on
a plotter or an specialized application, which could be expensive and impractical for many people.
However, this module provides functions and classes to convert HPGL/2 plot files into modern vector
graphic formats such as PDF and SVG and of course DXF, allowing the data to be viewed and processed using
a wide range of software tools.
IMPORTANT:
The Python module PyMuPDF is required for the PDF export: https://pypi.org/project/PyMuPDF/
The Plotter class in the hpgl2 add-on supports only the most commonly used commands of HPGL/2. This is
because many CAD applications use only a small subset of HPGL/2 to create their output, typically
consisting of polylines and filled polygons. For more information on the supported commands, please
refer to the documentation for the Plotter class.
To use the HPGL2 add-on, the entry point is the ezdxf.addons.hpgl2.api module. This module contains the
public interface of the add-on and should be imported in the following way:
from ezdxf.addons.hpgl2 import api as hpgl2
with open("hpgl2.plt", "rb") as fp:
data = fp.read()
doc = hpgl2.to_dxf(data, color_mode=hpgl2.ColorMode.ACI)
doc.saveas("hpgl2_as.dxf")
High Level Functions
┌───────────┬───────────────────────────────────────┐
│ to_dxf │ Exports the HPGL/2 commands of the │
│ │ byte stream b as a DXF document. │
├───────────┼───────────────────────────────────────┤
│ to_svg │ Exports the HPGL/2 commands of the │
│ │ byte stream b as SVG string. │
├───────────┼───────────────────────────────────────┤
│ to_pdf │ Exports the HPGL/2 commands of the │
│ │ byte stream b as PDF data. │
├───────────┼───────────────────────────────────────┤
│ to_pixmap │ Exports the HPGL/2 commands of the │
│ │ byte stream b as pixel image. │
└───────────┴───────────────────────────────────────┘
ezdxf.addons.hpgl2.api.to_dxf(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, color_mode=ColorMode.RGB, merge_control: MergeControl = MergeControl.AUTO) -> Drawing
Exports the HPGL/2 commands of the byte stream b as a DXF document.
The page content is created at the origin of the modelspace and 1 drawing unit is 1 plot unit (1
plu = 0.025mm) unless scaling values are provided.
The content of HPGL files is intended to be plotted on white paper, therefore a white filling will
be added as background in color mode RGB.
All entities are assigned to a layer according to the pen number with the name scheme PEN_<###>.
In order to be able to process the file better, it is also possible to assign the ACI color by
layer by setting the argument color_mode to ColorMode.ACI, but then the RGB color is lost because
the RGB color has always the higher priority over the ACI.
The first paperspace layout “Layout1” of the DXF document is set up to print the entire modelspace
on one sheet, the size of the page is the size of the original plot file in millimeters.
HPGL/2’s merge control works at the pixel level and cannot be replicated by DXF, but to prevent
fillings from obscuring text, the filled polygons are sorted by luminance - this can be forced or
disabled by the argument merge_control, see also MergeControl enum.
Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• color_mode – the color mode controls how color values are assigned to DXF entities, see
ColorMode
• merge_control – how to order filled polygons, see MergeControl
Returns: DXF document as instance of class Drawing
ezdxf.addons.hpgl2.api.to_svg(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, merge_control=MergeControl.AUTO) -> str
Exports the HPGL/2 commands of the byte stream b as SVG string.
The plot units are mapped 1:1 to viewBox units and the size of image is the size of the original
plot file in millimeters.
HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to
prevent fillings from obscuring text, the filled polygons are sorted by luminance - this can be
forced or disabled by the argument merge_control, see also MergeControl enum.
Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• merge_control – how to order filled polygons, see MergeControl
Returns: SVG content as str
ezdxf.addons.hpgl2.api.to_pdf(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, merge_control=MergeControl.AUTO) -> bytes
Exports the HPGL/2 commands of the byte stream b as PDF data.
The plot units (1 plu = 0.025mm) are converted to PDF units (1/72 inch) so the image has the size
of the original plot file.
HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to
prevent fillings from obscuring text, the filled polygons are sorted by luminance - this can be
forced or disabled by the argument merge_control, see also MergeControl enum.
Python module PyMuPDF is required: https://pypi.org/project/PyMuPDF/
Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• merge_control – how to order filled polygons, see MergeControl
Returns: PDF content as bytes
ezdxf.addons.hpgl2.api.to_pixmap(b: bytes, *, rotation: int = 0, mirror_x: bool = False, mirror_y: bool =
False, merge_control=MergeControl.AUTO, fmt: str = 'png', dpi: int = 96) -> bytes
Exports the HPGL/2 commands of the byte stream b as pixel image.
Supported image formats:
┌─────┬───────────────────────────┐
│ png │ Portable Network Graphics │
├─────┼───────────────────────────┤
│ ppm │ Portable Pixmap │
├─────┼───────────────────────────┤
│ pbm │ Portable Bitmap │
└─────┴───────────────────────────┘
The plot units (1 plu = 0.025mm) are converted to dot per inch (dpi) so the image has the size of
the original plot file.
HPGL/2’s merge control works at the pixel level and cannot be replicated by the backend, but to
prevent fillings from obscuring text, the filled polygons are sorted by luminance - this can be
forced or disabled by the argument merge_control, see also MergeControl enum.
Python module PyMuPDF is required: https://pypi.org/project/PyMuPDF/
Parameters
• b – plot file content as bytes
• rotation – rotation angle of 0, 90, 180 or 270 degrees
• mirror_x – mirror in x-axis direction
• mirror_y – mirror in y-axis direction
• merge_control – how to order filled polygons, see MergeControl
• fmt – image format
• dpi – output resolution in dots per inch
Returns: image content as bytes
class ezdxf.addons.hpgl2.api.ColorMode
The color mode controls how color values are assigned to DXF entities
ACI Use the pen number as AutoCAD Color Index (ACI) for DXF entities, ignores the RGB color
values
RGB Use the pen number as AutoCAD Color Index (ACI) but also set the RGB color for DXF
entities, RGB color values have always higher priority than the ACI when displaying DXF
content.
class ezdxf.addons.hpgl2.api.MergeControl
Merge control enumeration.
NONE export filled polygons in print order
LUMINANCE
sort filled polygons by luminance
AUTO guess best order of filled polygons
The Low Level Functions and Classes
ezdxf.addons.hpgl2.api.hpgl2_commands(s: bytes) -> list[Command]
Low level plot file parser, extracts the HPGL/2 from the byte stream b.
IMPORTANT:
This parser expects the “Enter HPGL/2 mode” escape sequence to recognize HPGL/2 commands. The
sequence looks like this: [ESC]%1B, multiple variants of this sequence are supported.
The HPGL/2 commands are often mixed with the Printer Command Language (PCL) and/or the Raster Transfer
Language (RTL) commands in a single plot file.
Some plot files that contain pure HPGL/2 code do not contain the escape sequence “Enter HPGL/2 mode”,
without this sequence the HPGL/2 parser cannot recognize the beginning of the HPGL/2 code. Add the
ENTER_HPGL2_MODE sequence in front of the bytes stream to switch on the HPGL/2 manually, regardless of
whether the file is an HPGL/2 plot file or not, so be careful:
commands = hpgl2_commands(hpgl2.ENTER_HPGL2_MODE + data)
class ezdxf.addons.hpgl2.api.Interpreter(plotter: Plotter)
The Interpreter is the frontend for the Plotter class. The run() methods interprets the low level
HPGL commands from the hpgl2_commands() parser and sends the commands to the virtual plotter
device, which sends his output to a low level Backend class.
Most CAD application send a very restricted subset of commands to plotters, mostly just polylines
and filled polygons. Implementing the whole HPGL/2 command set is not worth the effort - unless
reality proofs otherwise.
Not implemented commands:
• the whole character group - text is send as filled polygons or polylines
• configuration group: IN, DF, RO, IW - the plotter is initialized by creating a new plotter
and page rotation is handled by the add-on itself
• polygon group: EA, ER, EW, FA, RR, WG, the rectangle and wedge commands
• line and fill attributes group: LA, RF, SM, SV, TR, UL, WU, linetypes and hatch patterns are
decomposed into simple lines by CAD applications
Parameters
plotter – virtual Plotter device
errors List of error messages occurred during the interpretation of the HPGL/2 commands.
not_implemented_commands
List of all unsupported/ignored commands from the input stream.
run(commands: list[Command]) -> None
Interprets the low level HPGL commands from the hpgl2_commands() parser and sends the
commands to the virtual plotter device.
disable_commands(commands: Iterable[str]) -> None
Disable commands manually, like the scaling command [“SC”, “IP”, “IR”]. This is a feature
for experts, because disabling commands which changes the pen location may distort or
destroy the plotter output.
class ezdxf.addons.hpgl2.api.Plotter(backend: Backend)
The Plotter class represents a virtual plotter device.
The HPGL/2 commands send by the Interpreter are processed into simple polylines and filled
polygons and send to low level Backend.
HPGL/2 uses a units system called “Plot Units”:
• 1 plot unit (plu) = 0.025mm
• 40 plu = 1 mm
• 1016 plu = 1 inch
The Plotter device does not support font rendering and page rotation (RO). The scaling commands
IP, RP, SC are supported.
Recorder
class ezdxf.addons.hpgl2.api.Recorder
The Recorder class records the output of the Plotter class.
All input coordinates are page coordinates:
• 1 plot unit (plu) = 0.025mm
• 40 plu = 1 mm
• 1016 plu = 1 inch
player() -> Player
Returns a Player instance with the original recordings. Make a copy of this player to
protect the original recordings from being modified:
safe_player = recorder.player().copy()
draw_polyline(properties: Properties, points: Sequence[Vec2]) -> None
Draws a polyline from a sequence points. The input coordinates are page coordinates in plot
units. The points sequence can contain 0 or more points!
Parameters
• properties – display Properties for the polyline
• points – sequence of ezdxf.math.Vec2 instances
draw_paths(properties: Properties, paths: Sequence[Path], filled: bool) -> None
Draws filled or outline paths from the sequence of paths. The input coordinates are page
coordinates in plot units. The paths sequence can contain 0 or more single Path instances.
Draws outline paths if Properties.FillType is NONE and filled paths otherwise.
Parameters
• properties – display Properties for the filled polygon
• paths – sequence of single ezdxf.path.Path instances
• filled – draw filled paths if True otherwise outline paths
Player
class ezdxf.addons.hpgl2.api.Player(records: list[DataRecord], properties: dict[int, Properties])
This class replays the recordings of the Recorder class on another backend. The class can modify
the recorded output.
copy() -> Self
Returns a new Player instance with a copy of recordings.
recordings() -> Iterator[tuple[RecordType, Properties, Any]]
Yields all recordings as (RecordType, Properties, Data) tuples.
The content of the Data field is determined by the enum RecordType:
• RecordType.POLYLINE returns a NumpyPoints2d instance
• RecordType.FILLED_POLYGON returns a tuple of NumpyPath2d instances
replay(backend: Backend) -> None
Replay the recording on another backend.
bbox() -> BoundingBox2d
Returns the bounding box of all recorded polylines and polygons as BoundingBox2d.
transform(m: Matrix44) -> None
Transforms the recordings by a transformation matrix m of type Matrix44.
sort_filled_paths() -> None
Sort filled paths by descending luminance (from light to dark).
This also changes the plot order in the way that all filled paths are plotted before
polylines and outline paths.
Properties
class ezdxf.addons.hpgl2.properties.Properties
Consolidated display properties.
pen_index
pen index as int
pen_color
pen color as RGB tuple
pen_width
pen width in millimeters (float)
fill_type
FillType of filled polygons
fill_method
FillMethod of filled polygons
fill_hatch_line_angle
fill hatch line angle in degrees
fill_hatch_line_spacing
fill hatch line distance in plotter units
fill_shading_density
fill shading density in percent from 0 to 100.
resolve_pen_color() -> RGB
Returns the final RGB pen color.
resolve_fill_color() -> RGB
Returns the final RGB fill color.
class ezdxf.addons.hpgl2.properties.FillType(*values)
Fill type enumeration.
NONE
SOLID
HATCHING
CROSS_HATCHING
SHADING
class ezdxf.addons.hpgl2.properties.FillMethod(*values)
Fill method enumeration.
EVEN_ODD
NONE_ZERO_WINDING
Exceptions
class ezdxf.addons.hpgl2.api.Hpgl2Error
Base exception for the hpgl2 add-on.
class ezdxf.addons.hpgl2.api.Hpgl2DataNotFound
No HPGL/2 data was found, maybe the “Enter HPGL/2 mode” escape sequence is missing.
class ezdxf.addons.hpgl2.api.EmptyDrawing
The HPGL/2 commands do not produce any content.
PyCSG
Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union and
intersection to combine 3D solids. This library implements CSG operations on meshes elegantly and
concisely using BSP trees, and is meant to serve as an easily understandable implementation of the
algorithm. All edge cases involving overlapping coplanar polygons in both solids are correctly handled.
Example for usage:
import ezdxf
from ezdxf.render.forms import cube, cylinder_2p
from ezdxf.addons.pycsg import CSG
# create new DXF document
doc = ezdxf.new()
msp = doc.modelspace()
# create same geometric primitives as MeshTransformer() objects
cube1 = cube()
cylinder1 = cylinder_2p(count=32, base_center=(0, -1, 0), top_center=(0, 1, 0), radius=.25)
# build solid union
union = CSG(cube1) + CSG(cylinder1)
# convert to mesh and render mesh to modelspace
union.mesh().render_mesh(msp, dxfattribs={'color': 1})
# build solid difference
difference = CSG(cube1) - CSG(cylinder1)
# convert to mesh, translate mesh and render mesh to modelspace
difference.mesh().translate(1.5).render_mesh(msp, dxfattribs={'color': 3})
# build solid intersection
intersection = CSG(cube1) * CSG(cylinder1)
# convert to mesh, translate mesh and render mesh to modelspace
intersection.mesh().translate(2.75).render_mesh(msp, dxfattribs={'color': 5})
doc.saveas('csg.dxf')
[image: Cube vs Cylinder] [image]
This CSG kernel supports only meshes as MeshBuilder objects, which can be created from and converted to
DXF Mesh entities.
This CSG kernel is not compatible with ACIS objects like Solid3d, Body, Surface or Region.
NOTE:
This is a pure Python implementation, don’t expect great performance and the implementation is based
on an unbalanced BSP tree, so in the case of RecursionError, increase the recursion limit:
import sys
actual_limit = sys.getrecursionlimit()
# default is 1000, increasing too much may cause a seg fault
sys.setrecursionlimit(10000)
... # do the CSG stuff
sys.setrecursionlimit(actual_limit)
CSG works also with spheres, but with really bad runtime behavior and most likely RecursionError
exceptions, and use quadrilaterals as body faces to reduce face count by setting argument quads to True.
import ezdxf
from ezdxf.render.forms import sphere, cube
from ezdxf.addons.pycsg import CSG
doc = ezdxf.new()
doc.set_modelspace_vport(6, center=(5, 0))
msp = doc.modelspace()
cube1 = cube().translate(-.5, -.5, -.5)
sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True)
union = (CSG(cube1) + CSG(sphere1)).mesh()
union.render_mesh(msp, dxfattribs={'color': 1})
subtract = (CSG(cube1) - CSG(sphere1)).mesh().translate(2.5)
subtract.render_mesh(msp, dxfattribs={'color': 3})
intersection = (CSG(cube1) * CSG(sphere1)).mesh().translate(4)
intersection.render_mesh(msp, dxfattribs={'color': 5})
[image: Cube vs Sphere] [image]
Hard Core CSG - Menger Sponge Level 3 vs Sphere
Required runtime on an old Xeon E5-1620 Workstation @ 3.60GHz (2020), with default recursion limit of
1000 on Windows 10:
• CPython 3.8.1 64bit: ~60 seconds,
• PyPy [PyPy 7.2.0] 32bit: ~6 seconds, and using __slots__ reduced runtime below 5 seconds, yes - PyPy
is worth a look for long running scripts!
Updated runtime in 2024 on an i7-12700K @ 3.60GHz (peak ~5GHz), Windows 11:
• CPython 3.11.6 64bit: ~3.4 seconds
• PyPy 3.9.18 [PyPy 7.3.13] 64bit: ~1.5 seconds
from ezdxf.render.forms import sphere
from ezdxf.addons import MengerSponge
from ezdxf.addons.pycsg import CSG
doc = ezdxf.new()
doc.layers.new('sponge', dxfattribs={'color': 5})
doc.layers.new('sphere', dxfattribs={'color': 6})
doc.set_modelspace_vport(6, center=(5, 0))
msp = doc.modelspace()
sponge1 = MengerSponge(level=3).mesh()
sphere1 = sphere(count=32, stacks=16, radius=.5, quads=True).translate(.25, .25, 1)
subtract = (CSG(sponge1, meshid=1) - CSG(sphere1, meshid=2))
# get mesh result by id
subtract.mesh(1).render_mesh(msp, dxfattribs={'layer': 'sponge'})
subtract.mesh(2).render_mesh(msp, dxfattribs={'layer': 'sphere'})
[image: Menger Sponge vs Sphere] [image]
CSG Class
class ezdxf.addons.pycsg.CSG(mesh: MeshBuilder, meshid: int = 0)
Constructive Solid Geometry (CSG) is a modeling technique that uses Boolean operations like union
and intersection to combine 3D solids. This class implements CSG operations on meshes.
New 3D solids are created from MeshBuilder objects and results can be exported as MeshTransformer
objects to ezdxf by method mesh().
Parameters
• mesh – ezdxf.render.MeshBuilder or inherited object
• meshid – individual mesh ID to separate result meshes, 0 is default
mesh(meshid: int = 0) -> MeshTransformer
Returns a ezdxf.render.MeshTransformer object.
Parameters
meshid – individual mesh ID, 0 is default
union(other: CSG) -> CSG
Return a new CSG solid representing space in either this solid or in the solid other.
Neither this solid nor the solid other are modified:
A.union(B)
+-------+ +-------+
| | | |
| A | | |
| +--+----+ = | +----+
+----+--+ | +----+ |
| B | | |
| | | |
+-------+ +-------+
__add__()
union = A + B
subtract(other: CSG) -> CSG
Return a new CSG solid representing space in this solid but not in the solid other. Neither
this solid nor the solid other are modified:
A.subtract(B)
+-------+ +-------+
| | | |
| A | | |
| +--+----+ = | +--+
+----+--+ | +----+
| B |
| |
+-------+
__sub__()
difference = A - B
intersect(other: CSG) -> CSG
Return a new CSG solid representing space both this solid and in the solid other. Neither
this solid nor the solid other are modified:
A.intersect(B)
+-------+
| |
| A |
| +--+----+ = +--+
+----+--+ | +--+
| B |
| |
+-------+
__mul__()
intersection = A * B
inverse() -> CSG
Return a new CSG solid with solid and empty space switched. This solid is not modified.
License
• Original implementation csg.js, Copyright (c) 2011 Evan Wallace (http://madebyevan.com/), under the MIT
license.
• Python port pycsg, Copyright (c) 2012 Tim Knip (http://www.floorplanner.com), under the MIT license.
• Additions by Alex Pletzer (Pennsylvania State University)
• Integration as ezdxf add-on, Copyright (c) 2020, Manfred Moitzi, MIT License.
Plot Style Files (CTB/STB)
CTB and STB files store plot styles used by AutoCAD and BricsCAD for printing and plotting.
If the plot style table is attached to a Paperspace or the Modelspace, a change of a plot style affects
any object that uses that plot style. CTB files contain color dependent plot style tables, STB files
contain named plot style tables.
SEE ALSO:
• Using plot style tables in AutoCAD
• AutoCAD Plot Style Table Editor
• BricsCAD Plot Style Table Editor
• AUTODESK KNOWLEDGE NETWORK: How to install CTB files in AutoCAD
ezdxf.addons.acadctb.load(filename: str | PathLike) -> ColorDependentPlotStyles | NamedPlotStyles
Load the CTB or STB file filename from file system.
ezdxf.addons.acadctb.new_ctb() -> ColorDependentPlotStyles
Create a new CTB file.
ezdxf.addons.acadctb.new_stb() -> NamedPlotStyles
Create a new STB file.
ColorDependentPlotStyles
Color dependent plot style table (CTB file), table entries are PlotStyle objects.
class ezdxf.addons.acadctb.ColorDependentPlotStyles
description
Custom description of plot style file.
scale_factor
Specifies the factor by which to scale non-ISO linetypes and fill patterns.
apply_factor
Specifies whether or not you want to apply the scale_factor.
custom_lineweight_display_units
Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are
always defined in millimeters.
lineweights
Lineweights table as array.array
__getitem__(aci: int) -> PlotStyle
Returns PlotStyle for AutoCAD Color Index (ACI) aci.
__iter__()
Iterable of all plot styles.
new_style(aci: int, data: dict | None = None) -> PlotStyle
Set aci to new attributes defined by data dict.
Parameters
• aci – AutoCAD Color Index (ACI)
• data – dict of PlotStyle attributes: description, color, physical_pen_number,
virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype,
lineweight, end_style, join_style, fill_style
get_lineweight(aci: int)
Returns the assigned lineweight for PlotStyle aci in millimeter.
get_lineweight_index(lineweight: float) -> int
Get index of lineweight in the lineweight table or append lineweight to lineweight table.
get_table_lineweight(index: int) -> float
Returns lineweight in millimeters of lineweight table entry index.
Parameters
index – lineweight table index = PlotStyle.lineweight
Returns
lineweight in mm or 0.0 for use entity lineweight
set_table_lineweight(index: int, lineweight: float) -> int
Argument index is the lineweight table index, not the AutoCAD Color Index (ACI).
Parameters
• index – lineweight table index = PlotStyle.lineweight
• lineweight – in millimeters
save() Save CTB file as filename to the file system.
write(stream: BinaryIO) -> None
Compress and write CTB file to binary stream.
NamedPlotStyles
Named plot style table (STB file), table entries are PlotStyle objects.
class ezdxf.addons.acadctb.NamedPlotStyles
description
Custom description of plot style file.
scale_factor
Specifies the factor by which to scale non-ISO linetypes and fill patterns.
apply_factor
Specifies whether or not you want to apply the scale_factor.
custom_lineweight_display_units
Set 1 for showing lineweight in inch in AutoCAD CTB editor window, but lineweights are
always defined in millimeters.
lineweights
Lineweights table as array.array
__getitem__(name: str) -> PlotStyle
Returns PlotStyle by name.
__delitem__(name: str) -> None
Delete plot style name. Plot style 'Normal' is not deletable.
__iter__() -> Iterable[str]
Iterable of all plot style names.
new_style(name: str, data: dict | None = None, localized_name: str | None = None) -> PlotStyle
Create new class:PlotStyle name by attribute dict data, replaces existing class:PlotStyle
objects.
Parameters
• name – plot style name
• localized_name – name shown in plot style editor, uses name if None
• data – dict of PlotStyle attributes: description, color, physical_pen_number,
virtual_pen_number, screen, linepattern_size, linetype, adaptive_linetype,
lineweight, end_style, join_style, fill_style
get_lineweight(name: str)
Returns the assigned lineweight for PlotStyle name in millimeter.
get_lineweight_index(lineweight: float) -> int
Get index of lineweight in the lineweight table or append lineweight to lineweight table.
get_table_lineweight(index: int) -> float
Returns lineweight in millimeters of lineweight table entry index.
Parameters
index – lineweight table index = PlotStyle.lineweight
Returns
lineweight in mm or 0.0 for use entity lineweight
set_table_lineweight(index: int, lineweight: float) -> int
Argument index is the lineweight table index, not the AutoCAD Color Index (ACI).
Parameters
• index – lineweight table index = PlotStyle.lineweight
• lineweight – in millimeters
save() Save STB file as filename to the file system.
write()
Compress and write STB file to binary stream.
PlotStyle
class ezdxf.addons.acadctb.PlotStyle
index Table index (0-based). (int)
aci AutoCAD Color Index (ACI) in range from 1 to 255. Has no meaning for named plot styles.
(int)
description
Custom description of plot style. (str)
physical_pen_number
Specifies physical plotter pen, valid range from 1 to 32 or AUTOMATIC. (int)
virtual_pen_number
Only used by non-pen plotters and only if they are configured for virtual pens. valid range
from 1 to 255 or AUTOMATIC. (int)
screen Specifies the color intensity of the plot on the paper, valid range is from 0 to 100. (int)
If you select 100 the drawing will plotted with its full color intensity. In order for
screening to work, the dithering option must be active.
linetype
Overrides the entity linetype, default value is OBJECT_LINETYPE. (bool)
adaptive_linetype
True if a complete linetype pattern is more important than a correct linetype scaling,
default is True. (bool)
linepattern_size
Line pattern size, default = 0.5. (float)
lineweight
Overrides the entity lineWEIGHT, default value is OBJECT_LINEWEIGHT. This is an index into
the UserStyles.lineweights table. (int)
end_style
Line end cap style, see table below, default is END_STYLE_OBJECT (int)
join_style
Line join style, see table below, default is JOIN_STYLE_OBJECT (int)
fill_style
Line fill style, see table below, default is FILL_STYLE_OBJECT (int)
dithering
Depending on the capabilities of your plotter, dithering approximates the colors with dot
patterns. When this option is False, the colors are mapped to the nearest color, resulting
in a smaller range of colors when plotting.
Dithering is available only whether you select the object’s color or assign a plot style
color.
grayscale
Plot colors in grayscale. (bool)
Default Line Weights
┌────┬──────┐
│ # │ [mm] │
├────┼──────┤
│ 0 │ 0.00 │
├────┼──────┤
│ 1 │ 0.05 │
├────┼──────┤
│ 2 │ 0.09 │
├────┼──────┤
│ 3 │ 0.10 │
├────┼──────┤
│ 4 │ 0.13 │
├────┼──────┤
│ 5 │ 0.15 │
├────┼──────┤
│ 6 │ 0.18 │
├────┼──────┤
│ 7 │ 0.20 │
├────┼──────┤
│ 8 │ 0.25 │
├────┼──────┤
│ 9 │ 0.30 │
├────┼──────┤
│ 10 │ 0.35 │
├────┼──────┤
│ 11 │ 0.40 │
├────┼──────┤
│ 12 │ 0.45 │
├────┼──────┤
│ 13 │ 0.50 │
├────┼──────┤
│ 14 │ 0.53 │
├────┼──────┤
│ 15 │ 0.60 │
├────┼──────┤
│ 16 │ 0.65 │
├────┼──────┤
│ 17 │ 0.70 │
├────┼──────┤
│ 18 │ 0.80 │
├────┼──────┤
│ 19 │ 0.90 │
├────┼──────┤
│ 20 │ 1.00 │
├────┼──────┤
│ 21 │ 1.06 │
├────┼──────┤
│ 22 │ 1.20 │
├────┼──────┤
│ 23 │ 1.40 │
├────┼──────┤
│ 24 │ 1.58 │
├────┼──────┤
│ 25 │ 2.00 │
├────┼──────┤
│ 26 │ 2.11 │
└────┴──────┘
Predefined Values
ezdxf.addons.acadctb.AUTOMATIC
ezdxf.addons.acadctb.OBJECT_LINEWEIGHT
ezdxf.addons.acadctb.OBJECT_LINETYPE
ezdxf.addons.acadctb.OBJECT_COLOR
ezdxf.addons.acadctb.OBJECT_COLOR2
Line End Style
[image]
┌───────────────────┬───┐
│ END_STYLE_BUTT │ 0 │
├───────────────────┼───┤
│ END_STYLE_SQUARE │ 1 │
├───────────────────┼───┤
│ END_STYLE_ROUND │ 2 │
├───────────────────┼───┤
│ END_STYLE_DIAMOND │ 3 │
├───────────────────┼───┤
│ END_STYLE_OBJECT │ 4 │
└───────────────────┴───┘
Line Join Style
[image]
┌────────────────────┬───┐
│ JOIN_STYLE_MITER │ 0 │
├────────────────────┼───┤
│ JOIN_STYLE_BEVEL │ 1 │
├────────────────────┼───┤
│ JOIN_STYLE_ROUND │ 2 │
├────────────────────┼───┤
│ JOIN_STYLE_DIAMOND │ 3 │
├────────────────────┼───┤
│ JOIN_STYLE_OBJECT │ 5 │
└────────────────────┴───┘
Fill Style
[image]
┌────────────────────────────┬────┐
│ FILL_STYLE_SOLID │ 64 │
├────────────────────────────┼────┤
│ FILL_STYLE_CHECKERBOARD │ 65 │
├────────────────────────────┼────┤
│ FILL_STYLE_CROSSHATCH │ 66 │
├────────────────────────────┼────┤
│ FILL_STYLE_DIAMONDS │ 67 │
├────────────────────────────┼────┤
│ FILL_STYLE_HORIZONTAL_BARS │ 68 │
├────────────────────────────┼────┤
│ FILL_STYLE_SLANT_LEFT │ 69 │
├────────────────────────────┼────┤
│ FILL_STYLE_SLANT_RIGHT │ 70 │
├────────────────────────────┼────┤
│ FILL_STYLE_SQUARE_DOTS │ 71 │
├────────────────────────────┼────┤
│ FILL_STYLE_VERICAL_BARS │ 72 │
├────────────────────────────┼────┤
│ FILL_STYLE_OBJECT │ 73 │
└────────────────────────────┴────┘
Linetypes
[image] [image]
┌───────────────────────────────────┬───────┐
│ Linetype name │ Value │
├───────────────────────────────────┼───────┤
│ Solid │ 0 │
├───────────────────────────────────┼───────┤
│ Dashed │ 1 │
├───────────────────────────────────┼───────┤
│ Dotted │ 2 │
├───────────────────────────────────┼───────┤
│ Dash Dot │ 3 │
├───────────────────────────────────┼───────┤
│ Short Dash │ 4 │
├───────────────────────────────────┼───────┤
│ Medium Dash │ 5 │
├───────────────────────────────────┼───────┤
│ Long Dash │ 6 │
├───────────────────────────────────┼───────┤
│ Short Dash x2 │ 7 │
├───────────────────────────────────┼───────┤
│ Medium Dash x2 │ 8 │
├───────────────────────────────────┼───────┤
│ Long Dash x2 │ 9 │
├───────────────────────────────────┼───────┤
│ Medium Lang Dash │ 10 │
├───────────────────────────────────┼───────┤
│ Medium Dash Short Dash Short Dash │ 11 │
├───────────────────────────────────┼───────┤
│ Long Dash Short Dash │ 12 │
├───────────────────────────────────┼───────┤
│ Long Dash Dot Dot │ 13 │
├───────────────────────────────────┼───────┤
│ Long Dash Dot │ 14 │
├───────────────────────────────────┼───────┤
│ Medium Dash Dot Short Dash Dot │ 15 │
├───────────────────────────────────┼───────┤
│ Sparse Dot │ 16 │
├───────────────────────────────────┼───────┤
│ ISO Dash │ 17 │
├───────────────────────────────────┼───────┤
│ ISO Dash Space │ 18 │
├───────────────────────────────────┼───────┤
│ ISO Long Dash Dot │ 19 │
├───────────────────────────────────┼───────┤
│ ISO Long Dash Double Dot │ 20 │
├───────────────────────────────────┼───────┤
│ ISO Long Dash Triple Dot │ 21 │
├───────────────────────────────────┼───────┤
│ ISO Dot │ 22 │
├───────────────────────────────────┼───────┤
│ ISO Long Dash Short Dash │ 23 │
├───────────────────────────────────┼───────┤
│ ISO Long Dash Double Short Dash │ 24 │
├───────────────────────────────────┼───────┤
│ ISO Dash Dot │ 25 │
├───────────────────────────────────┼───────┤
│ ISO Double Dash Dot │ 26 │
├───────────────────────────────────┼───────┤
│ ISO Dash Double Dot │ 27 │
├───────────────────────────────────┼───────┤
│ ISO Double Dash Double Dot │ 28 │
├───────────────────────────────────┼───────┤
│ ISO Dash Triple Dot │ 29 │
├───────────────────────────────────┼───────┤
│ ISO Double Dash Triple Dot │ 30 │
├───────────────────────────────────┼───────┤
│ Use entity linetype │ 31 │
└───────────────────────────────────┴───────┘
Showcase Forms
MengerSponge
Build a 3D Menger sponge.
class ezdxf.addons.MengerSponge(location: UVec = (0.0, 0.0, 0.0), length: float = 1.0, level: int = 1,
kind: int = 0)
Parameters
• location – location of lower left corner as (x, y, z) tuple
• length – side length
• level – subdivide level
• kind – type of menger sponge
┌───┬────────────────────────┐
│ 0 │ Original Menger Sponge │
├───┼────────────────────────┤
│ 1 │ Variant XOX │
├───┼────────────────────────┤
│ 2 │ Variant OXO │
├───┼────────────────────────┤
│ 3 │ Jerusalem Cube │
└───┴────────────────────────┘
render(layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 | None =
None, ucs: UCS | None = None) -> None
Renders the menger sponge into layout, set merge to True for rendering the whole menger
sponge into one MESH entity, set merge to False for rendering the individual cubes of the
menger sponge as MESH entities.
Parameters
• layout – DXF target layout
• merge – True for one MESH entity, False for individual MESH entities per cube
• dxfattribs – DXF attributes for the MESH entities
• matrix – apply transformation matrix at rendering
• ucs – apply UCS transformation at rendering
cubes() -> Iterator[MeshTransformer]
Yields all cubes of the menger sponge as individual MeshTransformer objects.
mesh() -> MeshTransformer
Returns geometry as one MeshTransformer object.
Menger Sponge kind=0: [image]
Menger Sponge kind=1: [image]
Menger Sponge kind=2: [image]
Jerusalem Cube kind=3: [image]
SierpinskyPyramid
Build a 3D Sierpinsky Pyramid.
class ezdxf.addons.SierpinskyPyramid(location: UVec = (0.0, 0.0, 0.0), length: float = 1.0, level: int =
1, sides: int = 4)
Parameters
• location – location of base center as (x, y, z) tuple
• length – side length
• level – subdivide level
• sides – sides of base geometry
render(layout: GenericLayoutType, merge: bool = False, dxfattribs=None, matrix: Matrix44 | None =
None, ucs: UCS | None = None) -> None
Renders the sierpinsky pyramid into layout, set merge to True for rendering the whole
sierpinsky pyramid into one MESH entity, set merge to False for individual pyramids as MESH
entities.
Parameters
• layout – DXF target layout
• merge – True for one MESH entity, False for individual MESH entities per pyramid
• dxfattribs – DXF attributes for the MESH entities
• matrix – apply transformation matrix at rendering
• ucs – apply UCS at rendering
pyramids() -> Iterable[MeshTransformer]
Yields all pyramids of the sierpinsky pyramid as individual MeshTransformer objects.
mesh() -> MeshTransformer
Returns geometry as one MeshTransformer object.
Sierpinsky Pyramid with triangle base: [image]
Sierpinsky Pyramid with square base: [image]
Bin-Packing Add-on
This add-on is based on the 3D bin packing module py3dbp hosted on PyPI. Both sources of this package
are MIT licensed like ezdxf itself.
The Bin Packing Problem
Quote from the Wikipedia article:
The bin packing problem is an optimization problem, in which items of different sizes must be packed
into a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes
the number of bins used.
Example
This code replicates the example used by the py3dbp package:
from typing import List
import ezdxf
from ezdxf import colors
from ezdxf.addons import binpacking as bp
SMALL_ENVELOPE = ("small-envelope", 11.5, 6.125, 0.25, 10)
LARGE_ENVELOPE = ("large-envelope", 15.0, 12.0, 0.75, 15)
SMALL_BOX = ("small-box", 8.625, 5.375, 1.625, 70.0)
MEDIUM_BOX = ("medium-box", 11.0, 8.5, 5.5, 70.0)
MEDIUM_BOX2 = ("medium-box-2", 13.625, 11.875, 3.375, 70.0)
LARGE_BOX = ("large-box", 12.0, 12.0, 5.5, 70.0)
LARGE_BOX2 = ("large-box-2", 23.6875, 11.75, 3.0, 70.0)
ALL_BINS = [
SMALL_ENVELOPE,
LARGE_ENVELOPE,
SMALL_BOX,
MEDIUM_BOX,
MEDIUM_BOX2,
LARGE_BOX,
LARGE_BOX2,
]
def build_packer():
packer = bp.Packer()
packer.add_item("50g [powder 1]", 3.9370, 1.9685, 1.9685, 1)
packer.add_item("50g [powder 2]", 3.9370, 1.9685, 1.9685, 2)
packer.add_item("50g [powder 3]", 3.9370, 1.9685, 1.9685, 3)
packer.add_item("250g [powder 4]", 7.8740, 3.9370, 1.9685, 4)
packer.add_item("250g [powder 5]", 7.8740, 3.9370, 1.9685, 5)
packer.add_item("250g [powder 6]", 7.8740, 3.9370, 1.9685, 6)
packer.add_item("250g [powder 7]", 7.8740, 3.9370, 1.9685, 7)
packer.add_item("250g [powder 8]", 7.8740, 3.9370, 1.9685, 8)
packer.add_item("250g [powder 9]", 7.8740, 3.9370, 1.9685, 9)
return packer
def make_doc():
doc = ezdxf.new()
doc.layers.add("FRAME", color=colors.YELLOW)
doc.layers.add("ITEMS")
doc.layers.add("TEXT")
return doc
def main(filename):
bins: List[bp.Bin] = []
for box in ALL_BINS:
packer = build_packer()
packer.add_bin(*box)
packer.pack(bp.PickStrategy.BIGGER_FIRST)
bins.extend(packer.bins)
doc = make_doc()
bp.export_dxf(doc.modelspace(), bins, offset=(0, 20, 0))
doc.saveas(filename)
if __name__ == "__main__":
main("py3dbp_example.dxf")
[image]
SEE ALSO:
• example1 script
• example2 script
Packer Classes
class ezdxf.addons.binpacking.AbstractPacker
bins List of containers to fill.
items List of items to pack into the bins.
property is_packed: bool
Returns True if packer is packed, each packer can only be used once.
property unfitted_items: list[Item]
Returns the unfitted items.
__str__() -> str
Return str(self).
append_bin(box: Bin) -> None
Append a container.
append_item(item: Item) -> None
Append a item.
get_fill_ratio() -> float
Return the fill ratio of all bins.
get_capacity() -> float
Returns the maximum fill volume of all bins.
get_total_weight() -> float
Returns the total weight of all fitted items in all bins.
get_total_volume() -> float
Returns the total volume of all fitted items in all bins.
pack(pick=PickStrategy.BIGGER_FIRST) -> None
Pack items into bins. Distributes all items across all bins.
Packer
class ezdxf.addons.binpacking.Packer
3D Packer inherited from AbstractPacker.
add_bin(name: str, width: float, height: float, depth: float, max_weight: float =
UNLIMITED_WEIGHT) -> Box
Add a 3D Box container.
add_item(payload, width: float, height: float, depth: float, weight: float = 0.0) -> Item
Add a 3D Item to pack.
FlatPacker
class ezdxf.addons.binpacking.FlatPacker
2D Packer inherited from AbstractPacker. All containers and items used by this packer must have a
depth of 1.
add_bin(name: str, width: float, height: float, max_weight: float = UNLIMITED_WEIGHT) -> Envelope
Add a 2D Envelope container.
add_item(payload, width: float, height: float, weight: float = 0.0) -> Item
Add a 2D FlatItem to pack.
Bin Classes
class ezdxf.addons.binpacking.Bin(name, width: float, height: float, depth: float, max_weight: float =
UNLIMITED_WEIGHT)
name Name of then container as string.
width
height
depth
max_weight
property is_empty: bool
__str__() -> str
Return str(self).
copy() Returns a copy.
reset()
Reset the container to empty state.
put_item(item: Item, pivot: tuple[float, float, float]) -> bool
get_capacity() -> float
Returns the maximum fill volume of the bin.
get_total_weight() -> float
Returns the total weight of all fitted items.
get_total_volume() -> float
Returns the total volume of all fitted items.
get_fill_ratio() -> float
Return the fill ratio.
Box Class
class ezdxf.addons.binpacking.Box(name, width: float, height: float, depth: float, max_weight: float =
UNLIMITED_WEIGHT)
3D container inherited from Bin.
Envelope Class
class ezdxf.addons.binpacking.Envelope(name, width: float, height: float, max_weight: float =
UNLIMITED_WEIGHT)
2D container inherited from Bin.
Item Class
class ezdxf.addons.binpacking.Item(payload, width: float, height: float, depth: float, weight: float =
0.0)
3D container item.
payload
Arbitrary Python object.
width
height
depth
weight
property bbox: AbstractBoundingBox
property rotation_type: RotationType
property position: tuple[float, float, float]
Returns the position of then lower left corner of the item in the container, the lower left
corner is the origin (0, 0, 0).
copy() Returns a copy, all copies have a reference to the same payload object.
__str__()
Return str(self).
get_volume() -> float
Returns the volume of the item.
get_dimension() -> tuple[float, float, float]
Returns the item dimension according the rotation_type.
get_transformation() -> Matrix44
Returns the transformation matrix to transform the source entity located with the minimum
extension corner of its bounding box in (0, 0, 0) to the final location including the
required rotation.
FlatItem Class
class ezdxf.addons.binpacking.FlatItem(payload, width: float, height: float, weight: float = 0.0)
2D container item, inherited from Item. Has a default depth of 1.0.
Functions
ezdxf.addons.binpacking.shuffle_pack(packer: AbstractPacker, attempts: int) -> AbstractPacker
Random shuffle packing. Returns a new packer with the best packing result, the input packer is
unchanged.
Enums
RotationType
class ezdxf.addons.binpacking.RotationType(*values)
Rotation type of an item:
• W = width
• H = height
• D = depth
WHD
HWD
HDW
DHW
DWH
WDH
PickStrategy
class ezdxf.addons.binpacking.PickStrategy(*values)
Order of how to pick items for placement.
BIGGER_FIRST
SMALLER_FIRST
SHUFFLE
Credits
• py3dbp package by Enzo Ruiz Pelaez
• bp3d by gedex - github repository on which py3dbp is based, written in Go
• Optimizing three-dimensional bin packing through simulation (PDF)
MeshExchange
The ezdxf.addons.meshex module provides functions to exchange meshes with other tools in the following
file formats:
• STL: import/export, supports only triangles as faces
• OFF: import/export, supports ngons as faces and is more compact than STL
• OBJ: import/export, supports ngons as faces and can contain multiple meshes in one file
• PLY: export only, supports ngons as faces
• OpenSCAD: export as polyhedron, supports ngons as faces
• IFC4: export only, supports ngons as faces
The source or target object is always a MeshBuilder instance and therefore the supported features are
also limited by this class. Only vertices and faces are exchanged, colors, textures and explicit face-
and vertex normals are lost.
NOTE:
This add-on is not a replacement for a proper file format interface for this data formats! It’s just a
simple way to exchange meshes with other tools like OpenSCAD or MeshLab.
WARNING:
The meshes created by the ezdxf.addons.pycsg add-on are usually not suitable for export because they
often violate the vertex-to-vertex rule: A vertex of a face cannot lie on the edge of another face.
This was one of the reasons to create this addon to get an interface to OpenSCAD.
Example for a simple STL to DXF converter:
import sys
import ezdxf
from ezdxf.addons import meshex
try:
mesh = meshex.stl_readfile("your.stl")
except (meshex.ParsingError, IOError) as e:
print(str(e))
sys.exit(1)
doc = ezdxf.new()
mesh.render_mesh(doc.modelspace())
doc.saveas("your.dxf")
SEE ALSO:
Example script meshex_export.py at github.
Import
ezdxf.addons.meshex.stl_readfile(filename: str | PathLike) -> MeshTransformer
Read ascii or binary STL file content as ezdxf.render.MeshTransformer instance.
Raises ParsingError – vertex parsing error or invalid/corrupt data
ezdxf.addons.meshex.stl_loads(content: str) -> MeshTransformer
Load a mesh from an ascii STL content string as ezdxf.render.MeshTransformer instance.
Raises ParsingError – vertex parsing error
ezdxf.addons.meshex.stl_loadb(buffer: bytes) -> MeshTransformer
Load a mesh from a binary STL data ezdxf.render.MeshTransformer instance.
Raises ParsingError – invalid/corrupt data or not a binary STL file
ezdxf.addons.meshex.off_readfile(filename: str | PathLike) -> MeshTransformer
Read OFF file content as ezdxf.render.MeshTransformer instance.
Raises ParsingError – vertex or face parsing error
ezdxf.addons.meshex.off_loads(content: str) -> MeshTransformer
Load a mesh from a OFF content string as ezdxf.render.MeshTransformer instance.
Raises ParsingError – vertex or face parsing error
ezdxf.addons.meshex.obj_readfile(filename: str | PathLike) -> list[MeshTransformer]
Read OBJ file content as list of ezdxf.render.MeshTransformer instances.
Raises ParsingError – vertex or face parsing error
ezdxf.addons.meshex.obj_loads(content: str) -> list[MeshTransformer]
Load one or more meshes from an OBJ content string as list of ezdxf.render.MeshTransformer
instances.
Raises ParsingError – vertex parsing error
Export
ezdxf.addons.meshex.stl_dumps(mesh: MeshBuilder) -> str
Returns the STL data as string for the given mesh. This function triangulates the meshes
automatically because the STL format supports only triangles as faces.
This function does not check if the mesh obey the STL format rules:
• The direction of the face normal is outward.
• The face vertices are listed in counter-clockwise order when looking at the object from the
outside (right-hand rule).
• Each triangle must share two vertices with each of its adjacent triangles.
• The object represented must be located in the all-positive octant (non-negative and nonzero).
ezdxf.addons.meshex.stl_dumpb(mesh: MeshBuilder) -> bytes
Returns the STL binary data as bytes for the given mesh.
For more information see function: stl_dumps()
ezdxf.addons.meshex.off_dumps(mesh: MeshBuilder) -> str
Returns the OFF data as string for the given mesh. The OFF format supports ngons as faces.
ezdxf.addons.meshex.obj_dumps(mesh: MeshBuilder) -> str
Returns the OBJ data as string for the given mesh. The OBJ format supports ngons as faces.
ezdxf.addons.meshex.ply_dumpb(mesh: MeshBuilder) -> bytes
Returns the PLY binary data as bytes for the given mesh. The PLY format supports ngons as faces.
ezdxf.addons.meshex.scad_dumps(mesh: MeshBuilder) -> str
Returns the OpenSCAD polyhedron definition as string for the given mesh. OpenSCAD supports ngons
as faces.
IMPORTANT:
OpenSCAD requires the face normals pointing inwards, the method flip_normals() of the
MeshBuilder class can flip the normals inplace.
ezdxf.addons.meshex.ifc4_dumps(mesh: MeshBuilder, entity_type=IfcEntityType.POLYGON_FACE_SET, *, layer:
str = 'MeshExport', color: tuple[float, float, float] = (1.0, 1.0, 1.0)) -> str
Returns the IFC4 string for the given mesh. The caller is responsible for checking if the mesh is
a closed or open surface (e.g. mesh.diagnose().euler_characteristic == 2) and using the
appropriate entity type.
Parameters
• mesh – MeshBuilder
• entity_type – IfcEntityType
• layer – layer name as string
• color – entity color as RGB tuple, values in the range [0,1]
WARNING:
IFC4 is a very complex data format and this is a minimal effort exporter, so the exported data
may not be importable by all CAD applications.
The exported IFC4 data can be imported by the following applications:
• BricsCAD
• FreeCAD (IfcOpenShell)
• Allplan
• Tekla BIMsight
ezdxf.addons.meshex.export_ifcZIP(filename: str | PathLike, mesh: MeshBuilder,
entity_type=IfcEntityType.POLYGON_FACE_SET, *, layer: str = 'MeshExport', color: tuple[float, float,
float] = (1.0, 1.0, 1.0))
Export the given mesh as zip-compressed IFC4 file. The filename suffix should be .ifcZIP. For more
information see function ifc4_dumps().
Parameters
• filename – zip filename, the data file has the same name with suffix .ifc
• mesh – MeshBuilder
• entity_type – IfcEntityType
• layer – layer name as string
• color – entity color as RGB tuple, values in the range [0,1]
Raises IOError – IO error when opening the zip-file for writing
class ezdxf.addons.meshex.IfcEntityType(*values)
POLYGON_FACE_SET
“SurfaceModel” representation usable for open or closed surfaces.
CLOSED_SHELL
“Brep” representation usable for closed surfaces.
OPEN_SHELL
“SurfaceModel” representation usable for open surfaces.
OpenSCAD
Interface to the OpenSCAD application to apply boolean operations to MeshBuilder objects. For more
information about boolean operations read the documentation of OpenSCAD. The OpenSCAD application is not
bundled with ezdxf, you need to install the application yourself.
On Windows the path to the openscad.exe executable is stored in the config file (see ezdxf.options) in
the “openscad-addon” section as key “win_exec_path”, the default entry is:
[openscad-addon]
win_exec_path = "C:\Program Files\OpenSCAD\openscad.exe"
On Linux and macOS the openscad command is located by the shutil.which() function.
Example:
import ezdxf
from ezdxf.render import forms
from ezdxf.addons import MengerSponge, openscad
doc = ezdxf.new()
msp = doc.modelspace()
# 1. create the meshes:
sponge = MengerSponge(level=3).mesh()
sponge.flip_normals() # important for OpenSCAD
sphere = forms.sphere(
count=32, stacks=16, radius=0.5, quads=True
).translate(0.25, 0.25, 1)
sphere.flip_normals() # important for OpenSCAD
# 2. create the script:
script = openscad.boolean_operation(openscad.DIFFERENCE, sponge, sphere)
# 3. execute the script by OpenSCAD:
result = openscad.run(script)
# 4. render the MESH entity:
result.render_mesh(msp)
doc.set_modelspace_vport(6, center=(5, 0))
doc.saveas("OpenSCAD.dxf")
[image]
Functions
ezdxf.addons.openscad.run(script: str, exec_path: str | None = None) -> MeshTransformer
Executes the given script by OpenSCAD and returns the result mesh as MeshTransformer.
Parameters
• script – the OpenSCAD script as string
• exec_path – path to the executable as string or None to use the default installation path
ezdxf.addons.openscad.boolean_operation(op: Operation, mesh1: MeshBuilder, mesh2: MeshBuilder) -> str
Returns an OpenSCAD script to apply the given boolean operation to the given meshes.
The supported operations are:
• UNION
• DIFFERENCE
• INTERSECTION
ezdxf.addons.openscad.is_installed() -> bool
Returns True if OpenSCAD is installed.
Searches on Windows the path stored in the options as “win_exec_path” in section
“[openscad-addon]” which is “C:Program FilesOpenSCADopenscad.exe” by default.
Searches the “openscad” command on Linux and macOS.
Script Class
class ezdxf.addons.openscad.Script
Helper class to build OpenSCAD scripts. This is a very simple string building class and does no
checks at all! If you need more advanced features to build OpenSCAD scripts look at the packages ‐
solidpython2 and openpyscad.
add(data: str) -> None
Add a string.
add_mirror(v: UVec) -> None
Add a mirror() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#mirror
Parameters
v – the normal vector of a plane intersecting the origin through which to mirror the
object
add_multmatrix(m: Matrix44) -> None
Add a transformation matrix of type Matrix44 as multmatrix() operation.
OpenSCAD docs: ‐
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#multmatrix
add_polyhedron(mesh: MeshBuilder) -> None
Add mesh as polyhedron() command.
OpenSCAD docs: ‐
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Primitive_Solids#polyhedron
add_polygon(path: Iterable[TypeAliasForwardRef('UVec')], holes:
Sequence[Iterable[TypeAliasForwardRef('UVec')]] | None = None) -> None
Add a polygon() command. This is a 2D command, all z-axis values of the input vertices are
ignored and all paths and holes are closed automatically.
OpenSCAD docs: ‐
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Using_the_2D_Subsystem#polygon
Parameters
• path – exterior path
• holes – a sequence of one or more holes as vertices, or None for no holes
add_resize(nx: float, ny: float, nz: float, auto: bool | tuple[bool, bool, bool] | None = None) ->
None
Add a resize() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#resize
Parameters
• nx – new size in x-axis
• ny – new size in y-axis
• nz – new size in z-axis
• auto – If the auto argument is set to True, the operation auto-scales any
0-dimensions to match. Set the auto argument as a 3-tuple of bool values to
auto-scale individual axis.
add_rotate(ax: float, ay: float, az: float) -> None
Add a rotation() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
Parameters
• ax – rotation about the x-axis in degrees
• ay – rotation about the y-axis in degrees
• az – rotation about the z-axis in degrees
add_rotate_about_axis(a: float, v: UVec) -> None
Add a rotation() operation about the given axis v.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#rotate
Parameters
• a – rotation angle about axis v in degrees
• v – rotation axis as ezdxf.math.UVec object
add_scale(sx: float, sy: float, sz: float) -> None
Add a scale() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#scale
Parameters
• sx – scaling factor for the x-axis
• sy – scaling factor for the y-axis
• sz – scaling factor for the z-axis
add_translate(v: UVec) -> None
Add a translate() operation.
OpenSCAD docs: https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Transformations#translate
Parameters
v – translation vector
get_string() -> str
Returns the OpenSCAD build script.
Boolean Operation Constants
ezdxf.addons.openscad.UNION
ezdxf.addons.openscad.DIFFERENCE
ezdxf.addons.openscad.INTERSECTION
openpyscad
This add-on is not a complete wrapper around OpenSCAD, if you need such a tool look at the openpyscad or
solidpython2 packages at PyPI.
Not sure if the openpyscad package is still maintained, the last commit at github is more than a year old
and did not pass the CI process! (state June 2022)
This code snippet shows how to get the MeshTransformer object from the basic openpyscad example:
from ezdxf.addons import openscad
import openpyscad as ops
c1 = ops.Cube([10, 20, 10])
c2 = ops.Cube([20, 10, 10])
# dump OpenSCAD script as string:
script = (c1 + c2).dumps()
# execute script and load the result as MeshTransformer instance:
mesh = openscad.run(script)
Create an openpyscad Polyhedron object from an ezdxf MeshBuilder object:
from ezdxf.render import forms
import openpyscad as ops
# create an ezdxf MeshBuilder() object
sphere = forms.sphere()
sphere.flip_normals() # required for OpenSCAD
# create an openpyscad Polyhedron() object
polyhedron = ops.Polyhedron(
points=[list(p) for p in sphere.vertices], # convert Vec3 objects to lists!
faces=[list(f) for f in sphere.faces], # convert face tuples to face lists!
)
# create the OpenSCAD script:
script = polyhedron.dumps()
The type conversion is needed to get valid OpenSCAD code from openpyscad!
solidpython2
The solidpython2 package seems to be better maintained than the openpyscad package, but this is just an
opinion based on newer commits at github (link) for the solidpython2 package.
Same example for solidpython2:
from ezdxf.addons import openscad
from solid2 import cube, scad_render
c1 = cube([10, 20, 10])
c2 = cube([20, 10, 10])
# dump OpenSCAD script as string:
script = scad_render(c1 + c2)
# execute script and load the result as MeshTransformer instance:
mesh = openscad.run(script)
Create a solidpython2 polyhedron object from an ezdxf MeshBuilder object:
from ezdxf.render import forms
from solid2 import polyhedron, scad_render
# create an ezdxf MeshBuilder() object
sphere = forms.sphere()
sphere.flip_normals() # required for OpenSCAD
# create a solidpython2 polyhedron() object
ph = polyhedron(
points=[v.xyz for v in sphere.vertices], # convert Vec3 objects to tuples!
faces=sphere.faces, # types are compatible
)
# create the OpenSCAD script:
script = scad_render(ph)
TablePainter
This is an add-on for drawing tables build from DXF primitives.
This add-on was created for porting dxfwrite projects to ezdxf and was not officially documented for
ezdxf versions prior the 1.0 release. For the 1.0 version of ezdxf, this class was added as an
officially documented add-on because full support for the ACAD_TABLE entity is very unlikely due to the
enormous complexity for both the entity itself, and for the required infrastructure and also the lack of
a usable documentation to implement all that features.
IMPORTANT:
This add-on is not related to the ACAD_TABLE entity at all and and does not create ACAD_TABLE
entities!
The table cells can contain multi-line text or BLOCK references. You can create your own cell types by
extending the CustomCell class. The cells are addressed by zero-based row and column indices. A table
cell can span over multiple columns and/or rows.
A TextCell can contain multi-line text with an arbitrary rotation angle or letters stacked from top to
bottom. The MTextSurrogate add-on is used to create multi-line text compatible to DXF version R12.
A BlockCell contains block references (INSERT entities), if the block definition contains attribute
definitions as ATTDEF entities, these attributes can be added automatically to the block reference as
ATTRIB entities.
NOTE:
The DXF format does not support clipping boxes ot paths, therefore the render method of any cell can
render beyond the borders of the cell!
Tutorial
Set up a new DXF document:
import ezdxf
from ezdxf.enums import MTextEntityAlignment
from ezdxf.addons import TablePainter
doc = ezdxf.new("R2000") # required for lineweight support
doc.header["$LWDISPLAY"] = 1 # show lineweights
doc.styles.add("HEAD", font="OpenSans-ExtraBold.ttf")
doc.styles.add("CELL", font="OpenSans-Regular.ttf")
Create a new TablePainter object with four rows and four columns, the insert location is the default
render location but can be overriden in the render() method:
table = TablePainter(
insert=(0, 0), nrows=4, ncols=4, cell_width=6.0, cell_height=2.0
)
Create a new CellStyle object for the table-header called “head”:
table.new_cell_style(
"head",
text_style="HEAD",
text_color=ezdxf.colors.BLUE,
char_height=0.7,
bg_color=ezdxf.colors.LIGHT_GRAY,
align=MTextEntityAlignment.MIDDLE_CENTER,
)
Redefine the default CellStyle for the content cells:
# reset default cell style
default_style = table.get_cell_style("default")
default_style.text_style = "CELL"
default_style.char_height = 0.5
default_style.align = MTextEntityAlignment.BOTTOM_LEFT
Set the table-header content:
for col in range(4):
table.text_cell(0, col, f"Head[{col}]", style="head")
Set the cell content:
for row in range(1, 4):
for col in range(4):
# cell style is "default"
table.text_cell(row, col, f"Cell[{row}, {col}]")
Add a red frame around the table-header:
# new cell style is required
red_frame = table.new_cell_style("red-frame")
red_borderline = table.new_border_style(color=ezdxf.colors.RED, lineweight=35)
# set the red borderline style for all cell borders
red_frame.set_border_style(red_borderline)
# create the frame object
table.frame(0, 0, 4, style="red-frame")
Render the table into the modelspace and export the DXF file:
# render the table, shifting the left-bottom of the table to the origin:
table.render(doc.modelspace(), insert=(0, table.table_height))
th = table.table_height
tw = table.table_width
doc.set_modelspace_vport(height=th * 1.5, center=(tw/2, th/2))
doc.saveas("table_tutorial.dxf")
[image]
SEE ALSO:
• Example script: table_painter_addon.py
TablePainter
class ezdxf.addons.tablepainter.TablePainter(insert: UVec, nrows: int, ncols: int,
cell_width=DEFAULT_CELL_WIDTH, cell_height=DEFAULT_CELL_HEIGHT, default_grid=True)
The TablePainter class renders tables build from DXF primitives.
The TablePainter instance contains all the data cells.
Parameters
• insert – insert location as or UVec
• nrows – row count
• ncols – column count
• cell_width – default cell width in drawing units
• cell_height – default cell height in drawing units
• default_grid – draw a grid of solid lines if True, otherwise draw only explicit defined
borders, the default grid has a priority of 50.
bg_layer_name: str
background layer name, layer for the background SOLID entities, default is
“TABLEBACKGROUND”
fg_layer_name: str
foreground layer name, layer for the cell content, default is “TABLECONTENT”
grid_layer_name: str
table grid layer name, layer for the cell border lines, default is “TABLEGRID”
property table_width: float
Returns the total table width.
property table_height: float
Returns the total table height.
set_col_width(index: int, value: float)
Set column width in drawing units of the given column index.
Parameters
• index – zero based column index
• value – new column width in drawing units
set_row_height(index: int, value: float)
Set row height in drawing units of the given row index.
Parameters
• index – zero based row index
• value – new row height in drawing units
text_cell(row: int, col: int, text: str, span: tuple[int, int] = (1, 1), style='default') ->
TextCell
Factory method to create a new text cell at location (row, col), with text as content, the
text can be a line breaks '\n'. The final cell can spread over several cells defined by
the argument span.
block_cell(row: int, col: int, blockdef: BlockLayout, span: tuple[int, int] = (1, 1),
attribs=None, style='default') -> BlockCell
Factory method to Create a new block cell at position (row, col).
Content is a block reference inserted by an INSERT entity, attributes will be added if the
block definition contains ATTDEF. Assignments are defined by attribs-key to attdef-tag
association.
Example: attribs = {‘num’: 1} if an ATTDEF with tag==’num’ in the block definition exists,
an attrib with text=str(1) will be created and added to the insert entity.
The cell spans over ‘span’ cells and has the cell style with the name ‘style’.
set_cell(row: int, col: int, cell: T) -> T
Insert a cell at position (row, col).
get_cell(row: int, col: int) -> Cell
Get cell at location (row, col).
new_cell_style(name: str, **kwargs) -> CellStyle
Factory method to create a new CellStyle object, overwrites an already existing cell style.
Parameters
• name – style name as string
• kwargs – see attributes of class CellStyle
get_cell_style(name: str) -> CellStyle
Get cell style by name.
static new_border_style(color: int = const.BYLAYER, status=True, priority: int = 100, linetype:
str = 'BYLAYER', lineweight: int = const.LINEWEIGHT_BYLAYER) -> BorderStyle
Factory method to create a new border style.
Parameters
• status – True for visible, False for invisible
• color – AutoCAD Color Index (ACI)
• linetype – linetype name, default is “BYLAYER”
• lineweight – lineweight as int, default is by layer
• priority – drawing priority, higher priorities cover lower priorities
frame(row: int, col: int, width: int = 1, height: int = 1, style='default') -> Frame
Creates a frame around the give cell area, starting at (row, col) and covering width
columns and height rows. The style argument is the name of a CellStyle.
render(layout: GenericLayoutType, insert: UVec | None = None)
Render table to layout.
Cell
class ezdxf.addons.tablepainter.Cell
Abstract base class for table cells.
TextCell
class ezdxf.addons.tablepainter.TextCell
Implements a cell type containing a multi-line text. Uses the MTextSurrogate add-on to render the
multi-line text, therefore the content of these cells is compatible to DXF R12.
IMPORTANT:
Use the factory method TablePainter.text_cell() to instantiate text cells.
BlockCell
class ezdxf.addons.tablepainter.BlockCell(table: TablePainter, blockdef: BlockLayout, style='default',
attribs=None, span: tuple[int, int] = (1, 1))
Implements a cell type containing a block reference.
Parameters
• table – table object
• blockdef – ezdxf.layouts.BlockLayout instance
• attribs – BLOCK attributes as (tag, value) dictionary
• style – cell style name as string
• span – tuple(rows, cols) area of cells to cover
Implements a cell type containing a block reference.
IMPORTANT:
Use the factory method TablePainter.block_cell() to instantiate block cells.
CustomCell
class ezdxf.addons.tablepainter.CustomCell
Base class to implement custom cells. Overwrite the render() method to render the cell. The custom
cell type has to be instantiated by the user and added to the table by the TablePainter.set_cell()
method.
render(layout: GenericLayoutType, coords: Sequence[float], layer: str)
Renders the cell content into the given layout.
The render space is defined by the argument coords which is a tuple of 4 float values in
the order: left, right, top, bottom. These values are layout coordinates in drawing units.
The DXF format does not support clipping boxes, therefore the render method can render
beyond these borders!
CellStyle
class ezdxf.addons.tablepainter.CellStyle(data: dict[str, Any] | None = None)
Cell style object.
IMPORTANT:
Always instantiate new styles by the factory method: TablePainter.new_cell_style()
text_style: str
Textstyle name as string, ignored by BlockCell
char_height: float
text height in drawing units, ignored by BlockCell
line_spacing: float
line spacing in percent, distance of line base points = char_height * line_spacing, ignored
by BlockCell
scale_x: float
text stretching factor (width factor) or block reference x-scaling factor
scale_y: float
block reference y-scaling factor, ignored by TextCell
text_color: int
AutoCAD Color Index (ACI) for text, ignored by BlockCell
rotation: float
text or block rotation in degrees
stacked: bool
Stacks letters of TextCell instances from top to bottom without rotating the characters if
True, ignored by BlockCell
align: MTextEntityAlignment
text and block alignment, see ezdxf.enums.MTextEntityAlignment
margin_x: float
left and right cell margin in drawing units
margin_y: float
top and bottom cell margin in drawing units
bg_color: int
cell background color as AutoCAD Color Index (ACI), ignored by BlockCell
left: BorderStyle
left cell border style
top: BorderStyle
top cell border style
right: BorderStyle
right cell border style
bottom: BorderStyle
bottom cell border style
set_border_status(left=True, right=True, top=True, bottom=True)
Set status of all cell borders at once.
set_border_style(style: BorderStyle, left=True, right=True, top=True, bottom=True)
Set border styles of all cell borders at once.
static get_default_border_style() -> BorderStyle
BorderStyle
class ezdxf.addons.tablepainter.BorderStyle(status: bool = DEFAULT_BORDER_STATUS, color: int =
DEFAULT_BORDER_COLOR, linetype: str = DEFAULT_BORDER_LINETYPE, lineweight=const.LINEWEIGHT_BYLAYER,
priority: int = DEFAULT_BORDER_PRIORITY)
Border style class.
IMPORTANT:
Always instantiate new border styles by the factory method: TablePainter.new_border_style()
status: bool
border status, True for visible, False for hidden
color: int
AutoCAD Color Index (ACI)
linetype: str
linetype name as string, default is “BYLAYER”
lineweight: int
lineweight as int, default is by layer
priority: int
drawing priority, higher values cover lower values
MTextSurrogate for DXF R12
class ezdxf.addons.MTextSurrogate(text: str, insert: UVec, line_spacing: float = 1.5,
align=MTextEntityAlignment.TOP_LEFT, char_height: float = 1.0, style='STANDARD', oblique: float = 0.0,
rotation: float = 0.0, width_factor: float = 1.0, mirror=Mirror.NONE, layer='0', color: int =
const.BYLAYER)
MTEXT surrogate for DXF R12 build up by TEXT Entities. This add-on was added to simplify the
transition from dxfwrite to ezdxf.
The rich-text formatting capabilities for the regular MTEXT entity are not supported, if these
features are required use the regular MTEXT entity and the MTextExplode add-on to explode the
MTEXT entity into DXF primitives.
IMPORTANT:
The align-point is always the insert-point, there is no need for a second align-point because
the horizontal alignments FIT, ALIGN, BASELINE_MIDDLE are not supported.
Parameters
• text – content as string
• insert – insert location in drawing units
• line_spacing – line spacing in percent of height, 1.5 = 150% = 1+1/2 lines
• align – text alignment as MTextEntityAlignment enum
• char_height – text height in drawing units
• style – Textstyle name as string
• oblique – oblique angle in degrees, where 0 is vertical
• rotation – text rotation angle in degrees
• width_factor – text width factor as float
• mirror – MTextSurrogate.MIRROR_X to mirror the text horizontal or MTextSurrogate.MIRROR_Y
to mirror the text vertical
• layer – layer name as string
• color – AutoCAD Color Index (ACI)
render(layout: GenericLayoutType) -> None
Render the multi-line content as separated TEXT entities into the given layout instance.
ASTM-D6673-10 Exporter
This add-on creates special DXF files for use by Gerber Technology applications which have a low quality
DXF parser and cannot parse/ignore BLOCKS which do not contain data according the ASTM-D6673-10 standard.
The function export_file() exports DXF R12 and only DXF R12 files which do not contain the default
“$MODEL_SPACE” and “$PAPER_SPACE” layout block definitions, have an empty HEADER section and no TABLES
section. These special requirements of the Gerber Technology parser are annoying, but correspond to the
DXF R12 standard.
Autodesk applications maybe complain about invalid BLOCK names such as “Shape 0_M”, which in my opinion
are valid, maybe spaces were not allowed in the original R12 version, but this is just a minor issue and
is more a problem of the picky Autodesk DXF parser, which is otherwise very forgiving for DXF R12 files.
import ezdxf
from ezdxf.addons import gerber_D6673
doc = ezdxf.new("R12") # the export function rejects other DXF versions
msp = doc.modelspace()
# Create your content according the ASTM-D6673-10 standard
# Do not use any linetypes or text styles, the TABLES section will not be exported.
# The ASTM-D6673-10 standard supports only 7-bit ASCII characters.
gerber_D6673.export_file(doc, "gerber_file.dxf")
ezdxf.addons.gerber_D6673.export_file(doc: Drawing, filename: str | PathLike) -> None
Exports the specified DXF R12 document, which should contain content conforming to the
ASTM-D6673-10 standard, in a special way so that Gerber Technology applications can parse it by
their low-quality DXF parser.
ezdxf.addons.gerber_D6673.export_stream(doc: Drawing, stream: TextIO) -> None
Exports the specified DXF R12 document into a stream object.
REFERENCE
The DXF Reference is online available at Autodesk.
Quoted from the original DXF 12 Reference which is not available on the web:
Since the AutoCAD drawing database (.dwg file) is written in a compact format that changes
significantly as new features are added to AutoCAD, we do not document its format and do not recommend
that you attempt to write programs to read it directly. To assist in interchanging drawings between
AutoCAD and other programs, a Drawing Interchange file format (DXF) has been defined. All
implementations of AutoCAD accept this format and are able to convert it to and from their internal
drawing file representation.
DXF Document
Document Management
Create New Drawings
ezdxf.new(dxfversion='AC1027', setup=False, units=6) -> Drawing
Create a new Drawing from scratch, dxfversion can be either “AC1009” the official DXF version name
or “R12” the AutoCAD release name.
new() can create drawings for following DXF versions:
┌─────────┬─────────────────┐
│ Version │ AutoCAD Release │
├─────────┼─────────────────┤
│ AC1009 │ AutoCAD R12 │
├─────────┼─────────────────┤
│ AC1015 │ AutoCAD R2000 │
├─────────┼─────────────────┤
│ AC1018 │ AutoCAD R2004 │
├─────────┼─────────────────┤
│ AC1021 │ AutoCAD R2007 │
├─────────┼─────────────────┤
│ AC1024 │ AutoCAD R2010 │
├─────────┼─────────────────┤
│ AC1027 │ AutoCAD R2013 │
├─────────┼─────────────────┤
│ AC1032 │ AutoCAD R2018 │
└─────────┴─────────────────┘
The units argument defines th document and modelspace units. The header variable $MEASUREMENT will
be set according to the given units, 0 for inch, feet, miles, … and 1 for metric units. For more
information go to module ezdxf.units
Parameters
• dxfversion – DXF version specifier as string, default is “AC1027” respectively “R2013”
• setup –
setup default styles, False for no setup, True to setup everything or a list of topics as
strings, e.g. [“linetypes”, “styles”] to setup only some topics:
┌──────────────┬──────────────────────────────────────┐
│ Topic │ Description │
├──────────────┼──────────────────────────────────────┤
│ linetypes │ setup line types │
├──────────────┼──────────────────────────────────────┤
│ styles │ setup text styles │
├──────────────┼──────────────────────────────────────┤
│ dimstyles │ setup default ezdxf dimension styles │
├──────────────┼──────────────────────────────────────┤
│ visualstyles │ setup 25 standard visual styles │
└──────────────┴──────────────────────────────────────┘
• units – document and modelspace units, default is 6 for meters
Open Drawings
Open DXF drawings from file system or text stream, byte stream usage is not supported.
DXF files prior to R2007 requires file encoding defined by header variable $DWGCODEPAGE, DXF R2007 and
later requires an UTF-8 encoding.
ezdxf supports reading of files for following DXF versions:
┌──────────┬─────────┬──────────────┬────────────────────────┐
│ Version │ Release │ Encoding │ Remarks │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ < AC1009 │ │ $DWGCODEPAGE │ pre AutoCAD R12 │
│ │ │ │ upgraded to AC1009 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1009 │ R12 │ $DWGCODEPAGE │ AutoCAD R12 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1012 │ R13 │ $DWGCODEPAGE │ AutoCAD R13 upgraded │
│ │ │ │ to AC1015 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1014 │ R14 │ $DWGCODEPAGE │ AutoCAD R14 upgraded │
│ │ │ │ to AC1015 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1015 │ R2000 │ $DWGCODEPAGE │ AutoCAD R2000 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1018 │ R2004 │ $DWGCODEPAGE │ AutoCAD R2004 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1021 │ R2007 │ UTF-8 │ AutoCAD R2007 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1024 │ R2010 │ UTF-8 │ AutoCAD R2010 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1027 │ R2013 │ UTF-8 │ AutoCAD R2013 │
├──────────┼─────────┼──────────────┼────────────────────────┤
│ AC1032 │ R2018 │ UTF-8 │ AutoCAD R2018 │
└──────────┴─────────┴──────────────┴────────────────────────┘
ezdxf.readfile(filename: str | PathLike, encoding: str | None = None, errors: str = 'surrogateescape') ->
Drawing
Read the DXF document filename from the file-system.
This is the preferred method to load existing ASCII or Binary DXF files, the required text
encoding will be detected automatically and decoding errors will be ignored.
Override encoding detection by setting argument encoding to the estimated encoding. (use Python
encoding names like in the open() function).
If this function struggles to load the DXF document and raises a DXFStructureError exception, try
the ezdxf.recover.readfile() function to load this corrupt DXF document.
Parameters
• filename – filename of the ASCII- or Binary DXF document
• encoding – use None for auto detect (default), or set a specific encoding like “utf-8”,
argument is ignored for Binary DXF files
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• IOError – not a DXF file or file does not exist
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
ezdxf.read(stream: TextIO) -> Drawing
Read a DXF document from a text-stream. Open stream in text mode (mode='rt') and set correct text
encoding, the stream requires at least a readline() method.
Since DXF version R2007 (AC1021) file encoding is always “utf-8”, use the helper function
dxf_stream_info() to detect the required text encoding for prior DXF versions. To preserve
possible binary data in use errors='surrogateescape' as error handler for the import stream.
If this function struggles to load the DXF document and raises a DXFStructureError exception, try
the ezdxf.recover.read() function to load this corrupt DXF document.
Parameters
stream – input text stream opened with correct encoding
Raises DXFStructureError – for invalid or corrupted DXF structures
ezdxf.readzip(zipfile: str | PathLike, filename: str | None = None, errors: str = 'surrogateescape') ->
Drawing
Load a DXF document specified by filename from a zip archive, or if filename is None the first DXF
document in the zip archive.
Parameters
• zipfile – name of the zip archive
• filename – filename of DXF file, or None to load the first DXF document from the zip
archive.
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• IOError – not a DXF file or file does not exist or
if filename is None - no DXF file found
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
ezdxf.decode_base64(data: bytes, errors: str = 'surrogateescape') -> Drawing
Load a DXF document from base64 encoded binary data, like uploaded data to web applications.
Parameters
• data – DXF document base64 encoded binary data
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
HINT:
This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files
with minor or major flaws look at the ezdxf.recover module.
Save Drawings
Save the DXF document to the file system by Drawing methods save() or saveas(). Write the DXF document
to a text stream with write(), the text stream requires at least a write() method. Get required output
encoding for text streams by property Drawing.output_encoding
Drawing Settings
The HeaderSection stores meta data like modelspace extensions, user name or saving time and current
application settings, like actual layer, text style or dimension style settings. These settings are not
necessary to process DXF data and therefore many of this settings are not maintained by ezdxf
automatically.
Header variables set at new
┌──────────────────┬───────────────────────────────────┐
│ $ACADVER │ DXF version │
├──────────────────┼───────────────────────────────────┤
│ $TDCREATE │ date/time at creating the drawing │
├──────────────────┼───────────────────────────────────┤
│ $FINGERPRINTGUID │ every drawing gets a GUID │
└──────────────────┴───────────────────────────────────┘
Header variables updated at saving
┌──────────────┬─────────────────────────────────────┐
│ $TDUPDATE │ actual date/time at saving │
├──────────────┼─────────────────────────────────────┤
│ $HANDSEED │ next available handle as hex string │
├──────────────┼─────────────────────────────────────┤
│ $DWGCODEPAGE │ encoding setting │
├──────────────┼─────────────────────────────────────┤
│ $VERSIONGUID │ every saved version gets a new GUID │
└──────────────┴─────────────────────────────────────┘
SEE ALSO:
• Howto: Set/Get Header Variables
• Howto: Set DXF Drawing Units
Ezdxf Metadata
Store internal metadata like ezdxf version and creation time for a new created document as metadata in
the DXF file. Only standard DXF features are used to store meta data and this meta data is preserved by
Autodesk products, BricsCAD and of course ezdxf. Other 3rd party DXF libraries may remove this meta data.
For DXF R12 the meta data is stored as XDATA by AppID EZDXF in the model space BLOCK entity in the BLOCKS
section.
For DXF R2000+ the meta data is stored in the “root” DICTIONARY in the OBJECTS section as a DICTIONARY
object by the key EZDXF_META.
The MetaData object has a dict-like interface and can also store custom metadata:
metadata = doc.ezdxf_metadata()
# set data
metadata["MY_CUSTOM_META_DATA"] = "a string with max. length of 254"
# get data, raises a KeyError() if key not exist
value = metadata["MY_CUSTOM_META_DATA"]
# get data, returns an empty string if key not exist
value = metadata.get("MY_CUSTOM_META_DATA")
# delete entry, raises a KeyError() if key not exist
del metadata["MY_CUSTOM_META_DATA"]
# discard entry, does not raise a KeyError() if key not exist
metadata.discard("MY_CUSTOM_META_DATA")
Keys and values are limited to strings with a max. length of 254 characters and line ending \n will be
replaced by \P.
Keys used by ezdxf:
• WRITTEN_BY_EZDXF: ezdxf version and UTC time in ISO format
• CREATED_BY_EZDXF: ezdxf version and UTC time in ISO format
Example of the ezdxf marker string: 0.16.4b1 @ 2021-06-12T07:35:34.898808+00:00
class ezdxf.document.MetaData
abstractmethod MetaData.__contains__(key: str) -> bool
Returns key in self.
abstractmethod MetaData.__getitem__(key: str) -> str
Returns the value for self[key].
Raises KeyError – key does not exist
MetaData.get(key: str, default: str = '') -> str
Returns the value for key. Returns default if key not exist.
abstractmethod MetaData.__setitem__(key: str, value: str) -> None
Set self[key] to value.
abstractmethod MetaData.__delitem__(key: str) -> None
Delete self[key].
Raises KeyError – key does not exist
MetaData.discard(key: str) -> None
Remove key, does not raise an exception if key not exist.
Export/Load JSON Encoded Tags
Tag format of DXF documents:
0
SECTION
2
HEADER
9
$ACADVER
1
AC1027
...
9
$LIMMIN
10
0.0
20
0.0
9
$LIMMAX
10
420.0
20
297.0
9
$ORTHOMODE
70
0
9
$REGENMODE
70
1
...
0
EOF
The compact format is a list of [group-code, value] pairs where each pair is a DXF tag. The group-code
has to be an integer and the value has to be a string, integer, float or list of floats for vertices.
[
[0, "SECTION"],
[2, "HEADER"],
[9, "$ACADVER"],
[1, "AC1027"],
...
[9, "$LIMMIN"],
[10, [0.0,0.0]],
[9, "$LIMMAX"],
[10, [420.0,297.0]],
[9, "$ORTHOMODE"],
[70, 0],
[9, "$REGENMODE"],
[70, 1]
...
[0, "EOF"]
]
The verbose format (compact is False) is a list of [group-code, value] pairs where each pair is a 1:1
representation of a DXF tag. The group-code has to be an integer and the value has to be a string.
[
[0, "SECTION"],
[2, "HEADER"],
[9, "$ACADVER"],
[1, "AC1027"],
...
[9, "$LIMMIN"],
[10, "0.0"],
[20, "0.0"],
[9, "$LIMMAX"],
[10, "420.0"],
[20, "297.0"],
[9, "$ORTHOMODE"],
[70, "0"],
[9, "$REGENMODE"],
[70, "1"],
...
[0, "EOF"]
]
ezdxf.document.export_json_tags(doc: Drawing, compact=True) -> str
Export a DXF document as JSON formatted tags.
The compact format is a list of [group-code, value] pairs where each pair is a DXF tag. The
group-code has to be an integer and the value has to be a string, integer, float or list of floats
for vertices.
The verbose format (compact is False) is a list of [group-code, value] pairs where each pair is a
1:1 representation of a DXF tag. The group-code has to be an integer and the value has to be a
string.
ezdxf.document.load_json_tags(data: Sequence[Any]) -> Drawing
Load DXF document from JSON formatted tags.
The expected JSON format is a list of [group-code, value] pairs where each pair is a DXF tag. The
compact and the verbose format is supported.
Parameters
data – JSON data structure as a sequence of [group-code, value] pairs
Drawing Class
The Drawing class is the central management structure of a DXF document.
Access Layouts
• Drawing.modelspace()
• Drawing.paperspace()
Access Resources
• Application ID Table: Drawing.appids
• Block Definition Table: Drawing.blocks
• Dimension Style Table: Drawing.dimstyles
• Layer Table: Drawing.layers
• Linetype Table: Drawing.linetypes
• MLeader Style Table: Drawing.mleader_styles
• MLine Style Table: Drawing.mline_styles
• Material Table: Drawing.materials
• Text Style Table: Drawing.styles
• UCS Table: Drawing.ucs
• VPort Table: Drawing.viewports
• View Table: Drawing.views
• Classes Section: Drawing.classes
• Object Section: Drawing.objects
• Entity Database: Drawing.entitydb
• Entity Groups: Drawing.groups
• Header Variables: Drawing.header
Drawing Class
class ezdxf.document.Drawing
The Drawing class is the central management structure of a DXF document.
dxfversion
Actual DXF version like 'AC1009', set by ezdxf.new() or ezdxf.readfile().
For supported DXF versions see Document Management
acad_release
The AutoCAD release name like 'R12' or 'R2000' for actual dxfversion.
encoding
Text encoding of Drawing, the default encoding for new drawings is 'cp1252'. Starting with
DXF R2007 (AC1021), DXF files are written as UTF-8 encoded text files, regardless of the
attribute encoding. The text encoding can be changed to encodings listed below.
see also: DXF File Encoding
┌───────────┬────────────────┐
│ supported │ encodings │
├───────────┼────────────────┤
│ 'cp874' │ Thai │
├───────────┼────────────────┤
│ 'cp932' │ Japanese │
├───────────┼────────────────┤
│ 'gbk' │ UnifiedChinese │
├───────────┼────────────────┤
│ 'cp949' │ Korean │
├───────────┼────────────────┤
│ 'cp950' │ TradChinese │
├───────────┼────────────────┤
│ 'cp1250' │ CentralEurope │
├───────────┼────────────────┤
│ 'cp1251' │ Cyrillic │
├───────────┼────────────────┤
│ 'cp1252' │ WesternEurope │
├───────────┼────────────────┤
│ 'cp1253' │ Greek │
├───────────┼────────────────┤
│ 'cp1254' │ Turkish │
├───────────┼────────────────┤
│ 'cp1255' │ Hebrew │
├───────────┼────────────────┤
│ 'cp1256' │ Arabic │
├───────────┼────────────────┤
│ 'cp1257' │ Baltic │
├───────────┼────────────────┤
│ 'cp1258' │ Vietnam │
└───────────┴────────────────┘
output_encoding
Returns required output encoding for saving to filesystem or encoding to binary data.
filename
Drawing filename, if loaded by ezdxf.readfile() else None.
rootdict
Reference to the root dictionary of the OBJECTS section.
header Reference to the HeaderSection, get/set drawing settings as header variables.
entities
Reference to the EntitySection of the drawing, where all graphical entities are stored, but
only from modelspace and the active paperspace layout. Just for your information: Entities
of other paperspace layouts are stored as BlockLayout in the BlocksSection.
objects
Reference to the objects section, see also ObjectsSection.
blocks Reference to the blocks section, see also BlocksSection.
tables Reference to the tables section, see also TablesSection.
classes
Reference to the classes section, see also ClassesSection.
layouts
Reference to the layout manager, see also Layouts.
groups Collection of all groups, see also GroupCollection.
requires DXF R13 or later
layers Shortcut for Drawing.tables.layers
Reference to the layers table, where you can create, get and remove layers, see also Table
and Layer
styles Shortcut for Drawing.tables.styles
Reference to the styles table, see also Textstyle.
dimstyles
Shortcut for Drawing.tables.dimstyles
Reference to the dimstyles table, see also DimStyle.
linetypes
Shortcut for Drawing.tables.linetypes
Reference to the linetypes table, see also Linetype.
views Shortcut for Drawing.tables.views
Reference to the views table, see also View.
viewports
Shortcut for Drawing.tables.viewports
Reference to the viewports table, see also VPort.
ucs Shortcut for Drawing.tables.ucs
Reference to the ucs table, see also UCSTableEntry.
appids Shortcut for Drawing.tables.appids
Reference to the appids table, see also AppID.
materials
MaterialCollection of all Material objects.
mline_styles
MLineStyleCollection of all MLineStyle objects.
mleader_styles
MLeaderStyleCollection of all MLeaderStyle objects.
units Get and set the document/modelspace base units as enum, for more information read this: DXF
Units. Requires DXF R2000 or newer.
get_abs_filepath = <function Drawing.get_abs_filepath>
save(encoding: str | None = None, fmt: str = 'asc') -> None
Write drawing to file-system by using the filename attribute as filename. Override file
encoding by argument encoding, handle with care, but this option allows you to create DXF
files for applications that handle file encoding different from AutoCAD.
Parameters
• encoding – override default encoding as Python encoding string like 'utf-8'
• fmt – 'asc' for ASCII DXF (default) or 'bin' for Binary DXF
saveas(filename: PathLike | str, encoding: str | None = None, fmt: str = 'asc') -> None
Set Drawing attribute filename to filename and write drawing to the file system. Override
file encoding by argument encoding, handle with care, but this option allows you to create
DXF files for applications that handles file encoding different than AutoCAD.
Parameters
• filename – file name as string
• encoding – override default encoding as Python encoding string like 'utf-8'
• fmt – 'asc' for ASCII DXF (default) or 'bin' for Binary DXF
write(stream: TextIO | BinaryIO, fmt: str = 'asc') -> None
Write drawing as ASCII DXF to a text stream or as Binary DXF to a binary stream. For DXF
R2004 (AC1018) and prior open stream with drawing encoding and mode='wt'. For DXF R2007
(AC1021) and later use encoding='utf-8', or better use the later added Drawing property
output_encoding which returns the correct encoding automatically. The correct and required
error handler is errors='dxfreplace'!
If writing to a StringIO stream, use Drawing.encode() to encode the result string from
StringIO.get_value():
binary = doc.encode(stream.get_value())
Parameters
• stream – output text stream or binary stream
• fmt – “asc” for ASCII DXF (default) or “bin” for binary DXF
encode_base64() -> bytes
Returns DXF document as base64 encoded binary data.
encode(s: str) -> bytes
Encode string s with correct encoding and error handler.
query(query: str = '*') -> EntityQuery
Entity query over all layouts and blocks, excluding the OBJECTS section and the resource
tables of the TABLES section.
Parameters
query – query string
SEE ALSO:
Entity Query String and Retrieve entities by query language
groupby(dxfattrib='', key=None) -> dict
Groups DXF entities of all layouts and blocks (excluding the OBJECTS section) by a DXF
attribute or a key function.
Parameters
• dxfattrib – grouping DXF attribute like “layer”
• key – key function, which accepts a DXFEntity as argument and returns a hashable
grouping key or None to ignore this entity.
SEE ALSO:
groupby() documentation
modelspace() -> Modelspace
Returns the modelspace layout, displayed as “Model” tab in CAD applications, defined by
block record named “*Model_Space”.
paperspace(name: str = '') -> Paperspace
Returns paperspace layout name or the active paperspace if no name is given.
Parameters
name – paperspace name or empty string for the active paperspace
Raises KeyError – if the modelspace was acquired or layout name does not exist
layout(name: str = '') -> Layout
Returns paperspace layout name or the first layout in tab-order if no name is given.
Parameters
name – paperspace name or empty string for the first paperspace in tab-order
Raises KeyError – layout name does not exist
active_layout() -> Paperspace
Returns the active paperspace layout, defined by block record name “*Paper_Space”.
layout_names() -> Iterable[str]
Returns all layout names in arbitrary order.
layout_names_in_taborder() -> Iterable[str]
Returns all layout names in tab-order, “Model” is always the first name.
new_layout(name, dxfattribs=None) -> Paperspace
Create a new paperspace layout name. Returns a Paperspace object. DXF R12 (AC1009) supports
only one paperspace layout, only the active paperspace layout is saved, other layouts are
dismissed.
Parameters
• name – unique layout name
• dxfattribs – additional DXF attributes for the DXFLayout entity
Raises DXFValueError – paperspace layout name already exist
page_setup(name: str = 'Layout1', fmt: str = 'ISO A3', landscape=True) -> Paperspace
Creates a new paperspace layout if name does not exist or reset the existing layout. This
method requires DXF R2000 or newer. The paper format name fmt defines one of the following
paper sizes, measures in landscape orientation:
┌─────────┬───────┬───────┬────────┐
│ Name │ Units │ Width │ Height │
├─────────┼───────┼───────┼────────┤
│ ISO A0 │ mm │ 1189 │ 841 │
├─────────┼───────┼───────┼────────┤
│ ISO A1 │ mm │ 841 │ 594 │
├─────────┼───────┼───────┼────────┤
│ ISO A2 │ mm │ 594 │ 420 │
├─────────┼───────┼───────┼────────┤
│ ISO A3 │ mm │ 420 │ 297 │
├─────────┼───────┼───────┼────────┤
│ ISO A4 │ mm │ 297 │ 210 │
├─────────┼───────┼───────┼────────┤
│ ANSI A │ inch │ 11 │ 8.5 │
├─────────┼───────┼───────┼────────┤
│ ANSI B │ inch │ 17 │ 11 │
├─────────┼───────┼───────┼────────┤
│ ANSI C │ inch │ 22 │ 17 │
├─────────┼───────┼───────┼────────┤
│ ANSI D │ inch │ 34 │ 22 │
├─────────┼───────┼───────┼────────┤
│ ANSI E │ inch │ 44 │ 34 │
├─────────┼───────┼───────┼────────┤
│ ARCH C │ inch │ 24 │ 18 │
├─────────┼───────┼───────┼────────┤
│ ARCH D │ inch │ 36 │ 24 │
├─────────┼───────┼───────┼────────┤
│ ARCH E │ inch │ 48 │ 36 │
├─────────┼───────┼───────┼────────┤
│ ARCH E1 │ inch │ 42 │ 30 │
├─────────┼───────┼───────┼────────┤
│ Letter │ inch │ 11 │ 8.5 │
├─────────┼───────┼───────┼────────┤
│ Legal │ inch │ 14 │ 8.5 │
└─────────┴───────┴───────┴────────┘
The layout uses the associated units of the paper format as drawing units, has no margins
or offset defined and the scale of the paperspace layout is 1:1.
Parameters
• name – paperspace layout name
• fmt – paper format
• landscape – True for landscape orientation, False for portrait orientation
delete_layout(name: str) -> None
Delete paper space layout name and all entities owned by this layout. Available only for
DXF R2000 or later, DXF R12 supports only one paperspace, and it can’t be deleted.
add_image_def(filename: str, size_in_pixel: tuple[int, int], name=None)
Add an image definition to the objects section.
Add an ImageDef entity to the drawing (objects section). filename is the image file name as
relative or absolute path and size_in_pixel is the image size in pixel as (x, y) tuple. To
avoid dependencies to external packages, ezdxf can not determine the image size by itself.
Returns a ImageDef entity which is needed to create an image reference. name is the
internal image name, if set to None, name is auto-generated.
Absolute image paths works best for AutoCAD but not perfect, you have to update external
references manually in AutoCAD, which is not possible in TrueView. If the drawing units
differ from 1 meter, you also have to use: set_raster_variables().
Parameters
• filename – image file name (absolute path works best for AutoCAD)
• size_in_pixel – image size in pixel as (x, y) tuple
• name – image name for internal use, None for using filename as name (best for
AutoCAD)
SEE ALSO:
Tutorial for Image and ImageDef
set_raster_variables(frame: int = 0, quality: int = 1, units: str = 'm')
Set raster variables.
Parameters
• frame – 0 = do not show image frame; 1 = show image frame
• quality – 0 = draft; 1 = high
• units –
units for inserting images. This defines the real world unit for one drawing unit
for the purpose of inserting and scaling images with an associated resolution.
┌────┬───────────────────────┐
│ mm │ Millimeter │
├────┼───────────────────────┤
│ cm │ Centimeter │
├────┼───────────────────────┤
│ m │ Meter (ezdxf default) │
├────┼───────────────────────┤
│ km │ Kilometer │
├────┼───────────────────────┤
│ in │ Inch │
├────┼───────────────────────┤
│ ft │ Foot │
├────┼───────────────────────┤
│ yd │ Yard │
├────┼───────────────────────┤
│ mi │ Mile │
└────┴───────────────────────┘
set_wipeout_variables(frame=0)
Set wipeout variables.
Parameters
frame – 0 = do not show image frame; 1 = show image frame
add_underlay_def(filename: str, fmt: str = 'ext', name: str | None = None)
Add an UnderlayDef entity to the drawing (OBJECTS section). The filename is the underlay
file name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay
definition is required to create an underlay reference.
Parameters
• filename – underlay file name
• fmt – file format as string “pdf”|”dwf”|”dgn” or “ext” for getting file format
from filename extension
• name – pdf format = page number to display; dgn format = “default”; dwf: ????
SEE ALSO:
Tutorial for Underlay and UnderlayDefinition
add_xref_def(filename: str, name: str, flags: int = BLK_XREF | BLK_EXTERNAL)
Add an external reference (xref) definition to the blocks section.
Parameters
• filename – external reference filename
• name – name of the xref block
• flags – block flags
layouts_and_blocks() -> Iterator[GenericLayoutType]
Iterate over all layouts (modelspace and paperspace) and all block definitions.
chain_layouts_and_blocks() -> Iterator[DXFEntity]
Chain entity spaces of all layouts and blocks. Yields an iterator for all entities in all
layouts and blocks.
reset_fingerprint_guid()
Reset fingerprint GUID.
reset_version_guid()
Reset version GUID.
set_modelspace_vport(height, center=(0, 0), *, dxfattribs=None) -> VPort
Set initial view/zoom location for the modelspace, this replaces the current “*Active”
viewport configuration (VPort) and reset the coordinate system to the WCS.
Parameters
• height – modelspace area to view
• center – modelspace location to view in the center of the CAD application window.
• dxfattribs – additional DXF attributes for the VPORT entity
audit() -> Auditor
Checks document integrity and fixes all fixable problems, not fixable problems are stored
in Auditor.errors.
If you are messing around with internal structures, call this method before saving to be
sure to export valid DXF documents, but be aware this is a long-running task.
validate(print_report=True) -> bool
Simple way to run an audit process. Fixes all fixable problems, return False if not fixable
errors occurs. Prints a report of resolved and unrecoverable errors, if requested.
Parameters
print_report – print report to stdout
Returns: False if unrecoverable errors exist
ezdxf_metadata() -> MetaData
Returns the ezdxf ezdxf.document.MetaData object, which manages ezdxf and custom metadata
in DXF files. For more information see: Ezdxf Metadata.
Recover
This module provides functions to “recover” ASCII DXF documents with structural flaws, which prevents the
regular ezdxf.read() and ezdxf.readfile() functions to load the document.
The read() and readfile() functions will repair as much flaws as possible and run the required audit
process automatically afterwards and return the result of this audit process:
import sys
import ezdxf
from ezdxf import recover
try:
doc, auditor = recover.readfile("messy.dxf")
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file.')
sys.exit(2)
# DXF file can still have unrecoverable errors, but this is maybe just
# a problem when saving the recovered DXF file.
if auditor.has_errors:
auditor.print_error_report()
The loading functions also decode DXF-Unicode encoding automatically e.g. “\U+00FC” -> “ü”. All these
efforts cost some time, loading the DXF document with ezdxf.read() or ezdxf.readfile() is faster.
WARNING:
This module will load DXF files which have decoding errors, most likely binary data stored in XRECORD
entities, these errors are logged as unrecoverable AuditError.DECODE_ERRORS in the Auditor.errors
attribute, but no DXFStructureError exception will be raised, because for many use cases this errors
can be ignored.
Writing such files back with ezdxf may create invalid DXF files, or at least some information will be
lost - handle with care!
To avoid this problem use recover.readfile(filename, errors='strict') which raises an
UnicodeDecodeError exception for such binary data. Catch the exception and handle this DXF files as
unrecoverable.
Loading Scenarios
1. It will work
Mostly DXF files from AutoCAD or BricsCAD (e.g. for In-house solutions):
try:
doc = ezdxf.readfile(name)
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)
2. DXF file with minor flaws
DXF files have only minor flaws, like undefined resources:
try:
doc = ezdxf.readfile(name)
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)
auditor = doc.audit()
if auditor.has_errors:
auditor.print_error_report()
3. Try Hard
From trusted and untrusted sources but with good hopes, the worst case works like a cache miss, you pay
for the first try and pay the extra fee for the recover mode:
try: # Fast path:
doc = ezdxf.readfile(name)
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
# Catch all DXF errors:
except ezdxf.DXFError:
try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile(name)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)
# DXF file can still have unrecoverable errors, but this is maybe
# just a problem when saving the recovered DXF file.
if auditor.has_errors:
print(f'Found unrecoverable errors in DXF file: {name}.')
auditor.print_error_report()
4. Just use the slow recover module
Untrusted sources and expecting many invalid or corrupted DXF files, you always pay an extra fee for the
recover mode:
try: # Slow path including fixing low level structures:
doc, auditor = recover.readfile(name)
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)
# DXF file can still have unrecoverable errors, but this is maybe
# just a problem when saving the recovered DXF file.
if auditor.has_errors:
print(f'Found unrecoverable errors in DXF file: {name}.')
auditor.print_error_report()
5. Unrecoverable Decoding Errors
If files contain binary data which can not be decoded by the document encoding, it is maybe the best to
ignore these files, this works in normal and recover mode:
try:
doc, auditor = recover.readfile(name, errors='strict')
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)
except UnicodeDecodeError:
print(f'Decoding error in DXF file: {name}.')
sys.exit(3)
6. Ignore/Locate Decoding Errors
Sometimes ignoring decoding errors can recover DXF files or at least you can detect where the decoding
errors occur:
try:
doc, auditor = recover.readfile(name, errors='ignore')
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file: {name}.')
sys.exit(2)
if auditor.has_errors:
auditor.print_report()
The error messages with code AuditError.DECODING_ERROR shows the approximate line number of the decoding
error: “Fixed unicode decoding error near line: xxx.”
HINT:
This functions can handle only ASCII DXF files!
ezdxf.recover.readfile(filename: str | Path, errors: str = 'surrogateescape') -> tuple[Drawing, Auditor]
Read a DXF document from file system similar to ezdxf.readfile(), but this function will repair as
many flaws as possible, runs the required audit process automatically the DXF document and the
Auditor.
Parameters
• filename – file-system name of the DXF document to load
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
ezdxf.recover.read(stream: BinaryIO, errors: str = 'surrogateescape') -> tuple[Drawing, Auditor]
Read a DXF document from a binary-stream similar to ezdxf.read(), but this function will detect
the text encoding automatically and repair as many flaws as possible, runs the required audit
process afterwards and returns the DXF document and the Auditor.
Parameters
• stream – data stream to load in binary read mode
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
ezdxf.recover.explore(filename: str | Path, errors: str = 'ignore') -> tuple[Drawing, Auditor]
Read a DXF document from file system similar to readfile(), but this function will use a special
tag loader, which tries to recover the tag stream if invalid tags occur. This function is
intended to load corrupted DXF files and should only be used to explore such files, data loss is
very likely.
Parameters
• filename – file-system name of the DXF document to load
• errors –
specify decoding error handler
• ”surrogateescape” to preserve possible binary data (default)
• ”ignore” to use the replacement char U+FFFD “�” for invalid data
• ”strict” to raise an UnicodeDecodeError exception for invalid data
Raises
• DXFStructureError – for invalid or corrupted DXF structures
• UnicodeDecodeError – if errors is “strict” and a decoding error occurs
r12strict
Added in version 1.1.
Due to ACAD release 14 the resource names, such as layer-, linetype, text style-, dimstyle- and block
names, were limited to 31 characters in length and all names were uppercase.
Names can include the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign "$",
underscore "_", hyphen "-" and the asterix "*" as first character for special names like anonymous
blocks. Most applications do not care about that and work fine with longer names and any characters used
in names for some exceptions, but of course Autodesk applications are very picky about that.
The function make_acad_compatible() makes DXF R12 drawings to 100% compatible to Autodesk products and
does everything at once, but the different processing steps can be called manually.
IMPORTANT:
This module can only process DXF R12 file and will throw a DXFVersionError otherwise. For exporting
any DXF document as DXF R12 use the ezdxf.addons.r12export add-on.
Usage
import ezdxf
from ezdxf import r12strict
doc = ezdxf.readfile("r12sloppy.dxf")
r12strict.make_acad_compatible(doc)
doc.saveas("r12strict.dxf")
Functions
┌──────────────────────┬───────────────────────────────────────┐
│ make_acad_compatible │ Apply all DXF R12 requirements, so │
│ │ Autodesk products will load the │
│ │ document. │
├──────────────────────┼───────────────────────────────────────┤
│ translate_names │ Translate table and block names into │
│ │ strict DXF R12 names. │
├──────────────────────┼───────────────────────────────────────┤
│ clean │ Removes all features that are not │
│ │ supported for DXF R12 by Autodesk │
│ │ products. │
└──────────────────────┴───────────────────────────────────────┘
ezdxf.r12strict.make_acad_compatible(doc: Drawing) -> None
Apply all DXF R12 requirements, so Autodesk products will load the document.
ezdxf.r12strict.translate_names(doc: Drawing) -> None
Translate table and block names into strict DXF R12 names.
ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names
can include the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($),
underscore (_), hyphen (-) and the asterix (*) as first character for special names like anonymous
blocks.
Most applications do not care about that and work fine with longer names and any characters used
in names for some exceptions, but of course Autodesk applications are very picky about that.
NOTE:
This is a destructive process and modifies the internals of the DXF document.
ezdxf.r12strict.clean(doc: Drawing) -> None
Removes all features that are not supported for DXF R12 by Autodesk products.
class ezdxf.r12strict.R12NameTranslator
Translate table and block names into strict DXF R12 names.
ACAD Releases upto 14 limit names to 31 characters in length and all names are uppercase. Names
can include the letters A to Z, the numerals 0 to 9, and the special characters, dollar sign ($),
underscore (_), hyphen (-) and the asterix (*) as first character for special names like anonymous
blocks.
reset() -> None
translate(name: str) -> str
DXF Structures
Sections
Header Section
The drawing settings are stored in the HEADER section, which is accessible by the header attribute of the
Drawing object. See the online documentation from Autodesk for available header variables.
SEE ALSO:
DXF Internals: HEADER Section
class ezdxf.sections.header.HeaderSection
custom_vars
Stores the custom drawing properties in a CustomVars object.
__len__() -> int
Returns count of header variables.
__contains__(key) -> bool
Returns True if header variable key exist.
varnames() -> KeysView
Returns an iterable of all header variable names.
get(key: str, default: Any = None) -> Any
Returns value of header variable key if exist, else the default value.
__getitem__(key: str) -> Any
Get header variable key by index operator like: drawing.header['$ACADVER']
__setitem__(key: str, value: Any) -> None
Set header variable key to value by index operator like: drawing.header['$ANGDIR'] = 1
__delitem__(key: str) -> None
Delete header variable key by index operator like: del drawing.header['$ANGDIR']
reset_wcs()
Reset the current UCS settings to the WCS.
class ezdxf.sections.header.CustomVars
The CustomVars class stores custom properties in the DXF header as $CUSTOMPROPERTYTAG and
$CUSTOMPROPERTY values. Custom properties require DXF R2004 or later, ezdxf can create custom
properties for older DXF versions as well, but AutoCAD will not show that properties.
properties
A list of custom header properties, stored as string tuples (tag, value). Multiple
occurrence of the same custom tag is allowed, but not well supported by the interface. This
is a standard Python list and it’s safe to modify this list as long as you just use tuples
of strings.
__len__() -> int
Count of custom properties.
__iter__() -> Iterator[tuple[str, str]]
Iterate over all custom properties as (tag, value) tuples.
clear() -> None
Remove all custom properties.
get(tag: str, default: str | None = None)
Returns the value of the first custom property tag.
has_tag(tag: str) -> bool
Returns True if custom property tag exist.
append(tag: str, value: str) -> None
Add custom property as (tag, value) tuple.
replace(tag: str, value: str) -> None
Replaces the value of the first custom property tag by a new value.
Raises DXFValueError if tag does not exist.
remove(tag: str, all: bool = False) -> None
Removes the first occurrence of custom property tag, removes all occurrences if all is
True.
Raises :class:`DXFValueError if tag does not exist.
Classes Section
The CLASSES section in DXF files holds the information for application-defined classes whose instances
appear in Layout objects. As usual package user there is no need to bother about CLASSES.
SEE ALSO:
DXF Internals: CLASSES Section
class ezdxf.sections.classes.ClassesSection
classes
Storage of all DXFClass objects, they are not stored in the entities database, because
CLASS instances do not have a handle attribute.
register()
add_class(name: str)
Register a known class by name.
get(name: str) -> DXFClass
Returns the first class matching name.
Storage key is the (name, cpp_class_name) tuple, because there are some classes with the
same name but different cpp_class_names.
add_required_classes(dxfversion: str) -> None
Add all required CLASS definitions for the specified DXF version.
update_instance_counters() -> None
Update CLASS instance counter for all registered classes, requires DXF R2004+.
class ezdxf.entities.DXFClass
Information about application-defined classes.
dxf.name
Class DXF record name.
dxf.cpp_class_name
C++ class name. Used to bind with software that defines object class behavior.
dxf.app_name
Application name. Posted in Alert box when a class definition listed in this section is not
currently loaded.
dxf.flags
Proxy capabilities flag
┌───────┬───────────────────────────────────────┐
│ 0 │ No operations allowed (0) │
├───────┼───────────────────────────────────────┤
│ 1 │ Erase allowed (0x1) │
├───────┼───────────────────────────────────────┤
│ 2 │ Transform allowed (0x2) │
├───────┼───────────────────────────────────────┤
│ 4 │ Color change allowed (0x4) │
├───────┼───────────────────────────────────────┤
│ 8 │ Layer change allowed (0x8) │
├───────┼───────────────────────────────────────┤
│ 16 │ Linetype change allowed (0x10) │
├───────┼───────────────────────────────────────┤
│ 32 │ Linetype scale change allowed (0x20) │
├───────┼───────────────────────────────────────┤
│ 64 │ Visibility change allowed (0x40) │
├───────┼───────────────────────────────────────┤
│ 128 │ Cloning allowed (0x80) │
├───────┼───────────────────────────────────────┤
│ 256 │ Lineweight change allowed (0x100) │
├───────┼───────────────────────────────────────┤
│ 512 │ Plot Style Name change allowed │
│ │ (0x200) │
├───────┼───────────────────────────────────────┤
│ 895 │ All operations except cloning allowed │
│ │ (0x37F) │
├───────┼───────────────────────────────────────┤
│ 1023 │ All operations allowed (0x3FF) │
├───────┼───────────────────────────────────────┤
│ 1024 │ Disables proxy warning dialog (0x400) │
├───────┼───────────────────────────────────────┤
│ 32768 │ R13 format proxy (0x8000) │
└───────┴───────────────────────────────────────┘
dxf.instance_count
Instance count for a custom class.
dxf.was_a_proxy
Set to 1 if class was not loaded when this DXF file was created, and 0 otherwise.
dxf.is_an_entity
Set to 1 if class was derived from the DXFGraphic class and can reside in layouts. If 0,
instances may appear only in the OBJECTS section.
key Unique name as (name, cpp_class_name) tuple.
Tables Section
The TABLES section is the home of all TABLE objects of a DXF document.
SEE ALSO:
DXF Internals: TABLES Section
class ezdxf.sections.tables.TablesSection
layers LayerTable maintaining the Layer objects
linetypes
LinetypeTable maintaining the Linetype objects
styles TextstyleTable maintaining the Textstyle objects
dimstyles
DimStyleTable maintaining the DimStyle objects
appids AppIDTable maintaining the AppID objects
ucs UCSTable maintaining the UCSTable objects
views ViewTable maintaining the View objects
viewports
ViewportTable maintaining the VPort objects
block_records
BlockRecordTable maintaining the BlockRecord objects
Blocks Section
The BLOCKS section is the home all block definitions (BlockLayout) of a DXF document.
WARNING:
Blocks are an essential building block of the DXF format. Most blocks are referenced are by name, and
renaming or deleting a block is not as easy as it seems, since there is no overall index where all
block references appear, and such block references can also reside in custom data or even custom
entities, therefore renaming or deleting block definitions can damage a DXF file!
SEE ALSO:
DXF Internals: BLOCKS Section and Block Management Structures
class ezdxf.sections.blocks.BlocksSection
__iter__() -> Iterator[BlockLayout]
Iterable of all BlockLayout objects.
__contains__(name: str) -> bool
Returns True if BlockLayout name exist.
__getitem__(name: str) -> BlockLayout
Returns BlockLayout name, raises DXFKeyError if name not exist.
__delitem__(name: str) -> None
Deletes BlockLayout name and all of its content, raises DXFKeyError if name not exist.
get(name: str, default=None) -> BlockLayout
Returns BlockLayout name, returns default if name not exist.
new(name: str, base_point: UVec = NULLVEC, dxfattribs=None) -> BlockLayout
Create and add a new BlockLayout, name is the BLOCK name, base_point is the insertion point
of the BLOCK.
new_anonymous_block(type_char: str = 'U', base_point: UVec = NULLVEC) -> BlockLayout
Create and add a new anonymous BlockLayout, type_char is the BLOCK type, base_point is the
insertion point of the BLOCK.
┌───────────┬───────────────────────────────────────┐
│ type_char │ Anonymous Block Type │
├───────────┼───────────────────────────────────────┤
│ 'U' │ '*U###' anonymous BLOCK │
├───────────┼───────────────────────────────────────┤
│ 'E' │ '*E###' anonymous non-uniformly │
│ │ scaled BLOCK │
├───────────┼───────────────────────────────────────┤
│ 'X' │ '*X###' anonymous HATCH graphic │
├───────────┼───────────────────────────────────────┤
│ 'D' │ '*D###' anonymous DIMENSION graphic │
├───────────┼───────────────────────────────────────┤
│ 'A' │ '*A###' anonymous GROUP │
├───────────┼───────────────────────────────────────┤
│ 'T' │ '*T###' anonymous block for │
│ │ ACAD_TABLE content │
└───────────┴───────────────────────────────────────┘
rename_block(old_name: str, new_name: str) -> None
Rename BlockLayout old_name to new_name
WARNING:
This is a low-level tool and does not rename the block references, so all block
references to old_name are pointing to a non-existing block definition!
delete_block(name: str, safe: bool = True) -> None
Delete block.
Applies some safety checks when safe is True. A DXFBlockInUseError will be raised for:
• blocks with active references
• blocks representing existing layouts
• special blocks used internally
Parameters
• name – block name (case-insensitive)
• safe – apply safety checks
Raises
• DXFKeyError – if block not exists
• DXFBlockInUseError – when safe is True and block is in use
delete_all_blocks() -> None
Delete all blocks without references except modelspace- or paperspace layout blocks,
special arrow- and anonymous blocks (DIMENSION, ACAD_TABLE).
WARNING:
There could exist references to blocks which are not documented in the DXF reference,
hidden in extended data sections or application defined data, which could invalidate a
DXF document if these blocks will be deleted.
Entities Section
The ENTITIES section is the home of all entities of the Modelspace and the active Paperspace layout.
This is a real section in the DXF file but in ezdxf the EntitySection is just a linked entity space of
these two layouts.
SEE ALSO:
DXF Internals: ENTITIES Section
class ezdxf.sections.entities.EntitySection
__iter__() -> Iterator[DXFEntity]
Returns an iterator for all entities of the modelspace and the active paperspace.
__len__() -> int
Returns the count of all entities in the modelspace and the active paperspace.
Objects Section
The OBJECTS section is the home of all none graphical objects of a DXF document. The OBJECTS section is
accessible by the Drawing.objects attribute.
Convenience methods of the Drawing object to create essential structures in the OBJECTS section:
• IMAGEDEF: add_image_def()
• UNDERLAYDEF: add_underlay_def()
• RASTERVARIABLES: set_raster_variables()
• WIPEOUTVARIABLES: set_wipeout_variables()
SEE ALSO:
DXF Internals: OBJECTS Section
class ezdxf.sections.objects.ObjectsSection
rootdict
Returns the root DICTIONARY, or as AutoCAD calls it: the named DICTIONARY.
__len__() -> int
Returns the count of all DXF objects in the OBJECTS section.
__iter__() -> Iterator[DXFObject]
Returns an iterator of all DXF objects in the OBJECTS section.
__getitem__(index) -> DXFObject
Get entity at index.
The underlying data structure for storing DXF objects is organized like a standard Python
list, therefore index can be any valid list indexing or slicing term, like a single index
objects[-1] to get the last entity, or an index slice objects[:10] to get the first 10 or
fewer objects as list[DXFObject].
__contains__(entity)
Returns True if entity stored in OBJECTS section.
Parameters
entity – DXFObject or handle as hex string
query(query: str = '*') -> EntityQuery
Get all DXF objects matching the Entity Query String.
add_dictionary(owner: str = '0', hard_owned: bool = True) -> Dictionary
Add new Dictionary object.
Parameters
• owner – handle to owner as hex string.
• hard_owned – True to treat entries as hard owned.
add_dictionary_with_default(owner='0', default='0', hard_owned: bool = True) ->
DictionaryWithDefault
Add new DictionaryWithDefault object.
Parameters
• owner – handle to owner as hex string.
• default – handle to default entry.
• hard_owned – True to treat entries as hard owned.
add_dictionary_var(owner: str = '0', value: str = '') -> DictionaryVar
Add a new DictionaryVar object.
Parameters
• owner – handle to owner as hex string.
• value – value as string
add_geodata(owner: str = '0', dxfattribs=None) -> GeoData
Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the
OBJECTS section and NOT in the layout entity space, and it is linked to the layout by an
extension dictionary located in BLOCK_RECORD of the layout.
The GEODATA entity requires DXF version R2010+. The DXF Reference does not document if
other layouts than model space supports geo referencing, so getting/setting geo data may
only make sense for the model space layout, but it is also available in paper space
layouts.
Parameters
• owner – handle to owner as hex string
• dxfattribs – DXF attributes for GeoData entity
add_image_def(filename: str, size_in_pixel: tuple[int, int], name: str | None = None) -> ImageDef
Add an image definition to the objects section.
Add an ImageDef entity to the drawing (objects section). filename is the image file name as
relative or absolute path and size_in_pixel is the image size in pixel as (x, y) tuple. To
avoid dependencies to external packages, ezdxf can not determine the image size by itself.
Returns a ImageDef entity which is needed to create an image reference. name is the
internal image name, if set to None, name is auto-generated.
Absolute image paths works best for AutoCAD but not really good, you have to update
external references manually in AutoCAD, which is not possible in TrueView. If the drawing
units differ from 1 meter, you also have to use: set_raster_variables().
Parameters
• filename – image file name (absolute path works best for AutoCAD)
• size_in_pixel – image size in pixel as (x, y) tuple
• name – image name for internal use, None for using filename as name (best for
AutoCAD)
add_placeholder(owner: str = '0') -> Placeholder
Add a new Placeholder object.
Parameters
owner – handle to owner as hex string.
add_underlay_def(filename: str, fmt: str = 'pdf', name: str | None = None) -> UnderlayDefinition
Add an UnderlayDefinition entity to the drawing (OBJECTS section). filename is the underlay
file name as relative or absolute path and fmt as string (pdf, dwf, dgn). The underlay
definition is required to create an underlay reference.
Parameters
• filename – underlay file name
• fmt – file format as string 'pdf'|'dwf'|'dgn'
• name – pdf format = page number to display; dgn format = 'default'; dwf: ????
add_xrecord(owner: str = '0') -> XRecord
Add a new XRecord object.
Parameters
owner – handle to owner as hex string.
set_raster_variables(frame: int = 0, quality: int = 1, units: str = 'm') -> None
Set raster variables.
Parameters
• frame – 0 = do not show image frame; 1 = show image frame
• quality – 0 = draft; 1 = high
• units –
units for inserting images. This defines the real world unit for one drawing unit
for the purpose of inserting and scaling images with an associated resolution.
┌──────┬───────────────────────┐
│ mm │ Millimeter │
├──────┼───────────────────────┤
│ cm │ Centimeter │
├──────┼───────────────────────┤
│ m │ Meter (ezdxf default) │
├──────┼───────────────────────┤
│ km │ Kilometer │
├──────┼───────────────────────┤
│ in │ Inch │
├──────┼───────────────────────┤
│ ft │ Foot │
├──────┼───────────────────────┤
│ yd │ Yard │
├──────┼───────────────────────┤
│ mi │ Mile │
├──────┼───────────────────────┤
│ none │ None │
└──────┴───────────────────────┘
(internal API), public interface set_raster_variables()
set_wipeout_variables(frame: int = 0) -> None
Set wipeout variables.
Parameters
frame – 0 = do not show image frame; 1 = show image frame
(internal API)
Tables
Table Classes
Generic Table Class
class ezdxf.sections.table.Table
Generic collection of table entries. Table entry names are case insensitive: “Test” == “TEST”.
static key(name: str) -> str
Unified table entry key.
has_entry(name: str) -> bool
Returns True if a table entry name exist.
__contains__(name: str) -> bool
Returns True if a table entry name exist.
__len__() -> int
Count of table entries.
__iter__() -> Iterator[T]
Iterable of all table entries.
new(name: str, dxfattribs=None) -> T
Create a new table entry name.
Parameters
• name – name of table entry
• dxfattribs – additional DXF attributes for table entry
get(name: str) -> T
Returns table entry name.
Parameters
name – name of table entry, case-insensitive
Raises DXFTableEntryError – table entry does not exist
remove(name: str) -> None
Removes table entry name.
Parameters
name – name of table entry, case-insensitive
Raises DXFTableEntryError – table entry does not exist
duplicate_entry(name: str, new_name: str) -> T
Returns a new table entry new_name as copy of name, replaces entry new_name if already
exist.
Parameters
• name – name of table entry, case-insensitive
• new_name – name of duplicated table entry
Raises DXFTableEntryError – table entry does not exist
Layer Table
class ezdxf.sections.table.LayerTable
Subclass of Table.
Collection of Layer objects.
add(name: str, *, color: int = const.BYLAYER, true_color: int | None = None, linetype: str =
'Continuous', lineweight: int = const.LINEWEIGHT_BYLAYER, plot: bool = True, transparency: float |
None = None, dxfattribs=None) -> Layer
Add a new Layer.
Parameters
• name (str) – layer name
• color (int) – AutoCAD Color Index (ACI) value, default is BYLAYER
• true_color (int) – true color value, use ezdxf.rgb2int() to create int values from
RGB values
• linetype (str) – line type name, default is “Continuous”
• lineweight (int) – line weight, default is BYLAYER
• plot (bool) – plot layer as bool, default is True
• transparency – transparency value in the range [0, 1], where 1 is 100% transparent
and 0 is opaque
• dxfattribs (dict) – additional DXF attributes
Linetype Table
class ezdxf.sections.table.LinetypeTable
Subclass of Table.
Collection of Linetype objects.
add(name: str, pattern: Sequence[float] | str, *, description: str = '', length: float = 0.0,
dxfattribs=None) -> Linetype
Add a new line type entry. The simple line type pattern is a list of floats
[total_pattern_length, elem1, elem2, ...] where an element > 0 is a line, an element < 0
is a gap and an element == 0.0 is a dot. The definition for complex line types are
strings, like: 'A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25' similar to the
line type definitions stored in the line definition .lin files, for more information see
the tutorial about complex line types. Be aware that not many CAD applications and DXF
viewers support complex linetypes.
SEE ALSO:
• Tutorial for simple line types
• Tutorial for complex line types
Parameters
• name (str) – line type name
• pattern – line type pattern as list of floats or as a string
• description (str) – line type description, optional
• length (float) – total pattern length, only for complex line types required
• dxfattribs (dict) – additional DXF attributes
Style Table
class ezdxf.sections.table.TextstyleTable
Subclass of Table.
Collection of Textstyle objects.
add(name: str, *, font: str, dxfattribs=None) -> Textstyle
Add a new text style entry for TTF fonts. The entry must not yet exist, otherwise an
DXFTableEntryError exception will be raised.
Finding the TTF font files is the task of the DXF viewer and each viewer is different
(hint: support files).
Parameters
• name (str) – text style name
• font (str) – TTF font file name like “Arial.ttf”, the real font file name from the
file system is required and only the Windows filesystem is case-insensitive.
• dxfattribs (dict) – additional DXF attributes
add_shx(shx_file_name: str, *, dxfattribs=None) -> Textstyle
Add a new shape font (SHX file) entry. These are special text style entries and have no
name. The entry must not yet exist, otherwise an DXFTableEntryError exception will be
raised.
Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is
different (hint: support files).
Parameters
• shx_file_name (str) – shape file name like “gdt.shx”
• dxfattribs (dict) – additional DXF attributes
get_shx(shx_file_name: str) -> Textstyle
Get existing entry for a shape file (SHX file), or create a new entry.
Locating the SHX files in the filesystem is the task of the DXF viewer and each viewer is
different (hint: support files).
Parameters
shx_file_name (str) – shape file name like “gdt.shx”
find_shx(shx_file_name: str) -> Textstyle | None
Find the shape file (SHX file) text style table entry, by a case-insensitive search.
A shape file table entry has no name, so you have to search by the font attribute.
Parameters
shx_file_name (str) – shape file name like “gdt.shx”
discard_shx(shx_file_name: str) -> None
Discard the shape file (SHX file) text style table entry. Does not raise an exception if
the entry does not exist.
Parameters
shx_file_name (str) – shape file name like “gdt.shx”
DimStyle Table
class ezdxf.sections.table.DimStyleTable
Subclass of Table.
Collection of DimStyle objects.
add(name: str, *, dxfattribs=None) -> DimStyle
Add a new dimension style table entry.
Parameters
• name (str) – dimension style name
• dxfattribs (dict) – DXF attributes
AppID Table
class ezdxf.sections.table.AppIDTable
Subclass of Table.
Collection of AppID objects.
add(name: str, *, dxfattribs=None) -> AppID
Add a new appid table entry.
Parameters
• name (str) – appid name
• dxfattribs (dict) – DXF attributes
UCS Table
class ezdxf.sections.table.UCSTable
Subclass of Table.
Collection of UCSTableEntry objects.
add(name: str, *, dxfattribs=None) -> UCSTableEntry
Add a new UCS table entry.
Parameters
• name (str) – UCS name
• dxfattribs (dict) – DXF attributes
View Table
class ezdxf.sections.table.ViewTable
Subclass of Table.
Collection of View objects.
add(name: str, *, dxfattribs=None) -> View
Add a new view table entry.
Parameters
• name (str) – view name
• dxfattribs (dict) – DXF attributes
Viewport Table
class ezdxf.sections.table.ViewportTable
The viewport table stores the modelspace viewport configurations. A viewport configuration is a
tiled view of multiple viewports or just one viewport. In contrast to other tables the viewport
table can have multiple entries with the same name, because all viewport entries of a
multi-viewport configuration are having the same name - the viewport configuration name.
The name of the actual displayed viewport configuration is “*ACTIVE”.
Duplication of table entries is not supported: duplicate_entry() raises NotImplementedError
add(name: str, *, dxfattribs=None) -> VPort
Add a new modelspace viewport entry. A modelspace viewport configuration can consist of
multiple viewport entries with the same name.
Parameters
• name (str) – viewport name, multiple entries possible
• dxfattribs (dict) – additional DXF attributes
get_config(self, name: str) -> List[VPort]
Returns a list of VPort objects, for the multi-viewport configuration name.
delete_config(name: str) -> None
Delete all VPort objects of the multi-viewport configuration name.
Block Record Table
class ezdxf.sections.table.BlockRecordTable
Subclass of Table.
Collection of BlockRecord objects.
add(name: str, *, dxfattribs=None) -> BlockRecord
Add a new block record table entry.
Parameters
• name (str) – block record name
• dxfattribs (dict) – DXF attributes
Layer
LAYER (DXF Reference) definition, defines attribute values for entities on this layer for their
attributes set to BYLAYER.
IMPORTANT:
A layer assignment is just an attribute of a DXF entity, it’s not an entity container, the entities
are stored in layouts and blocks and the assigned layer is not important for that.
Deleting a layer entry does not delete the entities which reference this layer!
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'LAYER' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.layers.new() │
└──────────────────┴──────────────────────────┘
SEE ALSO:
Basic concepts of Layers and Tutorial for Layers
class ezdxf.entities.Layer
dxf.handle
DXF handle (feature for experts)
dxf.owner
Handle to owner (LayerTable).
dxf.name
Layer name, case insensitive and can not contain any of this characters: <>/\":;?*|=` (str)
dxf.flags
Layer flags (bit-coded values, feature for experts)
┌────┬───────────────────────────────────────┐
│ 1 │ Layer is frozen; otherwise layer is │
│ │ thawed; use is_frozen(), freeze() and │
│ │ thaw() │
├────┼───────────────────────────────────────┤
│ 2 │ Layer is frozen by default in new │
│ │ viewports │
├────┼───────────────────────────────────────┤
│ 4 │ Layer is locked; use is_locked(), │
│ │ lock(), unlock() │
├────┼───────────────────────────────────────┤
│ 16 │ If set, table entry is externally │
│ │ dependent on an xref │
├────┼───────────────────────────────────────┤
│ 32 │ If both this bit and bit 16 are set, │
│ │ the externally dependent xref has │
│ │ been successfully resolved │
├────┼───────────────────────────────────────┤
│ 64 │ If set, the table entry was │
│ │ referenced by at least one entity in │
│ │ the drawing the last time the drawing │
│ │ was edited. (This flag is for the │
│ │ benefit of AutoCAD commands. It can │
│ │ be ignored by most programs that read │
│ │ DXF files and need not be set by │
│ │ programs that write DXF files) │
└────┴───────────────────────────────────────┘
dxf.color
Layer color, but use property Layer.color to get/set color value, because color is negative
for layer status off (int)
dxf.true_color
Layer true color value as int, use property Layer.rgb to set/get true color value as (r, g,
b) tuple.
(requires DXF R2004)
dxf.linetype
Name of line type (str)
dxf.plot
Plot flag (int). Whether entities belonging to this layer should be drawn when the document
is exported (plotted) to pdf. Does not affect visibility inside the CAD application itself.
┌───┬────────────────────────────┐
│ 1 │ plot layer (default value) │
├───┼────────────────────────────┤
│ 0 │ don’t plot layer │
└───┴────────────────────────────┘
dxf.lineweight
Line weight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 and biggest line
weight is 200, values outside this range prevents AutoCAD from loading the file.
ezdxf.lldxf.const.LINEWEIGHT_DEFAULT for using global default line weight.
(requires DXF R13)
dxf.plotstyle_handle
Handle to plot style name?
(requires DXF R13)
dxf.material_handle
Handle to default Material.
(requires DXF R13)
rgb Get/set DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute
dxf.true_color is not set.
layer.rgb = (30, 40, 50)
r, g, b = layer.rgb
This is the recommend method to get/set RGB values, when ever possible do not use the DXF
low level attribute dxf.true_color.
color Get/set layer color, preferred method for getting the layer color, because dxf.color is
negative for layer status off.
description
Get/set layer description as string
transparency
Get/set layer transparency as float value in the range from 0 to 1. 0 for no transparency
(opaque) and 1 for 100% transparency.
is_frozen() -> bool
Returns True if layer is frozen.
freeze() -> None
Freeze layer.
thaw() -> None
Thaw layer.
is_locked() -> bool
Returns True if layer is locked.
lock() -> None
Lock layer, entities on this layer are not editable - just important in CAD applications.
unlock() -> None
Unlock layer, entities on this layer are editable - just important in CAD applications.
is_off() -> bool
Returns True if layer is off.
is_on() -> bool
Returns True if layer is on.
on() -> None
Switch layer on (visible).
off() -> None
Switch layer off (invisible).
get_color() -> int
Use property Layer.color instead.
set_color(value: int) -> None
Use property Layer.color instead.
rename(name: str) -> None
Rename layer and all known (documented) references to this layer.
WARNING:
The DXF format is not consistent in storing layer references, the layers are mostly
referenced by their case-insensitive name, some later introduced entities do reference
layers by handle, which is the safer way in the context of renaming layers.
There is no complete overview of where layer references are stored, third-party entities
are black-boxes with unknown content and layer names could be stored in the extended
data section of any DXF entity or in XRECORD entities. Which means that in some rare
cases references to the old layer name can persist, at least this does not invalidate
the DXF document.
Parameters
name – new layer name
Raises
• ValueError – name contains invalid characters: <>/":;?*|=`
• ValueError – layer name already exist
• ValueError – renaming of layers '0' and 'DEFPOINTS' not
possible
get_vp_overrides() -> LayerOverrides
Returns the LayerOverrides object for this layer.
LayerOverrides
class ezdxf.entities.LayerOverrides
This object stores the layer attribute overridden in Viewport entities, where each Viewport can
have individual layer attribute overrides.
Layer attributes which can be overridden:
• ACI color
• true color (rgb)
• linetype
• lineweight
• transparency
Get the override object for a certain layer by the Layer.get_vp_overrides() method.
It is important to write changes back by calling commit(), otherwise the changes are lost.
IMPORTANT:
The implementation of this feature as DXF structures is not documented by the DXF reference, so
if you encounter problems or errors, ALWAYS provide the DXF files, otherwise it is not possible
to help.
has_overrides(vp_handle: str | None = None) -> bool
Returns True if attribute overrides exist for the given Viewport handle. Returns True if
any attribute overrides exist if the given handle is None.
commit() -> None
Write Viewport overrides back into the Layer entity. Without a commit() all changes are
lost!
get_color(vp_handle: str) -> int
Returns the AutoCAD Color Index (ACI) override or the original layer value if no override
exist.
set_color(vp_handle: str, value: int) -> None
Override the AutoCAD Color Index (ACI).
Raises ValueError – invalid color value
get_rgb(vp_handle: str) -> RGB | None
Returns the RGB override or the original layer value if no override exist. Returns None if
no true color value is set.
set_rgb(vp_handle: str, value: RGB | None)
Set the RGB override as (red, gree, blue) tuple or None to remove the true color setting.
Raises ValueError – invalid RGB value
get_transparency(vp_handle: str) -> float
Returns the transparency override or the original layer value if no override exist. Returns
0.0 for opaque and 1.0 for fully transparent.
set_transparency(vp_handle: str, value: float) -> None
Set the transparency override. A transparency of 0.0 is opaque and 1.0 is fully
transparent.
Raises ValueError – invalid transparency value
get_linetype(vp_handle: str) -> str
Returns the linetype override or the original layer value if no override exist.
set_linetype(vp_handle: str, value: str) -> None
Set the linetype override.
Raises ValueError – linetype without a LTYPE table entry
get_lineweight(vp_handle: str) -> int
Returns the lineweight override or the original layer value if no override exist.
set_lineweight(vp_handle: str, value: int) -> None
Set the lineweight override.
Raises ValueError – invalid lineweight value
discard(vp_handle: str | None = None) -> None
Discard all attribute overrides for the given Viewport handle or for all Viewport entities
if the handle is None.
Style
IMPORTANT:
DXF is not a layout preserving data format like PDF. It is more similar to the MS Word format. Many
applications can open MS Word documents, but the displayed or printed document does not look perfect
like the result of MS Word.
The final rendering of DXF files is highly dependent on the interpretation of DXF entities by the
rendering engine, and the DXF reference does not provide any guidelines for rendering entities. The
biggest visual differences of CAD applications are the text renderings, therefore the only way to get
the exact same result is to use the same CAD application.
The DXF format does not and can not embed TTF fonts like the PDF format!
The Textstyle entity defines a text style (DXF Reference), and can be used by the entities: Text, Attrib,
Attdef, MText, Dimension, Leader and MultiLeader.
Example to create a new text style “Arial” and to apply this text style:
doc.styles.add("Arial", font="Arial.ttf")
msp = doc.modelspace()
msp.add_text("my text", dxfattribs={"style": "Arial"})
The settings stored in the Textstyle entity are the default text style values used by CAD applications if
the text settings are not stored in the text entity itself. But not all setting are substituted by the
default value. The height or width attribute must be stored in the text entities itself in order to
influence the appearance of the text. It is recommended that you do not rely on the default settings in
the Textstyle entity, set all attributes in the text entity itself if supported.
Font Settings
Just a few settings are available exclusive by the Textstyle entity:
The most important setting is the font attribute, this attribute defines the rendering font as raw TTF
file name, e.g. “Arial.ttf” or “OpenSansCondensed-Light.ttf”, this file name is often not the name
displayed in GUI application and you have to digg down into the fonts folder e.g. (“C:\Windows\Fonts”) to
get the real file name for the TTF font. Do not include the path! [image]
AutoCAD supports beyond the legacy SHX fonts only TTF fonts. The SHX font format is not documented and
only available in some CAD applications. The ezdxf drawing add-on replaces the SHX fonts by TTF fonts,
which look similar to the SHX fonts, unfortunately the license of these fonts is unclear, therefore they
can not be packaged with ezdxf. They are installed automatically if you use an Autodesk product like ‐
TrueView, or search the internet at you own risk for these TTF fonts.
The extended font data can provide extra information for the font, it is stored in the XDATA section, not
well documented and not widely supported.
IMPORTANT:
The DXF format does not and can not embed TTF fonts like the PDF format!
You need to make sure that the CAD application is properly configured to have access to the system
fonts. The DXF format has no setting where the CAD application should search for fonts, and does not
guarantee that the text rendering on other computers or operating systems looks the same as on your
current system on which you created the DXF.
The second exclusive setting is the vertical text flag in Textstyle.flags. The vertical text style is
enabled for all entities using the text style. Vertical text works only for SHX fonts and is not
supported for TTF fonts (in AutoCAD) and is works only for the single line entities Text and Attrib.
Most CAD applications beside AutoCAD and BricsCAD do not support vertical text rendering and even AutoCAD
and BricsCAD have problems with vertical text rendering in some circumstances. Using the vertical text
feature is not recommended.
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'STYLE' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.styles.new() │
└──────────────────┴──────────────────────────┘
SEE ALSO:
Tutorial for Text and DXF internals for DIMSTYLE Table.
class ezdxf.entities.Textstyle
property is_backward: bool
Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.
property is_upside_down: bool
Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.
property is_vertical_stacked: bool
Get/set style flag VERTICAL_STACKED, for vertical stacked text.
property is_shape_file: bool
True if entry describes a shape.
dxf.handle
DXF handle (feature for experts).
dxf.owner
Handle to owner (TextstyleTable).
dxf.name
Style name (str)
dxf.flags
Style flags (feature for experts).
┌────┬───────────────────────────────────────┐
│ 1 │ If set, this entry describes a shape │
├────┼───────────────────────────────────────┤
│ 4 │ Vertical text │
├────┼───────────────────────────────────────┤
│ 16 │ If set, table entry is externally │
│ │ dependent on an xref │
├────┼───────────────────────────────────────┤
│ 32 │ If both this bit and bit 16 are set, │
│ │ the externally dependent xref has │
│ │ been successfully resolved │
├────┼───────────────────────────────────────┤
│ 64 │ If set, the table entry was │
│ │ referenced by at least one entity in │
│ │ the drawing the last time the drawing │
│ │ was edited. (This flag is only for │
│ │ the benefit of AutoCAD)commands. It │
│ │ can be ignored by most programs that │
│ │ read DXF files and need not be set by │
│ │ programs that write DXF files) │
└────┴───────────────────────────────────────┘
dxf.height
Fixed height in drawing units as float value, 0 for not fixed.
dxf.width
Width factor as float value, default value is 1.
dxf.oblique
Oblique (slanting) angle in degrees as float value, default value is 0 for no slanting.
dxf.generation_flags
Text generations flags as int value.
┌───┬───────────────────────────────────────┐
│ 2 │ text is backward (mirrored along the │
│ │ x-axis) │
├───┼───────────────────────────────────────┤
│ 4 │ text is upside down (mirrored about │
│ │ the base line) │
└───┴───────────────────────────────────────┘
dxf.last_height
Last height used in drawing units as float value.
dxf.font
Raw font file name as string without leading path, e.g. “Arial.ttf” for TTF fonts or the
SHX font name like “TXT” or “TXT.SHX”.
dxf.bigfont
Big font name as string, blank if none. No documentation how to use this feature, maybe
just a legacy artifact.
property has_extended_font_data: bool
Returns True if extended font data is present.
get_extended_font_data() -> tuple[str, bool, bool]
Returns extended font data as tuple (font-family, italic-flag, bold-flag).
The extended font data is optional and not reliable! Returns (“”, False, False) if extended
font data is not present.
set_extended_font_data(family: str = '', *, italic=False, bold=False) -> None
Set extended font data, the font-family name family is not validated by ezdxf. Overwrites
existing data.
discard_extended_font_data()
Discard extended font data.
make_font(cap_height: float | None = None, width_factor: float | None = None) ->
fonts.AbstractFont
Returns a font abstraction AbstractFont for this text style. Returns a font for a cap
height of 1, if the text style has auto height (Textstyle.dxf.height is 0) and the given
cap_height is None or 0. Uses the Textstyle.dxf.width attribute if the given width_factor
is None or 0, the default value is 1. The attribute Textstyle.dxf.big_font is ignored.
Linetype
Defines a linetype (DXF Reference).
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'LTYPE' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.linetypes.new() │
└──────────────────┴──────────────────────────┘
SEE ALSO:
Tutorial for Creating Linetype Pattern
DXF Internals: LTYPE Table
class ezdxf.entities.Linetype
dxf.name
Linetype name (str).
dxf.owner
Handle to owner (Table).
dxf.description
Linetype description (str).
dxf.length
Total pattern length in drawing units (float).
dxf.items
Number of linetype elements (int).
DimStyle
[image] [image]
DIMSTYLE (DXF Reference) defines the appearance of Dimension entities. Each of this dimension variables
starting with "dim..." can be overridden for any Dimension entity individually.
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'DIMSTYLE' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.dimstyles.new() │
└──────────────────┴──────────────────────────┘
class ezdxf.entities.DimStyle
dxf.owner
Handle to owner (Table).
dxf.name
Dimension style name.
dxf.flags
Standard flag values (bit-coded values):
┌────┬───────────────────────────────────────┐
│ 16 │ If set, table entry is externally │
│ │ dependent on an xref │
├────┼───────────────────────────────────────┤
│ 32 │ If both this bit and bit 16 are set, │
│ │ the externally dependent XREF has │
│ │ been successfully resolved │
├────┼───────────────────────────────────────┤
│ 64 │ If set, the table entry was │
│ │ referenced by at least one entity in │
│ │ the drawing the last time the drawing │
│ │ was edited. (This flag is only for │
│ │ the benefit of AutoCAD) │
└────┴───────────────────────────────────────┘
dxf.dimpost
Prefix/suffix for primary units dimension values.
dxf.dimapost
Prefix/suffix for alternate units dimensions.
dxf.dimblk
Block type to use for both arrowheads as name string.
dxf.dimblk1
Block type to use for first arrowhead as name string.
dxf.dimblk2
Block type to use for second arrowhead as name string.
dxf.dimscale
Global dimension feature scale factor. (default=1)
dxf.dimasz
Dimension line and arrowhead size. (default=0.25)
dxf.dimexo
Distance from origin points to extension lines. (default imperial=0.0625, default
metric=0.625)
dxf.dimdli
Incremental spacing between baseline dimensions. (default imperial=0.38, default
metric=3.75)
dxf.dimexe
Extension line distance beyond dimension line. (default imperial=0.28, default metric=2.25)
dxf.dimrnd
Rounding value for decimal dimensions. (default=0)
Rounds all dimensioning distances to the specified value, for instance, if DIMRND is set to
0.25, all distances round to the nearest 0.25 unit. If you set DIMRND to 1.0, all
distances round to the nearest integer.
dxf.dimdle
Dimension line extension beyond extension lines. (default=0)
dxf.dimtp
Upper tolerance value for tolerance dimensions. (default=0)
dxf.dimtm
Lower tolerance value for tolerance dimensions. (default=0)
dxf.dimtxt
Size of dimension text. (default imperial=0.28, default metric=2.5)
dxf.dimcen
Controls placement of center marks or centerlines. (default imperial=0.09, default
metric=2.5)
dxf.dimtsz
Controls size of dimension line tick marks drawn instead of arrowheads. (default=0)
dxf.dimaltf
Alternate units dimension scale factor. (default=25.4)
dxf.dimlfac
Scale factor for linear dimension values. (default=1)
dxf.dimtvp
Vertical position of text above or below dimension line if dimtad is 0. (default=0)
dxf.dimtfac
Scale factor for fractional or tolerance text size. (default=1)
dxf.dimgap
Gap size between dimension line and dimension text. (default imperial=0.09, default
metric=0.625)
dxf.dimaltrnd
Rounding value for alternate dimension units. (default=0)
dxf.dimtol
Toggles creation of appended tolerance dimensions. (default imperial=1, default metric=0)
dxf.dimlim
Toggles creation of limits-style dimension text. (default=0)
dxf.dimtih
Orientation of text inside extension lines. (default imperial=1, default metric=0)
dxf.dimtoh
Orientation of text outside extension lines. (default imperial=1, default metric=0)
dxf.dimse1
Toggles suppression of first extension line. (default=0)
dxf.dimse2
Toggles suppression of second extension line. (default=0)
dxf.dimtad
Sets vertical text placement relative to dimension line. (default imperial=0, default
metric=1)
┌───┬──────────────────────────────────────┐
│ 0 │ center │
├───┼──────────────────────────────────────┤
│ 1 │ above │
├───┼──────────────────────────────────────┤
│ 2 │ outside, handled like above by ezdxf │
├───┼──────────────────────────────────────┤
│ 3 │ JIS, handled like above by ezdxf │
├───┼──────────────────────────────────────┤
│ 4 │ below │
└───┴──────────────────────────────────────┘
dxf.dimzin
Zero suppression for primary units dimensions. (default imperial=0, default metric=8)
Values 0-3 affect feet-and-inch dimensions only.
┌────┬───────────────────────────────────────┐
│ 0 │ Suppresses zero feet and precisely │
│ │ zero inches │
├────┼───────────────────────────────────────┤
│ 1 │ Includes zero feet and precisely zero │
│ │ inches │
├────┼───────────────────────────────────────┤
│ 2 │ Includes zero feet and suppresses │
│ │ zero inches │
├────┼───────────────────────────────────────┤
│ 3 │ Includes zero inches and suppresses │
│ │ zero feet │
├────┼───────────────────────────────────────┤
│ 4 │ Suppresses leading zeros in decimal │
│ │ dimensions (for example, 0.5000 │
│ │ becomes .5000) │
├────┼───────────────────────────────────────┤
│ 8 │ Suppresses trailing zeros in decimal │
│ │ dimensions (for example, 12.5000 │
│ │ becomes 12.5) │
├────┼───────────────────────────────────────┤
│ 12 │ Suppresses both leading and trailing │
│ │ zeros (for example, 0.5000 becomes │
│ │ .5) │
└────┴───────────────────────────────────────┘
dxf.dimazin
Controls zero suppression for angular dimensions. (default=0)
┌───┬───────────────────────────────────────┐
│ 0 │ Displays all leading and trailing │
│ │ zeros │
├───┼───────────────────────────────────────┤
│ 1 │ Suppresses leading zeros in decimal │
│ │ dimensions (for example, 0.5000 │
│ │ becomes .5000) │
├───┼───────────────────────────────────────┤
│ 2 │ Suppresses trailing zeros in decimal │
│ │ dimensions (for example, 12.5000 │
│ │ becomes 12.5) │
├───┼───────────────────────────────────────┤
│ 3 │ Suppresses leading and trailing zeros │
│ │ (for example, 0.5000 becomes .5) │
└───┴───────────────────────────────────────┘
dxf.dimalt
Enables or disables alternate units dimensioning. (default=0)
dxf.dimaltd
Controls decimal places for alternate units dimensions. (default imperial=2, default
metric=3)
dxf.dimtofl
Toggles forced dimension line creation. (default imperial=0, default metric=1)
dxf.dimsah
Toggles appearance of arrowhead blocks. (default=0)
dxf.dimtix
Toggles forced placement of text between extension lines. (default=0)
dxf.dimsoxd
Suppresses dimension lines outside extension lines. (default=0)
dxf.dimclrd
Dimension line, arrowhead, and leader line color. (default=0)
dxf.dimclre
Dimension extension line color. (default=0)
dxf.dimclrt
Dimension text color. (default=0)
dxf.dimadec
Controls the number of decimal places for angular dimensions.
dxf.dimunit
Obsolete, now use DIMLUNIT AND DIMFRAC
dxf.dimdec
Decimal places for dimension values. (default imperial=4, default metric=2)
dxf.dimtdec
Decimal places for primary units tolerance values. (default imperial=4, default metric=2)
dxf.dimaltu
Units format for alternate units dimensions. (default=2)
dxf.dimalttd
Decimal places for alternate units tolerance values. (default imperial=4, default metric=2)
dxf.dimaunit
Unit format for angular dimension values. (default=0)
dxf.dimfrac
Controls the fraction format used for architectural and fractional dimensions. (default=0)
dxf.dimlunit
Specifies units for all nonangular dimensions. (default=2)
dxf.dimdsep
Specifies a single character to use as a decimal separator. (default imperial = “.”,
default metric = “,”) This is an integer value, use ord(".") to write value.
dxf.dimtmove
Controls the format of dimension text when it is moved. (default=0)
┌───┬───────────────────────────────────────┐
│ 0 │ Moves the dimension line with │
│ │ dimension text │
├───┼───────────────────────────────────────┤
│ 1 │ Adds a leader when dimension text is │
│ │ moved │
├───┼───────────────────────────────────────┤
│ 2 │ Allows text to be moved freely │
│ │ without a leader │
└───┴───────────────────────────────────────┘
dxf.dimjust
Horizontal justification of dimension text. (default=0)
┌───┬───────────────────────────────────────┐
│ 0 │ Center of dimension line │
├───┼───────────────────────────────────────┤
│ 1 │ Left side of the dimension line, near │
│ │ first extension line │
├───┼───────────────────────────────────────┤
│ 2 │ Right side of the dimension line, │
│ │ near second extension line │
├───┼───────────────────────────────────────┤
│ 3 │ Over first extension line │
├───┼───────────────────────────────────────┤
│ 4 │ Over second extension line │
└───┴───────────────────────────────────────┘
dxf.dimsd1
Toggles suppression of first dimension line. (default=0)
dxf.dimsd2
Toggles suppression of second dimension line. (default=0)
dxf.dimtolj
Vertical justification for dimension tolerance text. (default=1)
┌───┬───────────────────────────────────────┐
│ 0 │ Align with bottom line of dimension │
│ │ text │
├───┼───────────────────────────────────────┤
│ 1 │ Align vertical centered to dimension │
│ │ text │
├───┼───────────────────────────────────────┤
│ 2 │ Align with top line of dimension text │
└───┴───────────────────────────────────────┘
dxf.dimtzin
Zero suppression for tolerances values, see DimStyle.dxf.dimzin
dxf.dimaltz
Zero suppression for alternate units dimension values. (default=0)
dxf.dimalttz
Zero suppression for alternate units tolerance values. (default=0)
dxf.dimfit
Obsolete, now use DIMATFIT and DIMTMOVE
dxf.dimupt
Controls user placement of dimension line and text. (default=0)
dxf.dimatfit
Controls placement of text and arrowheads when there is insufficient space between the
extension lines. (default=3)
dxf.dimtxsty
Text style used for dimension text by name.
dxf.dimtxsty_handle
Text style used for dimension text by handle of STYLE entry. (use DimStyle.dxf.dimtxsty to
get/set text style by name)
dxf.dimldrblk
Specify arrowhead used for leaders by name.
dxf.dimldrblk_handle
Specify arrowhead used for leaders by handle of referenced block. (use
DimStyle.dxf.dimldrblk to get/set arrowhead by name)
dxf.dimblk_handle
Block type to use for both arrowheads, handle of referenced block. (use
DimStyle.dxf.dimblk to get/set arrowheads by name)
dxf.dimblk1_handle
Block type to use for first arrowhead, handle of referenced block. (use
DimStyle.dxf.dimblk1 to get/set arrowhead by name)
dxf.dimblk2_handle
Block type to use for second arrowhead, handle of referenced block. (use
DimStyle.dxf.dimblk2 to get/set arrowhead by name)
dxf.dimlwd
Lineweight value for dimension lines. (default=-2, BYBLOCK)
dxf.dimlwe
Lineweight value for extension lines. (default=-2, BYBLOCK)
dxf.dimltype
Specifies the linetype used for the dimension line as linetype name, requires DXF R2007+
dxf.dimltype_handle
Specifies the linetype used for the dimension line as handle to LTYPE entry, requires DXF
R2007+ (use DimStyle.dxf.dimltype to get/set linetype by name)
dxf.dimltex1
Specifies the linetype used for the extension line 1 as linetype name, requires DXF R2007+
dxf.dimlex1_handle
Specifies the linetype used for the extension line 1 as handle to LTYPE entry, requires DXF
R2007+ (use DimStyle.dxf.dimltex1 to get/set linetype by name)
dxf.dimltex2
Specifies the linetype used for the extension line 2 as linetype name, requires DXF R2007+
dxf.dimlex2_handle
Specifies the linetype used for the extension line 2 as handle to LTYPE entry, requires DXF
R2007+ (use DimStyle.dxf.dimltex2 to get/set linetype by name)
dxf.dimfxlon
Extension line has fixed length if set to 1, requires DXF R2007+
dxf.dimfxl
Length of extension line below dimension line if fixed (DimStyle.dxf.dimtfxlon == 1),
DimStyle.dxf.dimexen defines the length above the dimension line, requires DXF R2007+
dxf.dimtfill
Text fill 0=off; 1=background color; 2=custom color (see DimStyle.dxf.dimtfillclr),
requires DXF R2007+
dxf.dimtfillclr
Text fill custom color as color index (1-255), requires DXF R2007+
dxf.dimarcsym
Display arc symbol, supported only by ArcDimension:
┌───┬───────────────────────────────────────┐
│ 0 │ arc symbol preceding the measurement │
│ │ text │
├───┼───────────────────────────────────────┤
│ 1 │ arc symbol above the measurement text │
├───┼───────────────────────────────────────┤
│ 2 │ disable arc symbol │
└───┴───────────────────────────────────────┘
copy_to_header(doc: Drawing)
Copy all dimension style variables to HEADER section of doc.
set_arrows(blk: str = '', blk1: str = '', blk2: str = '', ldrblk: str = '') -> None
Set arrows by block names or AutoCAD standard arrow names, set DIMTSZ to 0 which disables
tick.
Parameters
• blk – block/arrow name for both arrows, if DIMSAH is 0
• blk1 – block/arrow name for first arrow, if DIMSAH is 1
• blk2 – block/arrow name for second arrow, if DIMSAH is 1
• ldrblk – block/arrow name for leader
set_tick(size: float = 1) -> None
Set tick size, which also disables arrows, a tick is just an oblique stroke as marker.
Parameters
size – arrow size in drawing units
set_text_align(halign: str | None = None, valign: str | None = None, vshift: float | None = None)
-> None
Set measurement text alignment, halign defines the horizontal alignment (requires DXF
R2000+), valign defines the vertical alignment, above1 and above2 means above extension
line 1 or 2 and aligned with extension line.
Parameters
• halign – “left”, “right”, “center”, “above1”, “above2”, requires DXF R2000+
• valign – “above”, “center”, “below”
• vshift – vertical text shift, if valign is “center”; >0 shift upward, <0 shift
downwards
set_text_format(prefix: str = '', postfix: str = '', rnd: float | None = None, dec: int | None =
None, sep: str | None = None, leading_zeros: bool = True, trailing_zeros: bool = True)
Set dimension text format, like prefix and postfix string, rounding rule and number of
decimal places.
Parameters
• prefix – Dimension text prefix text as string
• postfix – Dimension text postfix text as string
• rnd – Rounds all dimensioning distances to the specified value, for instance, if
DIMRND is set to 0.25, all distances round to the nearest 0.25 unit. If you set
DIMRND to 1.0, all distances round to the nearest integer.
• dec – Sets the number of decimal places displayed for the primary units of a
dimension, requires DXF R2000+
• sep – “.” or “,” as decimal separator, requires DXF R2000+
• leading_zeros – Suppress leading zeros for decimal dimensions if False
• trailing_zeros – Suppress trailing zeros for decimal dimensions if False
set_dimline_format(color: int | None = None, linetype: str | None = None, lineweight: int | None =
None, extension: float | None = None, disable1: bool | None = None, disable2: bool | None = None)
Set dimension line properties
Parameters
• color – color index
• linetype – linetype as string, requires DXF R2007+
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm, requires DXF R2000+
• extension – extension length
• disable1 – True to suppress first part of dimension line, requires DXF R2000+
• disable2 – True to suppress second part of dimension line, requires DXF R2000+
set_extline_format(color: int | None = None, lineweight: int | None = None, extension: float |
None = None, offset: float | None = None, fixed_length: float | None = None)
Set common extension line attributes.
Parameters
• color – color index
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm
• extension – extension length above dimension line
• offset – offset from measurement point
• fixed_length – set fixed length extension line, length below the dimension line
set_extline1(linetype: str | None = None, disable=False)
Set extension line 1 attributes.
Parameters
• linetype – linetype for extension line 1, requires DXF R2007+
• disable – disable extension line 1 if True
set_extline2(linetype: str | None = None, disable=False)
Set extension line 2 attributes.
Parameters
• linetype – linetype for extension line 2, requires DXF R2007+
• disable – disable extension line 2 if True
set_tolerance(upper: float, lower: float | None = None, hfactor: float = 1.0, align:
MTextLineAlignment | None = None, dec: int | None = None, leading_zeros: bool | None = None,
trailing_zeros: bool | None = None) -> None
Set tolerance text format, upper and lower value, text height factor, number of decimal
places or leading and trailing zero suppression.
Parameters
• upper – upper tolerance value
• lower – lower tolerance value, if None same as upper
• hfactor – tolerance text height factor in relation to the dimension text height
• align – tolerance text alignment enum ezdxf.enums.MTextLineAlignment requires DXF
R2000+
• dec – Sets the number of decimal places displayed, requires DXF R2000+
• leading_zeros – suppress leading zeros for decimal dimensions if False, requires
DXF R2000+
• trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+
set_limits(upper: float, lower: float, hfactor: float = 1.0, dec: int | None = None,
leading_zeros: bool | None = None, trailing_zeros: bool | None = None) -> None
Set limits text format, upper and lower limit values, text height factor, number of decimal
places or leading and trailing zero suppression.
Parameters
• upper – upper limit value added to measurement value
• lower – lower limit value subtracted from measurement value
• hfactor – limit text height factor in relation to the dimension text height
• dec – Sets the number of decimal places displayed, requires DXF R2000+
• leading_zeros – suppress leading zeros for decimal dimensions if False, requires
DXF R2000+
• trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+
VPort
The viewport table (DXF Reference) stores the modelspace viewport configurations. So this entries just
modelspace viewports, not paperspace viewports, for paperspace viewports see the Viewport entity.
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'VPORT' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.viewports.new() │
└──────────────────┴──────────────────────────┘
SEE ALSO:
DXF Internals: VPORT Configuration Table
class ezdxf.entities.VPort
Subclass of DXFEntity
Defines a viewport configurations for the modelspace.
dxf.owner
Handle to owner (ViewportTable).
dxf.name
Viewport name
dxf.flags
Standard flag values (bit-coded values):
┌────┬───────────────────────────────────────┐
│ 16 │ If set, table entry is externally │
│ │ dependent on an xref │
├────┼───────────────────────────────────────┤
│ 32 │ If both this bit and bit 16 are set, │
│ │ the externally dependent xref has │
│ │ been successfully resolved │
├────┼───────────────────────────────────────┤
│ 64 │ If set, the table entry was │
│ │ referenced by at least one entity in │
│ │ the drawing the last time the drawing │
│ │ was edited. (This flag is only for │
│ │ the benefit of AutoCAD) │
└────┴───────────────────────────────────────┘
dxf.lower_left
Lower-left corner of viewport
dxf.upper_right
Upper-right corner of viewport
dxf.center
View center point (in DCS)
dxf.snap_base
Snap base point (in DCS)
dxf.snap_spacing
Snap spacing X and Y
dxf.grid_spacing
Grid spacing X and Y
dxf.direction
View direction from target point (in WCS)
dxf.target
View target point (in WCS)
dxf.height
View height
dxf.aspect_ratio
dxf.lens_length
Lens focal length in mm
dxf.front_clipping
Front clipping plane (offset from target point)
dxf.back_clipping
Back clipping plane (offset from target point)
dxf.snap_rotation
Snap rotation angle in degrees
dxf.view_twist
View twist angle in degrees
dxf.status
dxf.view_mode
dxf.circle_zoom
dxf.fast_zoom
dxf.ucs_icon
• bit 0: 0=hide, 1=show
• bit 1: 0=display in lower left corner, 1=display at origin
dxf.snap_on
dxf.grid_on
dxf.snap_style
dxf.snap_isopair
reset_wcs() -> None
Reset coordinate system to the WCS.
View
The View table (DXF Reference) stores named views of the model or paperspace layouts. This stored views
makes parts of the drawing or some view points of the model in a CAD applications more accessible. This
views have no influence to the drawing content or to the generated output by exporting PDFs or plotting
on paper sheets, they are just for the convenience of CAD application users.
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'VIEW' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.views.new() │
└──────────────────┴──────────────────────────┘
SEE ALSO:
DXF Internals: VIEW Table
class ezdxf.entities.View
dxf.owner
Handle to owner (Table).
dxf.name
Name of view.
dxf.flags
Standard flag values (bit-coded values):
┌────┬───────────────────────────────────────┐
│ 1 │ If set, this is a paper space view │
├────┼───────────────────────────────────────┤
│ 16 │ If set, table entry is externally │
│ │ dependent on an xref │
├────┼───────────────────────────────────────┤
│ 32 │ If both this bit and bit 16 are set, │
│ │ the externally dependent xref has │
│ │ been successfully resolved │
├────┼───────────────────────────────────────┤
│ 64 │ If set, the table entry was │
│ │ referenced by at least one entity in │
│ │ the drawing the last time the drawing │
│ │ was edited. (This flag is only for │
│ │ the benefit of AutoCAD) │
└────┴───────────────────────────────────────┘
dxf.height
View height (in DCS)
dxf.width
View width (in DCS)
dxf.center_point
View center point (in DCS)
dxf.direction_point
View direction from target (in WCS)
dxf.target_point
Target point (in WCS)
dxf.lens_length
Lens length
dxf.front_clipping
Front clipping plane (offset from target point)
dxf.back_clipping
Back clipping plane (offset from target point)
dxf.view_twist
Twist angle in degrees.
dxf.view_mode
View mode (see VIEWMODE system variable)
dxf.render_mode
┌───┬───────────────────────────────┐
│ 0 │ 2D Optimized (classic 2D) │
├───┼───────────────────────────────┤
│ 1 │ Wireframe │
├───┼───────────────────────────────┤
│ 2 │ Hidden line │
├───┼───────────────────────────────┤
│ 3 │ Flat shaded │
├───┼───────────────────────────────┤
│ 4 │ Gouraud shaded │
├───┼───────────────────────────────┤
│ 5 │ Flat shaded with wireframe │
├───┼───────────────────────────────┤
│ 6 │ Gouraud shaded with wireframe │
└───┴───────────────────────────────┘
dxf.ucs
1 if there is a UCS associated to this view; 0 otherwise
dxf.ucs_origin
UCS origin as (x, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_xaxis
UCS x-axis as (x, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_yaxis
UCS y-axis as (x, y, z) tuple (appears only if ucs is set to 1)
dxf.ucs_ortho_type
Orthographic type of UCS (appears only if ucs is set to 1)
┌───┬─────────────────────────┐
│ 0 │ UCS is not orthographic │
├───┼─────────────────────────┤
│ 1 │ Top │
├───┼─────────────────────────┤
│ 2 │ Bottom │
├───┼─────────────────────────┤
│ 3 │ Front │
├───┼─────────────────────────┤
│ 4 │ Back │
├───┼─────────────────────────┤
│ 5 │ Left │
├───┼─────────────────────────┤
│ 6 │ Right │
└───┴─────────────────────────┘
dxf.elevation
UCS elevation
dxf.ucs_handle
Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed (appears only
if ucs is set to 1)
dxf.base_ucs_handle
Handle of UCSTable of base UCS if UCS is orthographic. If not present and ucs_ortho_type is
non-zero, then base UCS is taken to be WORLD (appears only if ucs is set to 1)
dxf.camera_plottable
1 if the camera is plottable
dxf.background_handle
Handle to background object (optional)
dxf.live_selection_handle
Handle to live section object (optional)
dxf.visual_style_handle
Handle to visual style object (optional)
dxf.sun_handle
Sun hard ownership handle.
AppID
Defines an APPID (DXF Reference). These table entries maintain a set of names for all registered
applications.
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'APPID' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.appids.new() │
└──────────────────┴──────────────────────────┘
class ezdxf.entities.AppID
dxf.owner
Handle to owner (Table).
dxf.name
User-supplied (or application-supplied) application name (for extended data).
dxf.flags
Standard flag values (bit-coded values):
┌────┬───────────────────────────────────────┐
│ 16 │ If set, table entry is externally │
│ │ dependent on an xref │
├────┼───────────────────────────────────────┤
│ 32 │ If both this bit and bit 16 are set, │
│ │ the externally dependent xref has │
│ │ been successfully resolved │
├────┼───────────────────────────────────────┤
│ 64 │ If set, the table entry was │
│ │ referenced by at least one entity in │
│ │ the drawing the last time the drawing │
│ │ was edited. (This flag is only for │
│ │ the benefit of AutoCAD) │
└────┴───────────────────────────────────────┘
UCS
Defines an named or unnamed user coordinate system (DXF Reference) for usage in CAD applications. This
UCS table entry does not interact with ezdxf in any way, to do coordinate transformations by ezdxf use
the ezdxf.math.UCS class.
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'UCS' │
├──────────────────┼──────────────────────────┤
│ Factory function │ Drawing.ucs.new() │
└──────────────────┴──────────────────────────┘
SEE ALSO:
UCS and OCS
class ezdxf.entities.UCSTableEntry
dxf.owner
Handle to owner (Table).
dxf.name
UCS name (str).
dxf.flags
Standard flags (bit-coded values):
┌────┬───────────────────────────────────────┐
│ 16 │ If set, table entry is externally │
│ │ dependent on an xref │
├────┼───────────────────────────────────────┤
│ 32 │ If both this bit and bit 16 are set, │
│ │ the externally dependent xref has │
│ │ been successfully resolved │
├────┼───────────────────────────────────────┤
│ 64 │ If set, the table entry was │
│ │ referenced by at least one entity in │
│ │ the drawing the last time the drawing │
│ │ was edited. (This flag is only for │
│ │ the benefit of AutoCAD) │
└────┴───────────────────────────────────────┘
dxf.origin
Origin as (x, y, z) tuple
dxf.xaxis
X-axis direction as (x, y, z) tuple
dxf.yaxis
Y-axis direction as (x, y, z) tuple
ucs() -> UCS
Returns an ezdxf.math.UCS object for this UCS table entry.
BlockRecord
BLOCK_RECORD (DXF Reference) is the core management structure for BlockLayout and Layout. This is an
internal DXF structure managed by ezdxf, package users don’t have to care about it.
┌──────────────────┬─────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼─────────────────────────────┤
│ DXF type │ 'BLOCK_RECORD' │
├──────────────────┼─────────────────────────────┤
│ Factory function │ Drawing.block_records.new() │
└──────────────────┴─────────────────────────────┘
class ezdxf.entities.BlockRecord
dxf.owner
Handle to owner (Table).
dxf.name
Name of associated BLOCK.
dxf.layout
Handle to associated DXFLayout, if paperspace layout or modelspace else “0”
dxf.explode
1 for BLOCK references can be exploded else 0
dxf.scale
1 for BLOCK references can be scaled else 0
dxf.units
BLOCK insert units
┌────┬────────────────────┐
│ 0 │ Unitless │
├────┼────────────────────┤
│ 1 │ Inches │
├────┼────────────────────┤
│ 2 │ Feet │
├────┼────────────────────┤
│ 3 │ Miles │
├────┼────────────────────┤
│ 4 │ Millimeters │
├────┼────────────────────┤
│ 5 │ Centimeters │
├────┼────────────────────┤
│ 6 │ Meters │
├────┼────────────────────┤
│ 7 │ Kilometers │
├────┼────────────────────┤
│ 8 │ Microinches │
├────┼────────────────────┤
│ 9 │ Mils │
├────┼────────────────────┤
│ 10 │ Yards │
├────┼────────────────────┤
│ 11 │ Angstroms │
├────┼────────────────────┤
│ 12 │ Nanometers │
├────┼────────────────────┤
│ 13 │ Microns │
├────┼────────────────────┤
│ 14 │ Decimeters │
├────┼────────────────────┤
│ 15 │ Decameters │
├────┼────────────────────┤
│ 16 │ Hectometers │
├────┼────────────────────┤
│ 17 │ Gigameters │
├────┼────────────────────┤
│ 18 │ Astronomical units │
├────┼────────────────────┤
│ 19 │ Light years │
├────┼────────────────────┤
│ 20 │ Parsecs │
├────┼────────────────────┤
│ 21 │ US Survey Feet │
├────┼────────────────────┤
│ 22 │ US Survey Inch │
├────┼────────────────────┤
│ 23 │ US Survey Yard │
├────┼────────────────────┤
│ 24 │ US Survey Mile │
└────┴────────────────────┘
property is_active_paperspace: bool
True if is “active” paperspace layout.
property is_any_paperspace: bool
True if is any kind of paperspace layout.
property is_any_layout: bool
True if is any kind of modelspace or paperspace layout.
property is_block_layout: bool
True if not any kind of modelspace or paperspace layout, just a regular block definition.
property is_modelspace: bool
True if is the modelspace layout.
property is_xref: bool
True if represents an XREF (external reference) or XREF_OVERLAY.
Internal Structure
Do not change this structures, this is just an information for experienced developers!
The BLOCK_RECORD is the owner of all the entities in a layout and stores them in an EntitySpace object
(BlockRecord.entity_space). For each layout exist a BLOCK definition in the BLOCKS section, a reference
to the Block entity is stored in BlockRecord.block.
Modelspace and Paperspace layouts require an additional DXFLayout object in the OBJECTS section.
SEE ALSO:
More information about Block Management Structures and Layout Management Structures.
Blocks
A block definition (BlockLayout) is a collection of DXF entities, which can be placed multiply times at
different layouts or other blocks as references to the block definition. Block layouts are located in the
BLOCKS sections and are accessible by the blocks attribute of the Drawing class.
SEE ALSO:
Tutorial for Blocks and DXF Internals: Block Management Structures
Block
BLOCK (DXF Reference) entity is embedded into the BlockLayout object. The BLOCK entity is accessible by
the BlockLayout.block attribute.
┌──────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├──────────────────┼───────────────────────────────────────┤
│ DXF type │ 'BLOCK' │
├──────────────────┼───────────────────────────────────────┤
│ Factory function │ Drawing.blocks.new() (returns a │
│ │ BlockLayout) │
└──────────────────┴───────────────────────────────────────┘
SEE ALSO:
Tutorial for Blocks and DXF Internals: Block Management Structures
class ezdxf.entities.Block
dxf.handle
BLOCK handle as plain hex string. (feature for experts)
dxf.owner
Handle to owner as plain hex string. (feature for experts)
dxf.layer
Layer name as string; default value is '0'
dxf.name
BLOCK name as string. (case insensitive)
dxf.base_point
BLOCK base point as (x, y, z) tuple, default value is (0, 0, 0)
Insertion location referenced by the Insert entity to place the block reference and also
the center of rotation and scaling.
dxf.flags
BLOCK flags (bit-coded)
┌────┬───────────────────────────────────────┐
│ 1 │ Anonymous block generated by │
│ │ hatching, associative dimensioning, │
│ │ other internal operations, or an │
│ │ application │
├────┼───────────────────────────────────────┤
│ 2 │ Block has non-constant attribute │
│ │ definitions (this bit is not set if │
│ │ the block has any attribute │
│ │ definitions that are constant, or has │
│ │ no attribute definitions at all) │
├────┼───────────────────────────────────────┤
│ 4 │ Block is an external reference (xref) │
├────┼───────────────────────────────────────┤
│ 8 │ Block is an xref overlay │
├────┼───────────────────────────────────────┤
│ 16 │ Block is externally dependent │
├────┼───────────────────────────────────────┤
│ 32 │ This is a resolved external │
│ │ reference, or dependent of an │
│ │ external reference (ignored on input) │
├────┼───────────────────────────────────────┤
│ 64 │ This definition is a referenced │
│ │ external reference (ignored on input) │
└────┴───────────────────────────────────────┘
dxf.xref_path
File system path as string, if this block defines an external reference (XREF).
is_layout_block
Returns True if this is a Modelspace or Paperspace block definition.
is_anonymous
Returns True if this is an anonymous block generated by hatching, associative dimensioning,
other internal operations, or an application.
is_xref
Returns True if bock is an external referenced file.
is_xref_overlay
Returns True if bock is an external referenced overlay file.
EndBlk
ENDBLK entity is embedded into the BlockLayout object. The ENDBLK entity is accessible by the
BlockLayout.endblk attribute.
┌─────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
├─────────────┼──────────────────────────┤
│ DXF type │ 'ENDBLK' │
└─────────────┴──────────────────────────┘
class ezdxf.entities.EndBlk
dxf.handle
BLOCK handle as plain hex string. (feature for experts)
dxf.owner
Handle to owner as plain hex string. (feature for experts)
dxf.layer
Layer name as string; should always be the same as Block.dxf.layer
Insert
The INSERT entity (DXF Reference) represents a block reference with optional attached attributes as (‐
Attrib) entities.
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'INSERT' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_blockref() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────────────┘
SEE ALSO:
Tutorial for Blocks
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Insert
dxf.name
BLOCK name (str)
dxf.insert
Insertion location of the BLOCK base point as (2D/3D Point in OCS)
dxf.xscale
Scale factor for x direction (float)
dxf.yscale
Scale factor for y direction (float)
Not all CAD applications support non-uniform scaling (e.g. LibreCAD).
dxf.zscale
Scale factor for z direction (float)
Not all CAD applications support non-uniform scaling (e.g. LibreCAD).
dxf.rotation
Rotation angle in degrees (float)
dxf.row_count
Count of repeated insertions in row direction, MINSERT entity if > 1 (int)
dxf.row_spacing
Distance between two insert points (MINSERT) in row direction (float)
dxf.column_count
Count of repeated insertions in column direction, MINSERT entity if > 1 (int)
dxf.column_spacing
Distance between two insert points (MINSERT) in column direction (float)
attribs
A list of all attached Attrib entities.
has_scaling
Returns True if scaling is applied to any axis.
has_uniform_scaling
Returns True if the scale factor is uniform for x-, y- and z-axis, ignoring reflections
e.g. (1, 1, -1) is uniform scaling.
mcount Returns the multi-insert count, MINSERT (multi-insert) processing is required if mcount >
1.
set_scale(factor: float)
Set a uniform scale factor.
block() -> BlockLayout | None
Returns the associated BlockLayout.
place(insert: TypeAliasForwardRef('UVec') | None = None, scale: tuple[float, float, float] | None
= None, rotation: float | None = None) -> Insert
Set the location, scaling and rotation attributes. Arguments which are None will be
ignored.
Parameters
• insert – insert location as (x, y [,z]) tuple
• scale – (x-scale, y-scale, z-scale) tuple
• rotation – rotation angle in degrees
grid(size: tuple[int, int] = (1, 1), spacing: tuple[float, float] = (1, 1)) -> Insert
Place block reference in a grid layout, grid size defines the row- and column count,
spacing defines the distance between two block references.
Parameters
• size – grid size as (row_count, column_count) tuple
• spacing – distance between placing as (row_spacing, column_spacing) tuple
has_attrib(tag: str, search_const: bool = False) -> bool
Returns True if the INSERT entity has an attached ATTRIB entity with the given tag. Some
applications do not attach constant ATTRIB entities, set search_const to True, to check for
an associated AttDef entity with constant content.
Parameters
• tag – tag name fo the ATTRIB entity
• search_const – search also const ATTDEF entities
get_attrib(tag: str, search_const: bool = False) -> Attrib | AttDef | None
Get an attached Attrib entity with the given tag, returns None if not found. Some
applications do not attach constant ATTRIB entities, set search_const to True, to get at
least the associated AttDef entity.
Parameters
• tag – tag name of the ATTRIB entity
• search_const – search also const ATTDEF entities
get_attrib_text(tag: str, default: str = '', search_const: bool = False) -> str
Get content text of an attached Attrib entity with the given tag, returns the default value
if not found. Some applications do not attach constant ATTRIB entities, set search_const
to True, to get content text of the associated AttDef entity.
Parameters
• tag – tag name of the ATTRIB entity
• default – default value if ATTRIB tag is absent
• search_const – search also const ATTDEF entities
add_attrib(tag: str, text: str, insert: UVec = (0, 0), dxfattribs=None) -> Attrib
Attach an Attrib entity to the block reference.
Example for appending an attribute to an INSERT entity:
e.add_attrib('EXAMPLETAG', 'example text').set_placement(
(3, 7), align=TextEntityAlignment.MIDDLE_CENTER
)
Parameters
• tag – tag name of the ATTRIB entity
• text – content text as string
• insert – insert location as (x, y[, z]) tuple in OCS
• dxfattribs – additional DXF attributes for the ATTRIB entity
add_auto_attribs(values: dict[str, str]) -> Insert
Attach for each Attdef entity, defined in the block definition, automatically an Attrib
entity to the block reference and set tag/value DXF attributes of the ATTRIB entities by
the key/value pairs (both as strings) of the values dict. The ATTRIB entities are placed
relative to the insert location of the block reference, which is identical to the block
base point.
This method avoids the wrapper block of the add_auto_blockref() method, but the visual
results may not match the results of CAD applications, especially for non-uniform scaling.
If the visual result is very important to you, use the add_auto_blockref() method.
Parameters
values – Attrib tag values as tag/value pairs
delete_attrib(tag: str, ignore=False) -> None
Delete an attached Attrib entity from INSERT. Raises an DXFKeyError exception, if no ATTRIB
for the given tag exist if ignore is False.
Parameters
• tag – tag name of the ATTRIB entity
• ignore – False for raising DXFKeyError if ATTRIB tag does not exist.
Raises DXFKeyError – no ATTRIB for the given tag exist
delete_all_attribs() -> None
Delete all Attrib entities attached to the INSERT entity.
transform(m: Matrix44) -> Insert
Transform INSERT entity by transformation matrix m inplace.
Unlike the transformation matrix m, the INSERT entity can not represent a non-orthogonal
target coordinate system and an InsertTransformationError will be raised in that case.
translate(dx: float, dy: float, dz: float) -> Insert
Optimized INSERT translation about dx in x-axis, dy in y-axis and dz in z-axis.
virtual_entities(*, skipped_entity_callback: Callable[[DXFGraphic, str], None] | None = None,
redraw_order=False) -> Iterator[DXFGraphic]
Yields the transformed referenced block content as virtual entities.
This method is meant to examine the block reference entities at the target location without
exploding the block reference. These entities are not stored in the entity database, have
no handle and are not assigned to any layout. It is possible to convert these entities into
regular drawing entities by adding the entities to the entities database and a layout of
the same DXF document as the block reference:
doc.entitydb.add(entity)
msp = doc.modelspace()
msp.add_entity(entity)
WARNING:
Non-uniform scale factors may return incorrect results for some entities (TEXT, MTEXT,
ATTRIB).
This method does not resolve the MINSERT attributes, only the sub-entities of the first
INSERT will be returned. To resolve MINSERT entities check if multi insert processing is
required, that’s the case if the property Insert.mcount > 1, use the Insert.multi_insert()
method to resolve the MINSERT entity into multiple INSERT entities.
This method does not apply the clipping path created by the XCLIP command. The method
returns all entities and ignores the clipping path polygon and no entity is clipped.
The skipped_entity_callback() will be called for all entities which are not processed,
signature: skipped_entity_callback(entity: DXFEntity, reason: str), entity is the original
(untransformed) DXF entity of the block definition, the reason string is an explanation why
the entity was skipped.
Parameters
• skipped_entity_callback – called whenever the transformation of an entity is not
supported and so was skipped
• redraw_order – yield entities in ascending redraw order if True
multi_insert() -> Iterator[Insert]
Yields a virtual INSERT entity for each grid element of a MINSERT entity (multi-insert).
explode(target_layout: BaseLayout | None = None, *, redraw_order=False) -> EntityQuery
Explodes the block reference entities into the target layout, if target layout is None, the
layout of the block reference will be used. This method destroys the source block
reference entity.
Transforms the block entities into the required WCS location by applying the block
reference attributes insert, extrusion, rotation and the scale factors xscale, yscale and
zscale.
Attached ATTRIB entities are converted to TEXT entities, this is the behavior of the BURST
command of the AutoCAD Express Tools.
WARNING:
Non-uniform scale factors may lead to incorrect results some entities (TEXT, MTEXT,
ATTRIB).
Parameters
• target_layout – target layout for exploded entities, None for same layout as
source entity.
• redraw_order – create entities in ascending redraw order if True
Returns
EntityQuery container referencing all exploded DXF entities.
ucs() Returns the block reference coordinate system as ezdxf.math.UCS object.
matrix44() -> Matrix44
Returns a transformation matrix to transform the block entities from the block reference
coordinate system into the WCS.
reset_transformation() -> None
Reset block reference attributes location, rotation angle and the extrusion vector but
preserves the scale factors.
Attrib
The ATTRIB (DXF Reference) entity represents a text value associated with a tag. In most cases an ATTRIB
is appended to an Insert entity, but it can also be used as a standalone entity.
┌──────────────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Text │
├──────────────────────────┼───────────────────────────────────────┤
│ DXF type │ 'ATTRIB' │
├──────────────────────────┼───────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_attrib() │
│ │ (stand alone entity) │
├──────────────────────────┼───────────────────────────────────────┤
│ Factory function │ Insert.add_attrib() (attached to │
│ │ Insert) │
├──────────────────────────┼───────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴───────────────────────────────────────┘
SEE ALSO:
Tutorial for Blocks
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Attrib
ATTRIB supports all DXF attributes and methods of parent class Text.
dxf.tag
Tag to identify the attribute (str)
dxf.text
Attribute content as text (str)
property is_invisible: bool
Attribute is invisible if True.
property is_const: bool
This is a constant attribute if True.
property is_verify: bool
Verification is required on input of this attribute. (interactive CAD application feature)
property is_preset: bool
No prompt during insertion. (interactive CAD application feature)
property has_embedded_mtext_entity: bool
Returns True if the entity has an embedded MTEXT entity for multi-line support.
virtual_mtext_entity() -> MText
Returns the embedded MTEXT entity as a regular but virtual MText entity with the same
graphical properties as the host entity.
plain_mtext(fast=True) -> str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no
embedded MTEXT entity exist.
The fast mode is accurate if the DXF content was created by reliable (and newer) CAD
applications like AutoCAD or BricsCAD. The accurate mode is for some rare cases where the
content was created by older CAD applications or unreliable DXF libraries and CAD
applications.
The accurate mode is much slower than the fast mode.
Parameters
fast – uses the fast mode to extract the plain MTEXT content if True or the accurate
mode if set to False
set_mtext(mtext: MText, graphic_properties=True) -> None
Set multi-line properties from a MText entity.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line
ATTRIB/ATTDEF entity will be exported.
Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from source MTEXT
if True
embed_mtext(mtext: MText, graphic_properties=True) -> None
Set multi-line properties from a MText entity and destroy the source entity afterward.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line
ATTRIB/ATTDEF entity will be exported.
Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from source MTEXT
if True
discard_mtext() -> None
Discard multi-line feature.
The embedded MTEXT will be removed and the ATTRIB/ATTDEF will be converted to a single-line
attribute.
AttDef
The ATTDEF (DXF Reference) entity is a template in a BlockLayout, which will be used to create an
attached Attrib entity for an Insert entity.
┌──────────────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Text │
├──────────────────────────┼───────────────────────────────────────┤
│ DXF type │ 'ATTDEF' │
├──────────────────────────┼───────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_attdef() │
├──────────────────────────┼───────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴───────────────────────────────────────┘
SEE ALSO:
Tutorial for Blocks
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.AttDef
ATTDEF supports all DXF attributes and methods of parent class Text.
dxf.tag
Tag to identify the attribute (str)
dxf.text
Attribute content as text (str)
dxf.prompt
Attribute prompt string. (CAD application feature)
dxf.field_length
Just relevant to CAD programs for validating user input
property is_invisible: bool
Attribute is invisible if True.
property is_const: bool
This is a constant attribute if True.
property is_verify: bool
Verification is required on input of this attribute. (interactive CAD application feature)
property is_preset: bool
No prompt during insertion. (interactive CAD application feature)
property has_embedded_mtext_entity: bool
Returns True if the entity has an embedded MTEXT entity for multi-line support.
virtual_mtext_entity() -> MText
Returns the embedded MTEXT entity as a regular but virtual MText entity with the same
graphical properties as the host entity.
plain_mtext(fast=True) -> str
Returns the embedded MTEXT content without formatting codes. Returns an empty string if no
embedded MTEXT entity exist.
The fast mode is accurate if the DXF content was created by reliable (and newer) CAD
applications like AutoCAD or BricsCAD. The accurate mode is for some rare cases where the
content was created by older CAD applications or unreliable DXF libraries and CAD
applications.
The accurate mode is much slower than the fast mode.
Parameters
fast – uses the fast mode to extract the plain MTEXT content if True or the accurate
mode if set to False
set_mtext(mtext: MText, graphic_properties=True) -> None
Set multi-line properties from a MText entity.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line
ATTRIB/ATTDEF entity will be exported.
Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from source MTEXT
if True
embed_mtext(mtext: MText, graphic_properties=True) -> None
Set multi-line properties from a MText entity and destroy the source entity afterward.
The multi-line ATTRIB/ATTDEF entity requires DXF R2018, otherwise an ordinary single line
ATTRIB/ATTDEF entity will be exported.
Parameters
• mtext – source MText entity
• graphic_properties – copy graphic properties (color, layer, …) from source MTEXT
if True
discard_mtext() -> None
Discard multi-line feature.
The embedded MTEXT will be removed and the ATTRIB/ATTDEF will be converted to a single-line
attribute.
Layouts
Layout Manager
The layout manager is unique to each DXF drawing, access the layout manager as layouts attribute of the
Drawing object (e.g. doc.layouts.rename("Layout1", "PlanView")).
class ezdxf.layouts.Layouts
The Layouts class manages Paperspace layouts and the Modelspace.
__len__() -> int
Returns count of existing layouts, including the modelspace layout.
__contains__(name: str) -> bool
Returns True if layout name exist.
__iter__() -> Iterator[Layout]
Returns iterable of all layouts as Layout objects, including the modelspace layout.
names() -> list[str]
Returns a list of all layout names, all names in original case-sensitive form.
names_in_taborder() -> list[str]
Returns all layout names in tab order as shown in CAD applications.
modelspace() -> Modelspace
Returns the Modelspace layout.
get(name: str | None) -> Layout
Returns Layout by name, case-insensitive “Model” == “MODEL”.
Parameters
name – layout name as shown in tab, e.g. 'Model' for modelspace
new(name: str, dxfattribs=None) -> Paperspace
Returns a new Paperspace layout.
Parameters
• name – layout name as shown in tabs in CAD applications
• dxfattribs – additional DXF attributes for the DXFLayout entity
Raises
• DXFValueError – Invalid characters in layout name.
• DXFValueError – Layout name already exist.
rename(old_name: str, new_name: str) -> None
Rename a layout from old_name to new_name. Can not rename layout 'Model' and the new name
of a layout must not exist.
Parameters
• old_name – actual layout name, case-insensitive
• new_name – new layout name, case-insensitive
Raises
• DXFValueError – try to rename 'Model'
• DXFValueError – Layout new_name already exist.
delete(name: str) -> None
Delete layout name and destroy all entities in that layout.
Parameters
name (str) – layout name as shown in tabs
Raises
• DXFKeyError – if layout name do not exist
• DXFValueError – deleting modelspace layout is not possible
• DXFValueError – deleting last paperspace layout is not possible
active_layout() -> Paperspace
Returns the active paperspace layout.
set_active_layout(name: str) -> None
Set layout name as active paperspace layout.
get_layout_for_entity(entity: DXFEntity) -> Layout
Returns the owner layout for a DXF entity.
Layout Types
A Layout represents and manages DXF entities, there are three different layout objects:
• Modelspace is the common working space, containing basic drawing entities.
• Paperspace is the arrangement of objects for printing and plotting, this layout contains basic drawing
entities and viewports to the Modelspace.
• BlockLayout works on an associated Block, Blocks are collections of DXF entities for reusing by block
references.
WARNING:
Do not instantiate layout classes by yourself - always use the provided factory functions!
Entity Ownership
A layout owns all entities residing in their entity space, therefore the dxf.owner attribute of any
DXFGraphic entity in this layout is the dxf.handle of the layout, and deleting an entity from a layout is
the end of life of this entity, because it is also deleted from the EntityDB. It’s possible to just
unlink an entity from a layout to assign the entity to another layout, use the move_to_layout() method to
move entities between layouts.
BaseLayout
class ezdxf.layouts.BaseLayout
BaseLayout is the common base class for Layout and BlockLayout.
is_alive
False if layout is deleted.
is_active_paperspace
True if is active layout.
is_any_paperspace
True if is any kind of paperspace layout.
is_modelspace
True if is modelspace layout.
is_any_layout
True if is any kind of modelspace or paperspace layout.
is_block_layout
True if not any kind of modelspace or paperspace layout, just a regular block definition.
units set drawing units.
Type Get/Set layout/block drawing units as enum, see also
Type ref
__len__() -> int
Returns count of entities owned by the layout.
__iter__() -> Iterator[DXFGraphic]
Returns iterable of all drawing entities in this layout.
__getitem__(index)
Get entity at index.
The underlying data structure for storing entities is organized like a standard Python
list, therefore index can be any valid list indexing or slicing term, like a single index
layout[-1] to get the last entity, or an index slice layout[:10] to get the first 10 or
less entities as list[DXFGraphic].
get_extension_dict() -> ExtensionDict
Returns the associated extension dictionary, creates a new one if necessary.
delete_entity(entity: DXFGraphic) -> None
Delete entity from layout entity space and the entity database, this destroys the entity.
delete_all_entities() -> None
Delete all entities from this layout and from entity database, this destroys all entities
in this layout.
unlink_entity(entity: DXFGraphic) -> None
Unlink entity from layout but does not delete entity from the entity database, this removes
entity just from the layout entity space.
purge()
Remove all destroyed entities from the layout entity space.
query(query: str = '*') -> EntityQuery
Get all DXF entities matching the Entity Query String.
groupby(dxfattrib: str = '', key: KeyFunc | None = None) -> dict
Returns a dict of entity lists, where entities are grouped by a dxfattrib or a key
function.
Parameters
• dxfattrib – grouping by DXF attribute like 'layer'
• key – key function, which accepts a DXFGraphic entity as argument and returns the
grouping key of an entity or None to ignore the entity. Reason for ignoring: a
queried DXF attribute is not supported by entity.
move_to_layout(entity: DXFGraphic, layout: BaseLayout) -> None
Move entity to another layout.
Parameters
• entity – DXF entity to move
• layout – any layout (modelspace, paperspace, block) from same drawing
set_redraw_order(handles: dict | Iterable[tuple[str, str]]) -> None
If the header variable $SORTENTS Regen flag (bit-code value 16) is set, AutoCAD regenerates
entities in ascending handles order.
To change redraw order associate a different sort-handle to entities, this redefines the
order in which the entities are regenerated. The handles argument can be a dict of
entity_handle and sort_handle as (k, v) pairs, or an iterable of (entity_handle,
sort_handle) tuples.
The sort-handle doesn’t have to be unique, some or all entities can share the same
sort-handle and a sort-handle can be an existing handle.
The “0” handle can be used, but this sort-handle will be drawn as latest (on top of all
other entities) and not as first as expected.
Parameters
handles – iterable or dict of handle associations; an iterable of 2-tuples
(entity_handle, sort_handle) or a dict (k, v) association as (entity_handle,
sort_handle)
get_redraw_order() -> Iterable[tuple[str, str]]
Returns iterable for all existing table entries as (entity_handle, sort_handle) pairs, see
also set_redraw_order().
entities_in_redraw_order(reverse=False) -> Iterable[DXFGraphic]
Yields all entities from layout in ascending redraw order or descending redraw order if
reverse is True.
add_entity(entity: DXFGraphic) -> None
Add an existing DXFGraphic entity to a layout, but be sure to unlink (unlink_entity())
entity from the previous owner layout. Adding entities from a different DXF drawing is not
supported.
WARNING:
This is a low-level tool - use it with caution and make sure you understand what you are
doing! If used improperly, the DXF document may be damaged.
add_foreign_entity(entity: DXFGraphic, copy=True) -> None
Add a foreign DXF entity to a layout, this foreign entity could be from another DXF
document or an entity without an assigned DXF document. The intention of this method is to
add simple entities from another DXF document or from a DXF iterator, for more complex
operations use the importer add-on. Especially objects with BLOCK section (INSERT,
DIMENSION, MLEADER) or OBJECTS section dependencies (IMAGE, UNDERLAY) can not be supported
by this simple method.
Not all DXF types are supported and every dependency or resource reference from another DXF
document will be removed except attribute layer will be preserved but only with default
attributes like color 7 and linetype CONTINUOUS because the layer attribute doesn’t need a
layer table entry.
If the entity is part of another DXF document, it will be unlinked from this document and
its entity database if argument copy is False, else the entity will be copied. Unassigned
entities like from DXF iterators will just be added.
Supported DXF types:
• POINT
• LINE
• CIRCLE
• ARC
• ELLIPSE
• LWPOLYLINE
• SPLINE
• POLYLINE
• 3DFACE
• SOLID
• TRACE
• SHAPE
• MESH
• ATTRIB
• ATTDEF
• TEXT
• MTEXT
• HATCH
Parameters
• entity – DXF entity to copy or move
• copy – if True copy entity from other document else unlink from other document
Raises CopyNotSupported – copying of entity i not supported
add_point(location: UVec, dxfattribs=None) -> Point
Add a Point entity at location.
Parameters
• location – 2D/3D point in WCS
• dxfattribs – additional DXF attributes
add_line(start: UVec, end: UVec, dxfattribs=None) -> Line
Add a Line entity from start to end.
Parameters
• start – 2D/3D point in WCS
• end – 2D/3D point in WCS
• dxfattribs – additional DXF attributes
add_circle(center: UVec, radius: float, dxfattribs=None) -> Circle
Add a Circle entity. This is an 2D element, which can be placed in space by using OCS.
Parameters
• center – 2D/3D point in WCS
• radius – circle radius
• dxfattribs – additional DXF attributes
add_ellipse(center: UVec, major_axis: UVec = (1, 0, 0), ratio: float = 1, start_param: float = 0,
end_param: float = math.tau, dxfattribs=None) -> Ellipse
Add an Ellipse entity, ratio is the ratio of minor axis to major axis, start_param and
end_param defines start and end point of the ellipse, a full ellipse goes from 0 to 2π.
The ellipse goes from start to end param in counter-clockwise direction.
Parameters
• center – center of ellipse as 2D/3D point in WCS
• major_axis – major axis as vector (x, y, z)
• ratio – ratio of minor axis to major axis in range +/-[1e-6, 1.0]
• start_param – start of ellipse curve
• end_param – end param of ellipse curve
• dxfattribs – additional DXF attributes
add_arc(center: UVec, radius: float, start_angle: float, end_angle: float, is_counter_clockwise:
bool = True, dxfattribs=None) -> Arc
Add an Arc entity. The arc goes from start_angle to end_angle in counter-clockwise
direction by default, set parameter is_counter_clockwise to False for clockwise
orientation.
Parameters
• center – center of arc as 2D/3D point in WCS
• radius – arc radius
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• is_counter_clockwise – False for clockwise orientation
• dxfattribs – additional DXF attributes
add_solid(points: Iterable[UVec], dxfattribs=None) -> Solid
Add a Solid entity, points is an iterable of 3 or 4 points.
HINT:
The last two vertices are in reversed order: a square has the vertex order 0-1-3-2
Parameters
• points – iterable of 3 or 4 2D/3D points in WCS
• dxfattribs – additional DXF attributes
add_trace(points: Iterable[UVec], dxfattribs=None) -> Trace
Add a Trace entity, points is an iterable of 3 or 4 points.
HINT:
The last two vertices are in reversed order: a square has the vertex order 0-1-3-2
Parameters
• points – iterable of 3 or 4 2D/3D points in WCS
• dxfattribs – additional DXF attributes
add_3dface(points: Iterable[UVec], dxfattribs=None) -> Face3d
Add a 3DFace entity, points is an iterable 3 or 4 2D/3D points.
HINT:
In contrast to SOLID and TRACE, the last two vertices are in regular order: a square has
the vertex order 0-1-2-3
Parameters
• points – iterable of 3 or 4 2D/3D points in WCS
• dxfattribs – additional DXF attributes
add_text(text: str, *, height: float | None = None, rotation: float | None = None,
dxfattribs=None) -> Text
Add a Text entity, see also Textstyle.
Parameters
• text – content string
• height – text height in drawing units
• rotation – text rotation in degrees
• dxfattribs – additional DXF attributes
add_blockref(name: str, insert: UVec, dxfattribs=None) -> Insert
Add an Insert entity.
When inserting a block reference into the modelspace or another block layout with different
units, the scaling factor between these units should be applied as scaling attributes
(xscale, …) e.g. modelspace in meters and block in centimeters, xscale has to be 0.01.
Parameters
• name – block name as str
• insert – insert location as 2D/3D point in WCS
• dxfattribs – additional DXF attributes
add_auto_blockref(name: str, insert: UVec, values: dict[str, str], dxfattribs=None) -> Insert
Add an Insert entity. This method adds for each Attdef entity, defined in the block
definition, automatically an Attrib entity to the block reference and set (tag, value) DXF
attributes of the ATTRIB entities by the (key, value) pairs (both as strings) of the values
dict.
The Attrib entities are placed relative to the insert point, which is equal to the block
base point.
This method wraps the INSERT and all the ATTRIB entities into an anonymous block, which
produces the best visual results, especially for non-uniform scaled block references,
because the transformation and scaling is done by the CAD application. But this makes
evaluation of block references with attributes more complicated, if you prefer INSERT and
ATTRIB entities without a wrapper block use the add_blockref_with_attribs() method.
Parameters
• name – block name
• insert – insert location as 2D/3D point in WCS
• values – Attrib tag values as (tag, value) pairs
• dxfattribs – additional DXF attributes
add_attdef(tag: str, insert: UVec = (0, 0), text: str = '', *, height: float | None = None,
rotation: float | None = None, dxfattribs=None) -> AttDef
Add an AttDef as stand alone DXF entity.
Set position and alignment by the idiom:
layout.add_attdef("NAME").set_placement(
(2, 3), align=TextEntityAlignment.MIDDLE_CENTER
)
Parameters
• tag – tag name as string
• insert – insert location as 2D/3D point in WCS
• text – tag value as string
• height – text height in drawing units
• rotation – text rotation in degrees
• dxfattribs – additional DXF attributes
add_polyline2d(points: Iterable[UVec], format: str | None = None, *, close: bool = False,
dxfattribs=None) -> Polyline
Add a 2D Polyline entity.
Parameters
• points – iterable of 2D points in WCS
• close – True for a closed polyline
• format – user defined point format like add_lwpolyline(), default is None
• dxfattribs – additional DXF attributes
add_polyline3d(points: Iterable[UVec], *, close: bool = False, dxfattribs=None) -> Polyline
Add a 3D Polyline entity.
Parameters
• points – iterable of 3D points in WCS
• close – True for a closed polyline
• dxfattribs – additional DXF attributes
add_polymesh(size: tuple[int, int] = (3, 3), dxfattribs=None) -> Polymesh
Add a Polymesh entity, which is a wrapper class for the POLYLINE entity. A polymesh is a
grid of mcount x ncount vertices and every vertex has its own (x, y, z)-coordinates.
Parameters
• size – 2-tuple (mcount, ncount)
• dxfattribs – additional DXF attributes
add_polyface(dxfattribs=None) -> Polyface
Add a Polyface entity, which is a wrapper class for the POLYLINE entity.
Parameters
dxfattribs – additional DXF attributes for Polyline entity
add_shape(name: str, insert: UVec = (0, 0), size: float = 1.0, dxfattribs=None) -> Shape
Add a Shape reference to an external stored shape.
Parameters
• name – shape name as string
• insert – insert location as 2D/3D point in WCS
• size – size factor
• dxfattribs – additional DXF attributes
add_lwpolyline(points: Iterable[UVec], format: str = 'xyseb', *, close: bool = False,
dxfattribs=None) -> LWPolyline
Add a 2D polyline as LWPolyline entity. A points are defined as (x, y, [start_width,
[end_width, [bulge]]]) tuples, but order can be redefined by the format argument. Set
start_width, end_width to 0 to be ignored like (x, y, 0, 0, bulge).
The LWPolyline is defined as a single DXF entity and needs less disk space than a Polyline
entity. (requires DXF R2000)
Format codes:
• x = x-coordinate
• y = y-coordinate
• s = start width
• e = end width
• b = bulge value
• v = (x, y [,z]) tuple (z-axis is ignored)
Parameters
• points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuples
• format – user defined point format, default is “xyseb”
• close – True for a closed polyline
• dxfattribs – additional DXF attributes
add_mtext(text: str, dxfattribs=None) -> MText
Add a multiline text entity with automatic text wrapping at boundaries as MText entity.
(requires DXF R2000)
Parameters
• text – content string
• dxfattribs – additional DXF attributes
add_mtext_static_columns(content: Iterable[str], width: float, gutter_width: float, height: float,
dxfattribs=None) -> MText
Add a multiline text entity with static columns as MText entity. The content is spread
across the columns, the count of content strings determine the count of columns.
This factory method adds automatically a column break "\N" at the end of each column text
to force a new column. The height attribute should be big enough to reserve enough space
for the tallest column. Too small values produce valid DXF files, but the visual result
will not be as expected. The height attribute also defines the total height of the MTEXT
entity.
(requires DXF R2000)
Parameters
• content – iterable of column content
• width – column width
• gutter_width – distance between columns
• height – max. column height
• dxfattribs – additional DXF attributes
add_mtext_dynamic_manual_height_columns(content: str, width: float, gutter_width: float, heights:
Sequence[float], dxfattribs=None) -> MText
Add a multiline text entity with dynamic columns as MText entity. The content is spread
across the columns automatically by the CAD application. The heights sequence determine
the height of the columns, except for the last column, which always takes the remaining
content. The height value for the last column is required but can be 0, because the value
is ignored. The count of heights also determines the count of columns, and max(heights)
defines the total height of the MTEXT entity, which may be wrong if the last column
requires more space.
This current implementation works best for DXF R2018, because the content is stored as a
continuous text in a single MTEXT entity. For DXF versions prior to R2018 the content
should be distributed across multiple MTEXT entities (one entity per column), which is not
done by ezdxf, but the result is correct for advanced DXF viewers and CAD application,
which do the MTEXT content distribution completely by itself.
(requires DXF R2000)
Parameters
• content – column content as a single string
• width – column width
• gutter_width – distance between columns
• heights – column height for each column
• dxfattribs – additional DXF attributes
add_mtext_dynamic_auto_height_columns(content: str, width: float, gutter_width: float, height:
float, count: int, dxfattribs=None) -> MText
Add a multiline text entity with as many columns as needed for the given common fixed
height. The content is spread across the columns automatically by the CAD application. The
height argument also defines the total height of the MTEXT entity. To get the correct
column count requires an exact MTEXT rendering like AutoCAD, which is not done by ezdxf,
therefore passing the expected column count is required to calculate the correct total
width.
This current implementation works best for DXF R2018, because the content is stored as a
continuous text in a single MTEXT entity. For DXF versions prior to R2018 the content
should be distributed across multiple MTEXT entities (one entity per column), which is not
done by ezdxf, but the result is correct for advanced DXF viewers and CAD application,
which do the MTEXT content distribution completely by itself.
Because of the current limitations the use of this method is not recommend. This situation
may improve in future releases, but the exact rendering of the content will also slow down
the processing speed dramatically.
(requires DXF R2000)
Parameters
• content – column content as a single string
• width – column width
• gutter_width – distance between columns
• height – max. column height
• count – expected column count
• dxfattribs – additional DXF attributes
add_ray(start: UVec, unit_vector: UVec, dxfattribs=None) -> Ray
Add a Ray that begins at start point and continues to infinity (construction line).
(requires DXF R2000)
Parameters
• start – location 3D point in WCS
• unit_vector – 3D vector (x, y, z)
• dxfattribs – additional DXF attributes
add_xline(start: UVec, unit_vector: UVec, dxfattribs=None) -> XLine
Add an infinity XLine (construction line). (requires DXF R2000)
Parameters
• start – location 3D point in WCS
• unit_vector – 3D vector (x, y, z)
• dxfattribs – additional DXF attributes
add_mline(vertices: Iterable[UVec] | None = None, *, close: bool = False, dxfattribs=None) ->
MLine
Add a MLine entity
Parameters
• vertices – MLINE vertices (in WCS)
• close – True to add a closed MLINE
• dxfattribs – additional DXF attributes
add_spline(fit_points: Iterable[TypeAliasForwardRef('UVec')] | None = None, degree: int = 3,
dxfattribs=None) -> Spline
Add a B-spline (Spline entity) defined by the given fit_points - the control points and
knot values are created by the CAD application, therefore it is not predictable how the
rendered spline will look like, because for every set of fit points exists an infinite set
of B-splines.
If fit_points is None, an “empty” spline will be created, all data has to be set by the
user.
The SPLINE entity requires DXF R2000.
AutoCAD creates a spline through fit points by a global curve interpolation and an unknown
method to estimate the direction of the start- and end tangent.
SEE ALSO:
• Tutorial for Spline
• ezdxf.math.fit_points_to_cad_cv()
Parameters
• fit_points – iterable of fit points as (x, y[, z]) in WCS, creates an empty Spline
if None
• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• dxfattribs – additional DXF attributes
add_cad_spline_control_frame(fit_points: Iterable[TypeAliasForwardRef('UVec')], tangents:
Iterable[TypeAliasForwardRef('UVec')] | None = None, dxfattribs=None) -> Spline
Add a Spline entity passing through the given fit points. This method creates the same
control points as CAD applications.
Parameters
• fit_points – iterable of fit points as (x, y[, z]) in WCS
• tangents – start- and end tangent, default is autodetect
• dxfattribs – additional DXF attributes
add_spline_control_frame(fit_points: Iterable[TypeAliasForwardRef('UVec')], degree: int = 3,
method: str = 'chord', dxfattribs=None) -> Spline
Add a Spline entity passing through the given fit_points, the control points are calculated
by a global curve interpolation without start- and end tangent constrains. The new SPLINE
entity is defined by control points and not by the fit points, therefore the SPLINE looks
always the same, no matter which CAD application renders the SPLINE.
• “uniform”: creates a uniform t vector, from 0 to 1 evenly spaced, see uniform method
• “distance”, “chord”: creates a t vector with values proportional to the fit point
distances, see chord length method
• “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point
sqrt(distances), see centripetal method
• “arc”: creates a t vector with values proportional to the arc length between fit points.
Use function add_cad_spline_control_frame() to create SPLINE entities from fit points
similar to CAD application including start- and end tangent constraints.
Parameters
• fit_points – iterable of fit points as (x, y[, z]) in WCS
• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• method – calculation method for parameter vector t
• dxfattribs – additional DXF attributes
add_open_spline(control_points: Iterable[TypeAliasForwardRef('UVec')], degree: int = 3, knots:
Iterable[float] | None = None, dxfattribs=None) -> Spline
Add an open uniform Spline defined by control_points. (requires DXF R2000)
Open uniform B-splines start and end at your first and last control point.
Parameters
• control_points – iterable of 3D points in WCS
• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• knots – knot values as iterable of floats
• dxfattribs – additional DXF attributes
add_rational_spline(control_points: Iterable[TypeAliasForwardRef('UVec')], weights:
Sequence[float], degree: int = 3, knots: Iterable[float] | None = None, dxfattribs=None) -> Spline
Add an open rational uniform Spline defined by control_points. (requires DXF R2000)
weights has to be an iterable of floats, which defines the influence of the associated
control point to the shape of the B-spline, therefore for each control point is one weight
value required.
Open rational uniform B-splines start and end at the first and last control point.
Parameters
• control_points – iterable of 3D points in WCS
• weights – weight values as iterable of floats
• degree – degree of B-spline, max. degree supported by AutoCAD is 11
• knots – knot values as iterable of floats
• dxfattribs – additional DXF attributes
add_hatch(color: int = 7, dxfattribs=None) -> Hatch
Add a Hatch entity. (requires DXF R2000)
Parameters
• color – fill color as :ref`ACI`, default is 7 (black/white).
• dxfattribs – additional DXF attributes
add_helix(radius: float, pitch: float, turns: float, ccw=True, dxfattribs=None) -> Helix
Add a Helix entity.
The center of the helix is always (0, 0, 0) and the helix axis direction is the +z-axis.
Transform the new HELIX by the transform() method to your needs.
Parameters
• radius – helix radius
• pitch – the height of one complete helix turn
• turns – count of turns
• ccw – creates a counter-clockwise turning (right-handed) helix if True
• dxfattribs – additional DXF attributes
add_mpolygon(color: int = const.BYLAYER, fill_color: int | None = None, dxfattribs=None) ->
MPolygon
Add a MPolygon entity. (requires DXF R2000)
The MPOLYGON entity is not a core DXF entity and is not supported by every CAD application
or DXF library.
DXF version R2004+ is required to use a fill color different from BYLAYER. For R2000 the
fill color is always BYLAYER, set any ACI value to create a filled MPOLYGON entity.
Parameters
• color – boundary color as AutoCAD Color Index (ACI), default is BYLAYER.
• fill_color – fill color as AutoCAD Color Index (ACI), default is None
• dxfattribs – additional DXF attributes
add_mesh(dxfattribs=None) -> Mesh
Add a Mesh entity. (requires DXF R2007)
Parameters
dxfattribs – additional DXF attributes
add_image(image_def: ImageDef, insert: UVec, size_in_units: tuple[float, float], rotation: float =
0.0, dxfattribs=None) -> Image
Add an Image entity, requires a ImageDef entity, see Tutorial for Image and ImageDef.
(requires DXF R2000)
Parameters
• image_def – required image definition as ImageDef
• insert – insertion point as 3D point in WCS
• size_in_units – size as (x, y) tuple in drawing units
• rotation – rotation angle around the extrusion axis, default is the z-axis, in
degrees
• dxfattribs – additional DXF attributes
add_wipeout(vertices: Iterable[UVec], dxfattribs=None) -> Wipeout
Add a ezdxf.entities.Wipeout entity, the masking area is defined by WCS vertices.
This method creates only a 2D entity in the xy-plane of the layout, the z-axis of the input
vertices are ignored.
add_underlay(underlay_def: UnderlayDefinition, insert: UVec = (0, 0, 0), scale=(1, 1, 1),
rotation: float = 0.0, dxfattribs=None) -> Underlay
Add an Underlay entity, requires a UnderlayDefinition entity, see Tutorial for Underlay and
UnderlayDefinition. (requires DXF R2000)
Parameters
• underlay_def – required underlay definition as UnderlayDefinition
• insert – insertion point as 3D point in WCS
• scale – underlay scaling factor as (x, y, z) tuple or as single value for uniform
scaling for x, y and z
• rotation – rotation angle around the extrusion axis, default is the z-axis, in
degrees
• dxfattribs – additional DXF attributes
add_linear_dim(base: UVec, p1: UVec, p2: UVec, location: TypeAliasForwardRef('UVec') | None =
None, text: str = '<>', angle: float = 0, text_rotation: float | None = None, dimstyle: str =
'EZDXF', override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Add horizontal, vertical and rotated Dimension line. If an UCS is used for dimension line
rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done
by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See
also: Tutorial for Linear Dimensions
This method returns a DimStyleOverride object - to create the necessary dimension geometry,
you have to call render() manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• base – location of dimension line, any point on the dimension line or its
extension will do (in UCS)
• p1 – measurement point 1 and start point of extension line 1 (in UCS)
• p2 – measurement point 2 and start point of extension line 2 (in UCS)
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• angle – angle from ucs/wcs x-axis to dimension line in degrees
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_multi_point_linear_dim(base: UVec, points: Iterable[TypeAliasForwardRef('UVec')], angle: float
= 0, ucs: UCS | None = None, avoid_double_rendering: bool = True, dimstyle: str = 'EZDXF',
override: dict | None = None, dxfattribs=None, discard=False) -> None
Add multiple linear dimensions for iterable points. If an UCS is used for dimension line
rendering, all point definitions in UCS coordinates, translation into WCS and OCS is done
by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1) by default. See
also: Tutorial for Linear Dimensions
This method sets many design decisions by itself, the necessary geometry will be generated
automatically, no required nor possible render() call. This method is easy to use, but you
get what you get.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• base – location of dimension line, any point on the dimension line or its
extension will do (in UCS)
• points – iterable of measurement points (in UCS)
• angle – angle from ucs/wcs x-axis to dimension line in degrees (0 = horizontal, 90
= vertical)
• ucs – user defined coordinate system
• avoid_double_rendering – suppresses the first extension line and the first arrow
if possible for continued dimension entities
• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
• discard – discard rendering result for friendly CAD applications like BricsCAD to
get a native and likely better rendering result. (does not work with AutoCAD)
add_aligned_dim(p1: UVec, p2: UVec, distance: float, text: str = '<>', dimstyle: str = 'EZDXF',
override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Add linear dimension aligned with measurement points p1 and p2. If an UCS is used for
dimension line rendering, all point definitions in UCS coordinates, translation into WCS
and OCS is done by the rendering function. Extrusion vector is defined by UCS or (0, 0, 1)
by default. See also: Tutorial for Linear Dimensions
This method returns a DimStyleOverride object, to create the necessary dimension geometry,
you have to call DimStyleOverride.render() manually, this two-step process allows
additional processing steps on the Dimension entity between creation and rendering.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• p1 – measurement point 1 and start point of extension line 1 (in UCS)
• p2 – measurement point 2 and start point of extension line 2 (in UCS)
• distance – distance of dimension line from measurement points
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_radius_dim(center: UVec, mpoint: TypeAliasForwardRef('UVec') | None = None, radius: float |
None = None, angle: float | None = None, *, location: TypeAliasForwardRef('UVec') | None = None,
text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: dict | None = None, dxfattribs=None) ->
DimStyleOverride
Add a radius Dimension line. The radius dimension line requires a center point and a point
mpoint on the circle or as an alternative a radius and a dimension line angle in degrees.
See also: Tutorial for Radius Dimensions
If a UCS is used for dimension line rendering, all point definitions in UCS coordinates,
translation into WCS and OCS is done by the rendering function. Extrusion vector is defined
by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry,
you have to call render() manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.
Following render types are supported:
• Default text location outside: text aligned with dimension line; dimension style:
“EZ_RADIUS”
• Default text location outside horizontal: “EZ_RADIUS” + dimtoh=1
• Default text location inside: text aligned with dimension line; dimension style:
“EZ_RADIUS_INSIDE”
• Default text location inside horizontal: “EZ_RADIUS_INSIDE” + dimtih=1
• User defined text location: argument location != None, text aligned with dimension line;
dimension style: “EZ_RADIUS”
• User defined text location horizontal: argument location != None, “EZ_RADIUS” + dimtoh=1
for text outside horizontal, “EZ_RADIUS” + dimtih=1 for text inside horizontal
Placing the dimension text at a user defined location, overrides the mpoint and the angle
argument, but requires a given radius argument. The location argument does not define the
exact text location, instead it defines the dimension line starting at center and the
measurement text midpoint projected on this dimension line going through location, if text
is aligned to the dimension line. If text is horizontal, location is the kink point of the
dimension line from radial to horizontal direction.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• center – center point of the circle (in UCS)
• mpoint – measurement point on the circle, overrides angle and radius (in UCS)
• radius – radius in drawing units, requires argument angle
• angle – specify angle of dimension line in degrees, requires argument radius
• location – user defined dimension text location, overrides mpoint and angle, but
requires radius (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_radius_dim_2p(center: UVec, mpoint: UVec, *, text: str = '<>', dimstyle: str = 'EZ_RADIUS',
override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Shortcut method to create a radius dimension by center point, measurement point on the
circle and the measurement text at the default location defined by the associated dimstyle,
for further information see general method add_radius_dim().
• dimstyle “EZ_RADIUS”: places the dimension text outside
• dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside
Parameters
• center – center point of the circle (in UCS)
• mpoint – measurement point on the circle (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_radius_dim_cra(center: UVec, radius: float, angle: float, *, text: str = '<>', dimstyle: str =
'EZ_RADIUS', override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Shortcut method to create a radius dimension by (c)enter point, (r)adius and (a)ngle, the
measurement text is placed at the default location defined by the associated dimstyle, for
further information see general method add_radius_dim().
• dimstyle “EZ_RADIUS”: places the dimension text outside
• dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside
Parameters
• center – center point of the circle (in UCS)
• radius – radius in drawing units
• angle – angle of dimension line in degrees
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_diameter_dim(center: UVec, mpoint: TypeAliasForwardRef('UVec') | None = None, radius: float |
None = None, angle: float | None = None, *, location: TypeAliasForwardRef('UVec') | None = None,
text: str = '<>', dimstyle: str = 'EZ_RADIUS', override: dict | None = None, dxfattribs=None) ->
DimStyleOverride
Add a diameter Dimension line. The diameter dimension line requires a center point and a
point mpoint on the circle or as an alternative a radius and a dimension line angle in
degrees.
If an UCS is used for dimension line rendering, all point definitions in UCS coordinates,
translation into WCS and OCS is done by the rendering function. Extrusion vector is defined
by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry,
you have to call render() manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• center – specifies the center of the circle (in UCS)
• mpoint – specifies the measurement point on the circle (in UCS)
• radius – specify radius, requires argument angle, overrides p1 argument
• angle – specify angle of dimension line in degrees, requires argument radius,
overrides p1 argument
• location – user defined location for the text midpoint (in UCS)
• text – None or "<>" the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_diameter_dim_2p(p1: UVec, p2: UVec, text: str = '<>', dimstyle: str = 'EZ_RADIUS', override:
dict | None = None, dxfattribs=None) -> DimStyleOverride
Shortcut method to create a diameter dimension by two points on the circle and the
measurement text at the default location defined by the associated dimstyle, for further
information see general method add_diameter_dim(). Center point of the virtual circle is
the midpoint between p1 and p2.
• dimstyle “EZ_RADIUS”: places the dimension text outside
• dimstyle “EZ_RADIUS_INSIDE”: places the dimension text inside
Parameters
• p1 – first point of the circle (in UCS)
• p2 – second point on the opposite side of the center point of the circle (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_RADIUS”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_angular_dim_2l(base: UVec, line1: tuple[TypeAliasForwardRef('UVec'),
TypeAliasForwardRef('UVec')], line2: tuple[TypeAliasForwardRef('UVec'),
TypeAliasForwardRef('UVec')], *, location: TypeAliasForwardRef('UVec') | None = None, text: str =
'<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED', override: dict | None =
None, dxfattribs=None) -> DimStyleOverride
Add angular Dimension from two lines. The measurement is always done from line1 to line2 in
counter-clockwise orientation. This does not always match the result in CAD applications!
If an UCS is used for angular dimension rendering, all point definitions in UCS
coordinates, translation into WCS and OCS is done by the rendering function. Extrusion
vector is defined by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry,
you have to call render() manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• base – location of dimension line, any point on the dimension line or its
extension is valid (in UCS)
• line1 – specifies start leg of the angle (start point, end point) and determines
extension line 1 (in UCS)
• line2 – specifies end leg of the angle (start point, end point) and determines
extension line 2 (in UCS)
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_angular_dim_3p(base: UVec, center: UVec, p1: UVec, p2: UVec, *, location:
TypeAliasForwardRef('UVec') | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Add angular Dimension from three points (center, p1, p2). The measurement is always done
from p1 to p2 in counter-clockwise orientation. This does not always match the result in
CAD applications!
If an UCS is used for angular dimension rendering, all point definitions in UCS
coordinates, translation into WCS and OCS is done by the rendering function. Extrusion
vector is defined by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry,
you have to call render() manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• base – location of dimension line, any point on the dimension line or its
extension is valid (in UCS)
• center – specifies the vertex of the angle
• p1 – specifies start leg of the angle (center -> p1) and end-point of extension
line 1 (in UCS)
• p2 – specifies end leg of the angle (center -> p2) and end-point of extension
line 2 (in UCS)
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_angular_dim_cra(center: UVec, radius: float, start_angle: float, end_angle: float, distance:
float, *, location: TypeAliasForwardRef('UVec') | None = None, text: str = '<>', text_rotation:
float | None = None, dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None)
-> DimStyleOverride
Shortcut method to create an angular dimension by (c)enter point, (r)adius and start- and
end (a)ngles, the measurement text is placed at the default location defined by the
associated dimstyle. The measurement is always done from start_angle to end_angle in
counter-clockwise orientation. This does not always match the result in CAD applications!
For further information see the more generic factory method add_angular_dim_3p().
Parameters
• center – center point of the angle (in UCS)
• radius – the distance from center to the start of the extension lines in drawing
units
• start_angle – start angle in degrees (in UCS)
• end_angle – end angle in degrees (in UCS)
• distance – distance from start of the extension lines to the dimension line in
drawing units
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_angular_dim_arc(arc: ConstructionArc, distance: float, *, location:
TypeAliasForwardRef('UVec') | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Shortcut method to create an angular dimension from a ConstructionArc. This construction
tool can be created from ARC entities and the tool itself provides various construction
class methods. The measurement text is placed at the default location defined by the
associated dimstyle. The measurement is always done from start_angle to end_angle of the
arc in counter-clockwise orientation. This does not always match the result in CAD
applications! For further information see the more generic factory method
add_angular_dim_3p().
Parameters
• arc – ConstructionArc
• distance – distance from start of the extension lines to the dimension line in
drawing units
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_arc_dim_3p(base: UVec, center: UVec, p1: UVec, p2: UVec, *, location:
TypeAliasForwardRef('UVec') | None = None, text: str = '<>', text_rotation: float | None = None,
dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Add ArcDimension from three points (center, p1, p2). Point p1 defines the radius and the
start-angle of the arc, point p2 only defines the end-angle of the arc.
If an UCS is used for arc dimension rendering, all point definitions in UCS coordinates,
translation into WCS and OCS is done by the rendering function. Extrusion vector is defined
by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry,
you have to call render() manually, this two-step process allows additional processing
steps on the ArcDimension entity between creation and rendering.
NOTE:
Ezdxf does not render the arc dimension like CAD applications and does not consider all
DIMSTYLE variables, so the rendering results are very different from CAD applications.
Parameters
• base – location of dimension line, any point on the dimension line or its
extension is valid (in UCS)
• center – specifies the vertex of the angle
• p1 – specifies the radius (center -> p1) and the star angle of the arc, this is
also the start point for the 1st extension line (in UCS)
• p2 – specifies the end angle of the arc. The start 2nd extension line is defined
by this angle and the radius defined by p1 (in UCS)
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_arc_dim_cra(center: UVec, radius: float, start_angle: float, end_angle: float, distance:
float, *, location: TypeAliasForwardRef('UVec') | None = None, text: str = '<>', text_rotation:
float | None = None, dimstyle: str = 'EZ_CURVED', override: dict | None = None, dxfattribs=None)
-> DimStyleOverride
Shortcut method to create an arc dimension by (c)enter point, (r)adius and start- and end
(a)ngles, the measurement text is placed at the default location defined by the associated
dimstyle.
NOTE:
Ezdxf does not render the arc dimension like CAD applications and does not consider all
DIMSTYLE variables, so the rendering results are very different from CAD applications.
Parameters
• center – center point of the angle (in UCS)
• radius – the distance from center to the start of the extension lines in drawing
units
• start_angle – start-angle in degrees (in UCS)
• end_angle – end-angle in degrees (in UCS)
• distance – distance from start of the extension lines to the dimension line in
drawing units
• location – user defined location for text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_arc_dim_arc(arc: ConstructionArc, distance: float, *, location: TypeAliasForwardRef('UVec') |
None = None, text: str = '<>', text_rotation: float | None = None, dimstyle: str = 'EZ_CURVED',
override: dict | None = None, dxfattribs=None) -> DimStyleOverride
Shortcut method to create an arc dimension from a ConstructionArc. This construction tool
can be created from ARC entities and the tool itself provides various construction class
methods. The measurement text is placed at the default location defined by the associated
dimstyle.
NOTE:
Ezdxf does not render the arc dimension like CAD applications and does not consider all
DIMSTYLE variables, so the rendering results are very different from CAD applications.
Parameters
• arc – ConstructionArc
• distance – distance from start of the extension lines to the dimension line in
drawing units
• location – user defined location for the text midpoint (in UCS)
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• text_rotation – rotation angle of the dimension text as absolute angle (x-axis=0,
y-axis=90) in degrees
• dimstyle – dimension style name (DimStyle table entry), default is “EZ_CURVED”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_ordinate_dim(feature_location: UVec, offset: UVec, dtype: int, *, origin: UVec = NULLVEC,
rotation: float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) -> DimStyleOverride
Add an ordinate type Dimension line. The feature location is defined in the global
coordinate system, which is set as render UCS, which is the WCS by default.
If an UCS is used for dimension line rendering, all point definitions in UCS coordinates,
translation into WCS and OCS is done by the rendering function. Extrusion vector is defined
by UCS or (0, 0, 1) by default.
This method returns a DimStyleOverride object - to create the necessary dimension geometry,
you have to call render() manually, this two-step process allows additional processing
steps on the Dimension entity between creation and rendering.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different
from CAD applications.
Parameters
• feature_location – feature location in the global coordinate system (UCS)
• offset – offset vector of leader end point from the feature location in the local
coordinate system
• dtype – 1 = x-type, 0 = y-type
• origin – specifies the origin (0, 0) of the local coordinate system in UCS
• rotation – rotation angle of the local coordinate system in degrees
• text – None or “<>” the measurement is drawn as text, “ “ (a single space)
suppresses the dimension text, everything else text is drawn as dimension text
• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – DimStyleOverride attributes
• dxfattribs – additional DXF attributes for the DIMENSION entity
Returns: DimStyleOverride
add_ordinate_x_dim(feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation:
float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) -> DimStyleOverride
Shortcut to add an x-type feature ordinate DIMENSION, for more information see
add_ordinate_dim().
add_ordinate_y_dim(feature_location: UVec, offset: UVec, *, origin: UVec = NULLVEC, rotation:
float = 0.0, text: str = '<>', dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) -> DimStyleOverride
Shortcut to add a y-type feature ordinate DIMENSION, for more information see
add_ordinate_dim().
add_leader(vertices: Iterable[UVec], dimstyle: str = 'EZDXF', override: dict | None = None,
dxfattribs=None) -> Leader
The Leader entity represents an arrow, made up of one or more vertices (or spline fit
points) and an arrowhead. The label or other content to which the Leader is attached is
stored as a separate entity, and is not part of the Leader itself. (requires DXF R2000)
Leader shares its styling infrastructure with Dimension.
By default a Leader without any annotation is created. For creating more fancy leaders and
annotations see documentation provided by Autodesk or Demystifying DXF: LEADER and
MULTILEADER implementation notes .
Parameters
• vertices – leader vertices (in WCS)
• dimstyle – dimension style name (DimStyle table entry), default is “EZDXF”
• override – override DimStyleOverride attributes
• dxfattribs – additional DXF attributes
add_multileader_mtext(style: str = 'Standard', dxfattribs=None) -> MultiLeaderMTextBuilder
Add a MultiLeader entity but returns a MultiLeaderMTextBuilder.
add_multileader_block(style: str = 'Standard', dxfattribs=None) -> MultiLeaderBlockBuilder
Add a MultiLeader entity but returns a MultiLeaderBlockBuilder.
add_body(dxfattribs=None) -> Body
Add a Body entity. (requires DXF R2000 or later)
The ACIS data has to be set as SAT or SAB.
add_region(dxfattribs=None) -> Region
Add a Region entity. (requires DXF R2000 or later)
The ACIS data has to be set as SAT or SAB.
add_3dsolid(dxfattribs=None) -> Solid3d
Add a 3DSOLID entity (Solid3d). (requires DXF R2000 or later)
The ACIS data has to be set as SAT or SAB.
add_surface(dxfattribs=None) -> Surface
Add a Surface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.
add_extruded_surface(dxfattribs=None) -> ExtrudedSurface
Add a ExtrudedSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.
add_lofted_surface(dxfattribs=None) -> LoftedSurface
Add a LoftedSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.
add_revolved_surface(dxfattribs=None) -> RevolvedSurface
Add a RevolvedSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.
add_swept_surface(dxfattribs=None) -> SweptSurface
Add a SweptSurface entity. (requires DXF R2007 or later)
The ACIS data has to be set as SAT or SAB.
Layout
class ezdxf.layouts.Layout
Layout is a subclass of BaseLayout and common base class of Modelspace and Paperspace.
name Layout name as shown in tabs of CAD applications.
dxf Returns the DXF name space attribute of the associated DXFLayout object.
This enables direct access to the underlying LAYOUT entity, e.g. Layout.dxf.layout_flags
__contains__(entity: DXFGraphic | str) -> bool
Returns True if entity is stored in this layout.
Parameters
entity – DXFGraphic object or handle as hex string
reset_extents(extmin=(+1e20, +1e20, +1e20), extmax=(-1e20, -1e20, -1e20)) -> None
Reset extents to given values or the AutoCAD default values.
“Drawing extents are the bounds of the area occupied by objects.” (Quote Autodesk
Knowledge Network)
Parameters
• extmin – minimum extents or (+1e20, +1e20, +1e20) as default value
• extmax – maximum extents or (-1e20, -1e20, -1e20) as default value
reset_limits(limmin=None, limmax=None) -> None
Reset limits to given values or the AutoCAD default values.
“Sets an invisible rectangular boundary in the drawing area that can limit the grid display
and limit clicking or entering point locations.” (Quote Autodesk Knowledge Network)
The Paperspace class has an additional method reset_paper_limits() to deduce the default
limits from the paper size settings.
Parameters
• limmin – minimum limits or (0, 0) as default
• limmax – maximum limits or (paper width, paper height) as default value
set_plot_type(value: int = 5) -> None
┌───┬───────────────────────────────────────┐
│ 0 │ last screen display │
├───┼───────────────────────────────────────┤
│ 1 │ drawing extents │
├───┼───────────────────────────────────────┤
│ 2 │ drawing limits │
├───┼───────────────────────────────────────┤
│ 3 │ view specific (defined by │
│ │ Layout.dxf.plot_view_name) │
├───┼───────────────────────────────────────┤
│ 4 │ window specific (defined by │
│ │ Layout.set_plot_window_limits()) │
├───┼───────────────────────────────────────┤
│ 5 │ layout information (default) │
└───┴───────────────────────────────────────┘
Parameters
value – plot type
Raises DXFValueError – for value out of range
set_plot_style(name: str = 'ezdxf.ctb', show: bool = False) -> None
Set plot style file of type .ctb.
Parameters
• name – plot style filename
• show – show plot style effect in preview? (AutoCAD specific attribute)
set_plot_window(lower_left: tuple[float, float] = (0, 0), upper_right: tuple[float, float] = (0,
0)) -> None
Set plot window size in (scaled) paper space units.
Parameters
• lower_left – lower left corner as 2D point
• upper_right – upper right corner as 2D point
plot_viewport_borders(state: bool = True) -> None
show_plot_styles(state: bool = True) -> None
plot_centered(state: bool = True) -> None
plot_hidden(state: bool = True) -> None
use_standard_scale(state: bool = True) -> None
use_plot_styles(state: bool = True) -> None
scale_lineweights(state: bool = True) -> None
print_lineweights(state: bool = True) -> None
draw_viewports_first(state: bool = True) -> None
model_type(state: bool = True) -> None
update_paper(state: bool = True) -> None
zoom_to_paper_on_update(state: bool = True) -> None
plot_flags_initializing(state: bool = True) -> None
prev_plot_init(state: bool = True) -> None
set_plot_flags(flag, state: bool = True) -> None
Modelspace
class ezdxf.layouts.Modelspace
Modelspace is a subclass of Layout.
The modelspace contains the “real” world representation of the drawing subjects in real world
units.
name Name of modelspace is fixed as “Model”.
new_geodata(dxfattribs=None) -> GeoData
Creates a new GeoData entity and replaces existing ones. The GEODATA entity resides in the
OBJECTS section and not in the modelspace, it is linked to the modelspace by an
ExtensionDict located in BLOCK_RECORD of the modelspace.
The GEODATA entity requires DXF R2010. The DXF reference does not document if other layouts
than the modelspace supports geo referencing, so I assume getting/setting geo data may only
make sense for the modelspace.
Parameters
dxfattribs – DXF attributes for GeoData entity
get_geodata() -> GeoData | None
Returns the GeoData entity associated to the modelspace or None.
Paperspace
class ezdxf.layouts.Paperspace
Paperspace is a subclass of Layout.
Paperspace layouts are used to create different drawing sheets of the modelspace subjects for
printing or PDF export.
name Layout name as shown in tabs of CAD applications.
page_setup(size=(297, 210), margins=(10, 15, 10, 15), units='mm', offset=(0, 0), rotation=0,
scale=16, name='ezdxf', device='DWG to PDF.pc3')
Setup plot settings and paper size and reset viewports. All parameters in given units (mm
or inch).
Reset paper limits, extents and viewports.
Parameters
• size – paper size as (width, height) tuple
• margins – (top, right, bottom, left) hint: clockwise
• units – “mm” or “inch”
• offset – plot origin offset is 2D point
• rotation – see table Rotation
• scale – integer in range [0, 32] defines a standard scale type or as
tuple(numerator, denominator) e.g. (1, 50) for scale 1:50
• name – paper name prefix “{name}_({width}_x_{height}_{unit})”
• device – device .pc3 configuration file or system printer name
┌─────┬──────────────────────────────┐
│ int │ Rotation │
├─────┼──────────────────────────────┤
│ 0 │ no rotation │
├─────┼──────────────────────────────┤
│ 1 │ 90 degrees counter-clockwise │
├─────┼──────────────────────────────┤
│ 2 │ upside-down │
├─────┼──────────────────────────────┤
│ 3 │ 90 degrees clockwise │
└─────┴──────────────────────────────┘
viewports() -> list[Viewport]
Get all VIEWPORT entities defined in this paperspace layout.
main_viewport() -> Viewport | None
Returns the main viewport of this paper space layout, or None if no main viewport exist.
add_viewport(center: UVec, size: tuple[float, float], view_center_point: UVec, view_height: float,
status: int = 2, dxfattribs=None) -> Viewport
Add a new Viewport entity.
Viewport status:
• -1 is on, but is fully off-screen, or is one of the viewports that is not active
because the $MAXACTVP count is currently being exceeded.
• 0 is off
• any value>0 is on and active. The value indicates the order of stacking for the
viewports, where 1 is the “active viewport”, 2 is the next, …
reset_viewports() -> None
Delete all existing viewports, and create a new main viewport.
reset_main_viewport(center: UVec = None, size: UVec = None) -> Viewport
Reset the main viewport of this paper space layout to the given values, or reset them to
the default values, deduced from the paper settings. Creates a new main viewport if none
exist.
Ezdxf does not create a main viewport by default, because CAD applications don’t require
one.
Parameters
• center – center of the viewport in paper space units
• size – viewport size as (width, height) tuple in paper space units
reset_paper_limits() -> None
Set paper limits to default values, all values in paperspace units but without plot scale
(?).
get_paper_limits() -> tuple[Vec2, Vec2]
Returns paper limits in plot paper units, relative to the plot origin.
plot origin = lower left corner of printable area + plot origin offset
Returns
tuple (Vec2(x1, y1), Vec2(x2, y2)), lower left corner is (x1, y1), upper right
corner is (x2, y2).
BlockLayout
class ezdxf.layouts.BlockLayout
BlockLayout is a subclass of BaseLayout.
Block layouts are reusable sets of graphical entities, which can be referenced by multiple Insert
entities. Each reference can be placed, scaled and rotated individually and can have it’s own set
of DXF Attrib entities attached.
property name: str
Get/set the BLOCK name
property block: Block | None
the associated Block entity.
property endblk: EndBlk | None
the associated EndBlk entity.
property dxf
DXF name space of associated BlockRecord table entry.
property can_explode: bool
Set property to True to allow exploding block references of this block.
property scale_uniformly: bool
Set property to True to allow block references of this block only scale uniformly.
property base_point: Vec3
Get/Set the base point of the block.
__contains__(entity) -> bool
Returns True if block contains entity.
Parameters
entity – DXFGraphic object or handle as hex string
attdefs() -> Iterable[AttDef]
Returns iterable of all Attdef entities.
has_attdef(tag: str) -> bool
Returns True if an Attdef for tag exist.
get_attdef(tag: str) -> AttDef | None
Returns attached Attdef entity by tag name.
get_attdef_text(tag: str, default: str = '') -> str
Returns text content for Attdef tag as string or returns default if no Attdef for tag
exist.
Parameters
• tag – name of tag
• default – default value if tag not exist
Groups
A group is just a bunch of DXF entities tied together. All entities of a group has to be in the same
layout (modelspace or any paperspace layout but not block). Groups can be named or unnamed, but in
reality an unnamed groups has just a special name like “*Annnn”. The name of a group has to be unique in
the drawing. Groups are organized in the group table, which is stored as attribute groups in the Drawing
object.
IMPORTANT:
Group entities have to reside in the modelspace or an paperspace layout but not in a block definition!
DXFGroup
class ezdxf.entities.dxfgroups.DXFGroup
The group name is not stored in the GROUP entity, it is stored in the GroupCollection object.
dxf.description
group description (string)
dxf.unnamed
1 for unnamed, 0 for named group (int)
dxf.selectable
1 for selectable, 0 for not selectable group (int)
__iter__() -> Iterator[DXFEntity]
Iterate over all DXF entities in DXFGroup as instances of DXFGraphic or inherited (LINE,
CIRCLE, …).
__len__() -> int
Returns the count of DXF entities in DXFGroup.
__getitem__(item)
Returns entities by standard Python indexing and slicing.
__contains__(item: str | DXFEntity) -> bool
Returns True if item is in DXFGroup. item has to be a handle string or an object of type
DXFEntity or inherited.
handles() -> Iterable[str]
Iterable of handles of all DXF entities in DXFGroup.
edit_data() -> list[DXFEntity]
Context manager which yields all the group entities as standard Python list:
with group.edit_data() as data:
# add new entities to a group
data.append(modelspace.add_line((0, 0), (3, 0)))
# remove last entity from a group
data.pop()
set_data(entities: Iterable[DXFEntity]) -> None
Set entities as new group content, entities should be an iterable of DXFGraphic (LINE,
CIRCLE, …).
Raises DXFValueError – not all entities are located on the same layout (modelspace
or any paperspace layout but not block)
extend(entities: Iterable[DXFEntity]) -> None
Add entities to DXFGroup, entities should be an iterable of DXFGraphic (LINE, CIRCLE, …).
Raises DXFValueError – not all entities are located on the same layout (modelspace
or any paperspace layout but not block)
clear() -> None
Remove all entities from DXFGroup, does not delete any drawing entities referenced by this
group.
audit(auditor: Auditor) -> None
Remove invalid entities from DXFGroup.
Invalid entities are:
• deleted entities
• all entities which do not reside in model- or paper space
• all entities if they do not reside in the same layout
GroupCollection
Each Drawing has one group table, which is accessible by the attribute groups.
class ezdxf.entities.dxfgroups.GroupCollection
Manages all DXFGroup objects of a Drawing.
__len__()
Returns the count of DXF groups.
__iter__()
Iterate over all existing groups as (name, group) tuples. name is the name of the group as
string and group is an DXFGroup object.
__contains__()
Returns True if a group name exist.
get(name: str) -> DXFGroup
Returns the group name. Raises DXFKeyError if group name does not exist.
groups() -> Iterator[DXFGroup]
Iterable of all existing groups.
new(name: str | None = None, description: str = '', selectable: bool = True) -> DXFGroup
Creates a new group. If name is None an unnamed group is created, which has an
automatically generated name like “*Annnn”. Group names are case-insensitive.
Parameters
• name – group name as string
• description – group description as string
• selectable – group is selectable if True
delete(group: DXFGroup | str) -> None
Delete group, group can be an object of type DXFGroup or a group name as string.
clear()
Delete all groups.
audit(auditor: Auditor) -> None
Removes empty groups and invalid handles from all groups.
DXF Entities
All DXF entities can only reside in the BaseLayout and inherited classes like Modelspace, Paperspace and
BlockLayout.
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
DXF Entity Base Class
Common base class for all DXF entities and objects.
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.DXFEntity
dxf The DXF attributes namespace:
# set attribute value
entity.dxf.layer = 'MyLayer'
# get attribute value
linetype = entity.dxf.linetype
# delete attribute
del entity.dxf.linetype
dxf.handle
DXF handle is a unique identifier as plain hex string like F000. (feature for experts)
dxf.owner
Handle to owner as plain hex string like F000. (feature for experts)
doc Get the associated Drawing instance.
property is_alive: bool
Is False if entity has been deleted.
property is_virtual: bool
Is True if entity is a virtual entity.
property is_bound: bool
Is True if entity is bound to DXF document.
property is_copy: bool
Is True if the entity is a copy.
property uuid: UUID
Returns a UUID, which allows to distinguish even virtual entities without a handle.
Dynamic attribute: this UUID will be created at the first request.
property source_of_copy: DXFEntity | None
The immediate source entity if this entity is a copy else None. Never references a
destroyed entity.
property origin_of_copy: DXFEntity | None
The origin source entity if this entity is a copy else None. References the first
non-virtual source entity and never references a destroyed entity.
property has_source_block_reference: bool
Is True if this virtual entity was created by a block reference.
property source_block_reference: Insert | None
The source block reference (INSERT) which created this virtual entity. The property is None
if this entity was not created by a block reference.
dxftype() -> str
Get DXF type as string, like LINE for the line entity.
__str__() -> str
Returns a simple string representation.
__repr__() -> str
Returns a simple string representation including the class.
has_dxf_attrib(key: str) -> bool
Returns True if DXF attribute key really exist.
Raises DXFAttributeError if key is not an supported DXF attribute.
is_supported_dxf_attrib(key: str) -> bool
Returns True if DXF attrib key is supported by this entity. Does not grant that attribute
key really exist.
get_dxf_attrib(key: str, default: Any = None) -> Any
Get DXF attribute key, returns default if key doesn’t exist, or raise DXFValueError if
default is DXFValueError and no DXF default value is defined:
layer = entity.get_dxf_attrib("layer")
# same as
layer = entity.dxf.layer
Raises DXFAttributeError if key is not an supported DXF attribute.
set_dxf_attrib(key: str, value: Any) -> None
Set new value for DXF attribute key:
entity.set_dxf_attrib("layer", "MyLayer")
# same as
entity.dxf.layer = "MyLayer"
Raises DXFAttributeError if key is not an supported DXF attribute.
del_dxf_attrib(key: str) -> None
Delete DXF attribute key, does not raise an error if attribute is supported but not
present.
Raises DXFAttributeError if key is not an supported DXF attribute.
dxfattribs(drop: set[str] | None = None) -> dict
Returns a dict with all existing DXF attributes and their values and exclude all DXF
attributes listed in set drop.
update_dxf_attribs(dxfattribs: dict) -> None
Set DXF attributes by a dict like {'layer': 'test', 'color': 4}.
set_flag_state(flag: int, state: bool = True, name: str = 'flags') -> None
Set binary coded flag of DXF attribute name to 1 (on) if state is True, set flag to 0 (off)
if state is False.
get_flag_state(flag: int, name: str = 'flags') -> bool
Returns True if any flag of DXF attribute is 1 (on), else False. Always check only one flag
state at the time.
has_extension_dict
Returns True if entity has an attached ExtensionDict instance.
get_extension_dict() -> ExtensionDict
Returns the existing ExtensionDict instance.
Raises AttributeError – extension dict does not exist
new_extension_dict() -> ExtensionDict
Create a new ExtensionDict instance.
discard_extension_dict() -> None
Delete ExtensionDict instance.
discard_empty_extension_dict() -> None
Delete ExtensionDict instance when empty.
has_app_data(appid: str) -> bool
Returns True if application defined data for appid exist.
get_app_data(appid: str) -> Tags
Returns application defined data for appid.
Parameters
appid – application name as defined in the APPID table.
Raises DXFValueError – no data for appid found
set_app_data(appid: str, tags: Iterable) -> None
Set application defined data for appid as iterable of tags.
Parameters
• appid – application name as defined in the APPID table.
• tags – iterable of (code, value) tuples or DXFTag
discard_app_data(appid: str)
Discard application defined data for appid. Does not raise an exception if no data for
appid exist.
has_xdata(appid: str) -> bool
Returns True if extended data for appid exist.
get_xdata(appid: str) -> Tags
Returns extended data for appid.
Parameters
appid – application name as defined in the APPID table.
Raises DXFValueError – no extended data for appid found
set_xdata(appid: str, tags: Iterable) -> None
Set extended data for appid as iterable of tags.
Parameters
• appid – application name as defined in the APPID table.
• tags – iterable of (code, value) tuples or DXFTag
discard_xdata(appid: str) -> None
Discard extended data for appid. Does not raise an exception if no extended data for appid
exist.
has_xdata_list(appid: str, name: str) -> bool
Returns True if a tag list name for extended data appid exist.
get_xdata_list(appid: str, name: str) -> Tags
Returns tag list name for extended data appid.
Parameters
• appid – application name as defined in the APPID table.
• name – extended data list name
Raises DXFValueError – no extended data for appid found or no data list name not found
set_xdata_list(appid: str, name: str, tags: Iterable) -> None
Set tag list name for extended data appid as iterable of tags.
Parameters
• appid – application name as defined in the APPID table.
• name – extended data list name
• tags – iterable of (code, value) tuples or DXFTag
discard_xdata_list(appid: str, name: str) -> None
Discard tag list name for extended data appid. Does not raise an exception if no extended
data for appid or no tag list name exist.
replace_xdata_list(appid: str, name: str, tags: Iterable) -> None
Replaces tag list name for existing extended data appid by tags. Appends new list if tag
list name do not exist, but raises DXFValueError if extended data appid do not exist.
Parameters
• appid – application name as defined in the APPID table.
• name – extended data list name
• tags – iterable of (code, value) tuples or DXFTag
Raises DXFValueError – no extended data for appid found
has_reactors() -> bool
Returns True if entity has reactors.
get_reactors() -> list[str]
Returns associated reactors as list of handles.
set_reactors(handles: Iterable[str]) -> None
Set reactors as list of handles.
append_reactor_handle(handle: str) -> None
Append handle to reactors.
discard_reactor_handle(handle: str) -> None
Discard handle from reactors. Does not raise an exception if handle does not exist.
DXF Graphic Entity Base Class
Common base class for all graphical DXF entities.
All graphical entities reside in an entity space like Modelspace, any Paperspace or BlockLayout.
SEE ALSO:
• ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities
• ezdxf.colors module
• Tutorial for Common Graphical Attributes
┌─────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFEntity │
└─────────────┴──────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.DXFGraphic
rgb Get/set/delete DXF attribute dxf.true_color as (r, g, b) tuple, returns None if attribute
dxf.true_color is not set.
entity.rgb = (30, 40, 50) # set as tuple[int, int, int] or color.RGB
r, g, b = entity.rgb # returns tuple[int, int, int] or None
del entity.rgb # discard true color value, no exception if not exist
This is the recommend method to get/set/delete RGB values, when ever possible do not use
the DXF low level attribute dxf.true_color.
transparency
Get/set the transparency value as float. The transparency value is in the range from 0 to
1, where 0 means the entity is opaque and 1 means the entity is 100% transparent
(invisible). This is the recommend method to get/set the transparency value, when ever
possible do not use the DXF low level attribute DXFGraphic.dxf.transparency.
This attribute requires DXF R2004 or later, returns 0 for older DXF versions and raises
DXFAttributeError for setting transparency in older DXF versions.
property is_transparency_by_layer: bool
Returns True if entity inherits transparency from layer.
property is_transparency_by_block: bool
Returns True if entity inherits transparency from block.
ocs() -> OCS
Returns object coordinate system (OCS) for 2D entities like Text or Circle, returns a
pass-through OCS for entities without OCS support.
get_layout() -> BaseLayout | None
Returns the owner layout or returns None if entity is not assigned to any layout.
unlink_from_layout() -> None
Unlink entity from associated layout. Does nothing if entity is already unlinked.
It is more efficient to call the unlink_entity() method of the associated layout,
especially if you have to unlink more than one entity.
copy_to_layout(layout: BaseLayout) -> Self
Copy entity to another layout, returns new created entity as DXFEntity object. Copying
between different DXF drawings is not supported.
Parameters
layout – any layout (model space, paper space, block)
Raises DXFStructureError – for copying between different DXF drawings
move_to_layout(layout: BaseLayout, source: BaseLayout | None = None) -> None
Move entity from model space or a paper space layout to another layout. For block layout
as source, the block layout has to be specified. Moving between different DXF drawings is
not supported.
Parameters
• layout – any layout (model space, paper space, block)
• source – provide source layout, faster for DXF R12, if entity is in a block layout
Raises DXFStructureError – for moving between different DXF drawings
graphic_properties() -> dict
Returns the important common properties layer, color, linetype, lineweight, ltscale,
true_color and color_name as dxfattribs dict.
has_hyperlink() -> bool
Returns True if entity has an attached hyperlink.
get_hyperlink() -> tuple[str, str, str]
Returns hyperlink, description and location.
set_hyperlink(link: str, description: str | None = None, location: str | None = None)
Set hyperlink of an entity.
transform(m: Matrix44) -> Self
Inplace transformation interface, returns self (floating interface).
Parameters
m – 4x4 transformation matrix (ezdxf.math.Matrix44)
translate(dx: float, dy: float, dz: float) -> Self
Translate entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self
(floating interface).
Basic implementation uses the transform() interface, subclasses may have faster
implementations.
scale(sx: float, sy: float, sz: float) -> Self
Scale entity inplace about dx in x-axis, dy in y-axis and dz in z-axis, returns self
(floating interface).
scale_uniform(s: float) -> Self
Scale entity inplace uniform about s in x-axis, y-axis and z-axis, returns self (floating
interface).
rotate_x(angle: float) -> Self
Rotate entity inplace about x-axis, returns self (floating interface).
Parameters
angle – rotation angle in radians
rotate_y(angle: float) -> Self
Rotate entity inplace about y-axis, returns self (floating interface).
Parameters
angle – rotation angle in radians
rotate_z(angle: float) -> Self
Rotate entity inplace about z-axis, returns self (floating interface).
Parameters
angle – rotation angle in radians
rotate_axis(axis: UVec, angle: float) -> Self
Rotate entity inplace about vector axis, returns self (floating interface).
Parameters
• axis – rotation axis as tuple or Vec3
• angle – rotation angle in radians
Common graphical DXF attributes
DXFGraphic.dxf.layer
Layer name as string; default = “0”
DXFGraphic.dxf.linetype
Linetype as string, special names “BYLAYER”, “BYBLOCK”; default value is “BYLAYER”
DXFGraphic.dxf.color
AutoCAD Color Index (ACI), default value is 256
Constants defined in ezdxf.lldxf.const or use the ezdxf.colors module
┌─────┬──────────┐
│ 0 │ BYBLOCK │
├─────┼──────────┤
│ 256 │ BYLAYER │
├─────┼──────────┤
│ 257 │ BYOBJECT │
└─────┴──────────┘
DXFGraphic.dxf.lineweight
Line weight in mm times 100 (e.g. 0.13mm = 13). There are fixed valid lineweights which are
accepted by AutoCAD, other values prevents AutoCAD from loading the DXF document, BricsCAD
isn’t that picky. (requires DXF R2000)
Constants defined in ezdxf.lldxf.const
┌────┬────────────────────┐
│ -1 │ LINEWEIGHT_BYLAYER │
├────┼────────────────────┤
│ -2 │ LINEWEIGHT_BYBLOCK │
├────┼────────────────────┤
│ -3 │ LINEWEIGHT_DEFAULT │
└────┴────────────────────┘
Valid DXF lineweights stored in VALID_DXF_LINEWEIGHTS: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40,
50, 53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200, 211
DXFGraphic.dxf.ltscale
Line type scale as float; default value is 1.0; (requires DXF R2000)
DXFGraphic.dxf.invisible
1 for invisible, 0 for visible; default value is 0; (requires DXF R2000)
DXFGraphic.dxf.paperspace
0 for entity resides in modelspace or a block, 1 for paperspace, this attribute is set
automatically by adding an entity to a layout (feature for experts); default value is 0
DXFGraphic.dxf.extrusion
Extrusion direction as 3D vector; default value is (0, 0, 1)
DXFGraphic.dxf.thickness
Entity thickness as float; default value is 0.0; (requires DXF R2000)
DXFGraphic.dxf.true_color
True color value as int 0x00RRGGBB, use DXFGraphic.rgb to get/set true color values as (r, g,
b) tuples. (requires DXF R2004)
DXFGraphic.dxf.color_name
Color name as string. (requires DXF R2004)
DXFGraphic.dxf.transparency
Transparency value as int, 0x020000TT, 0x00 = 100% transparent / 0xFF = opaque, special value
0x01000000 means transparency by block. An unset transparency value means transparency by
layer. Use DXFGraphic.transparency to get/set transparency as float value, and the properties
DXFGraphic.is_transparency_by_block and DXFGraphic.is_transparency_by_layer to check special
cases.
(requires DXF R2004)
DXFGraphic.dxf.shadow_mode
┌───┬────────────────────────────┐
│ 0 │ casts and receives shadows │
├───┼────────────────────────────┤
│ 1 │ casts shadows │
├───┼────────────────────────────┤
│ 2 │ receives shadows │
├───┼────────────────────────────┤
│ 3 │ ignores shadows │
└───┴────────────────────────────┘
(requires DXF R2007)
SEE ALSO:
• ezdxf.gfxattribs module, helper tools to set graphical attributes of DXF entities
• ezdxf.colors module
• Tutorial for Common Graphical Attributes
Face3d
The 3DFACE entity (DXF Reference) is real 3D solid filled triangle or quadrilateral. Access vertices by
name (entity.dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)).
Unlike the entities Solid and Trace, the vertices of Face3d have the expected vertex order:
msp.add_3dface([(0, 0), (10, 0), (10, 10), (0, 10)])
[image]
┌──────────────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼───────────────────────────────────────┤
│ DXF type │ '3DFACE' │
├──────────────────────────┼───────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_3dface() │
├──────────────────────────┼───────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴───────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Face3d
The class name is Face3d because 3dface is not a valid Python class name.
dxf.vtx0
Location of 1. vertex (3D Point in WCS)
dxf.vtx1
Location of 2. vertex (3D Point in WCS)
dxf.vtx2
Location of 3. vertex (3D Point in WCS)
dxf.vtx3
Location of 4. vertex (3D Point in WCS)
dxf.invisible_edges
invisible edge flag (int, default=0)
┌───┬──────────────────────────┐
│ 1 │ first edge is invisible │
├───┼──────────────────────────┤
│ 2 │ second edge is invisible │
├───┼──────────────────────────┤
│ 4 │ third edge is invisible │
├───┼──────────────────────────┤
│ 8 │ fourth edge is invisible │
└───┴──────────────────────────┘
Combine values by adding them, e.g. 1+4 = first and third edge is invisible.
transform(m: Matrix44) -> Face3d
Transform the 3DFACE entity by transformation matrix m inplace.
wcs_vertices(close: bool = False) -> list[Vec3]
Returns WCS vertices, if argument close is True, the first vertex is also returned as
closing last vertex.
Returns 4 vertices when close is False and 5 vertices when close is True. Some edges may
have zero-length. This is a compatibility interface to SOLID and TRACE. The 3DFACE entity
is already defined by WCS vertices.
Solid3d
3DSOLID entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
SEE ALSO:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to
add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?
┌──────────────────────────┬────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Body │
├──────────────────────────┼────────────────────────────────────────┤
│ DXF type │ '3DSOLID' │
├──────────────────────────┼────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_3dsolid() │
├──────────────────────────┼────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴────────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Solid3d
Same attributes and methods as parent class Body.
dxf.history_handle
Handle to history object.
ACADProxyEntity
An ACAD_PROXY_ENTITY (DXF Reference) is a proxy entity that represents an entity created by an Autodesk
or 3rd party application. It stores the graphics and data of the original entity.
The internals of this entity are unknown, so the entity cannot be copied or transformed. However, ezdxf
can extract the proxy graphic from these entities as virtual entities or replace (explode) the entire
entity with its proxy graphic. The meaning and data of this entity is lost when the entity is exploded.
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'ACAD_PROXY_ENTITY' │
├──────────────────────────┼─────────────────────────────────┤
│ Factory function │ not supported │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────┘
class ezdxf.entities.ACADProxyEntity
virtual_entities() -> Iterator[DXFGraphic]
Yields proxy graphic as “virtual” entities.
explode(target_layout: BaseLayout | None = None) -> EntityQuery
Explodes the proxy graphic for the ACAD_PROXY_ENTITY into the target layout, if target
layout is None, the layout of the ACAD_PROXY_ENTITY will be used. This method destroys the
source ACAD_PROXY_ENTITY entity.
Parameters
target_layout – target layout for exploded entities, None for same layout as the
source ACAD_PROXY_ENTITY.
Returns
EntityQuery container referencing all exploded DXF entities.
Arc
The ARC entity (DXF Reference) represents a circular arc, which is defined by the DXF attributes
dxf.center, dxf.radius, dxf.start_angle and dxf.end_angle. The arc-curve goes always from
dxf.start_angle to dxf.end_angle in counter-clockwise orientation around the dxf.extrusion vector, which
is (0, 0, 1) by default and the usual case for 2D arcs. The ARC entity has OCS coordinates.
The helper tool ezdxf.math.ConstructionArc supports creating arcs from various scenarios, like from 3
points or 2 points and an angle or 2 points and a radius and the upright module can convert inverted
extrusion vectors from (0, 0, -1) to (0, 0, 1) without changing the curve.
SEE ALSO:
• Tutorial for Simple DXF Entities, section Arc
• ezdxf.math.ConstructionArc
• Object Coordinate System (OCS)
• ezdxf.upright module
┌──────────────────────────┬────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Circle │
├──────────────────────────┼────────────────────────────────────┤
│ DXF type │ 'ARC' │
├──────────────────────────┼────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_arc() │
├──────────────────────────┼────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Arc
dxf.center
Center point of arc (2D/3D Point in OCS)
dxf.radius
Radius of arc (float)
dxf.start_angle
Start angle in degrees (float)
dxf.end_angle
End angle in degrees (float)
start_point
Returns the start point of the arc in WCS, takes the OCS into account.
end_point
Returns the end point of the arc in WCS, takes the OCS into account.
angles(num: int) -> Iterator[float]
Yields num angles from start- to end angle in degrees in counter-clockwise orientation. All
angles are normalized in the range from [0, 360).
flattening(sagitta: float) -> Iterator[Vec3]
Approximate the arc by vertices in WCS, the argument sagitta defines the maximum distance
from the center of an arc segment to the center of its chord.
transform(m: Matrix44) -> Arc
Transform ARC entity by transformation matrix m inplace. Raises NonUniformScalingError()
for non-uniform scaling.
to_ellipse(replace=True) -> Ellipse
Convert the CIRCLE/ARC entity to an Ellipse entity.
Adds the new ELLIPSE entity to the entity database and to the same layout as the source
entity.
Parameters
replace – replace (delete) source entity by ELLIPSE entity if True
to_spline(replace=True) -> Spline
Convert the CIRCLE/ARC entity to a Spline entity.
Adds the new SPLINE entity to the entity database and to the same layout as the source
entity.
Parameters
replace – replace (delete) source entity by SPLINE entity if True
construction_tool() -> ConstructionArc
Returns the 2D construction tool ezdxf.math.ConstructionArc but the extrusion vector is
ignored.
apply_construction_tool(arc: ConstructionArc) -> Arc
Set ARC data from the construction tool ezdxf.math.ConstructionArc but the extrusion vector
is ignored.
Body
BODY entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
SEE ALSO:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to
add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?
┌──────────────────────────┬─────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────┤
│ DXF type │ 'BODY' │
├──────────────────────────┼─────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_body() │
├──────────────────────────┼─────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Body
dxf.version
Modeler format version number, default value is 1
dxf.flags
Require DXF R2013.
dxf.uid
Require DXF R2013.
property acis_data: bytes | Sequence[str]
Returns SAT data for DXF R2000 up to R2010 and SAB data for DXF R2013 and later
property sat: Sequence[str]
Get/Set SAT data as sequence of strings.
property sab: bytes
Get/Set SAB data as bytes.
property has_binary_data
Returns True if the entity contains SAB data and False if the entity contains SAT data.
tostring() -> str
Returns ACIS SAT data as a single string if the entity has SAT data.
Circle
The CIRCLE entity (DXF Reference) defined by the DXF attributes dxf.center and dxf.radius. The CIRCLE
entity has OCS coordinates.
SEE ALSO:
• Tutorial for Simple DXF Entities, section Circle
• ezdxf.math.ConstructionCircle
• Object Coordinate System (OCS)
┌──────────────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼───────────────────────────────────────┤
│ DXF type │ 'CIRCLE' │
├──────────────────────────┼───────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_circle() │
├──────────────────────────┼───────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴───────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Circle
dxf.center
Center point of circle (2D/3D Point in OCS)
dxf.radius
Radius of circle (float)
vertices(angles: Iterable[float]) -> Iterator[Vec3]
Yields the vertices of the circle of all given angles as Vec3 instances in WCS.
Parameters
angles – iterable of angles in OCS as degrees, angle goes counter-clockwise around
the extrusion vector, and the OCS x-axis defines 0-degree.
flattening(sagitta: float) -> Iterator[Vec3]
Approximate the circle by vertices in WCS as Vec3 instances. The argument sagitta is the
maximum distance from the center of an arc segment to the center of its chord. Yields a
closed polygon where the start vertex is equal to the end vertex!
transform(m: Matrix44) -> Circle
Transform the CIRCLE entity by transformation matrix m inplace. Raises
NonUniformScalingError() for non-uniform scaling.
translate(dx: float, dy: float, dz: float) -> Circle
Optimized CIRCLE/ARC translation about dx in x-axis, dy in y-axis and dz in z-axis, returns
self (floating interface).
to_ellipse(replace=True) -> Ellipse
Convert the CIRCLE/ARC entity to an Ellipse entity.
Adds the new ELLIPSE entity to the entity database and to the same layout as the source
entity.
Parameters
replace – replace (delete) source entity by ELLIPSE entity if True
to_spline(replace=True) -> Spline
Convert the CIRCLE/ARC entity to a Spline entity.
Adds the new SPLINE entity to the entity database and to the same layout as the source
entity.
Parameters
replace – replace (delete) source entity by SPLINE entity if True
Dimension
The DIMENSION entity (DXF Reference) represents several types of dimensions in many orientations and
alignments. The basic types of dimensioning are linear, radial, angular, ordinate, and arc length.
For more information about dimensions see the online help from AutoDesk: About the Types of Dimensions
IMPORTANT:
The DIMENSION entity is reused to create dimensional constraints, such entities do not have an
associated geometrical block nor a dimension type group code (2) and reside on layer
*ADSK_CONSTRAINTS. Use property Dimension.is_dimensional_constraint to check for this objects.
Dimensional constraints are not documented in the DXF reference and not supported by ezdxf.
SEE ALSO:
• Tutorial for Linear Dimensions
• Tutorial for Radius Dimensions
• Tutorial for Diameter Dimensions
• Tutorial for Angular Dimensions
• Tutorial for Ordinate Dimensions
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'DIMENSION' │
├──────────────────────────┼─────────────────────────────────┤
│ factory function │ see table below │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────┘
Factory Functions
┌───────────────────────────────────────┬───────────────────────┐
│ Linear and Rotated Dimension (DXF) │ add_linear_dim() │
├───────────────────────────────────────┼───────────────────────┤
│ Aligned Dimension (DXF) │ add_aligned_dim() │
├───────────────────────────────────────┼───────────────────────┤
│ Angular Dimension (DXF) │ add_angular_dim_2l() │
├───────────────────────────────────────┼───────────────────────┤
│ Angular 3P Dimension (DXF) │ add_angular_dim_3p() │
├───────────────────────────────────────┼───────────────────────┤
│ Angular Dimension by center, radius, │ add_angular_dim_cra() │
│ angles │ │
├───────────────────────────────────────┼───────────────────────┤
│ Angular Dimension by ConstructionArc │ add_angular_dim_arc() │
├───────────────────────────────────────┼───────────────────────┤
│ Diameter Dimension (DXF) │ add_diameter_dim() │
├───────────────────────────────────────┼───────────────────────┤
│ Radius Dimension (DXF) │ add_radius_dim() │
├───────────────────────────────────────┼───────────────────────┤
│ Ordinate Dimension (DXF) │ add_ordinate_dim() │
└───────────────────────────────────────┴───────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Dimension
There is only one Dimension class to represent all different dimension types.
dxf.version
Version number: 0 = R2010. (int, DXF R2010)
dxf.geometry
Name of the BLOCK that contains the entities that make up the dimension picture.
For AutoCAD this graphical representation is mandatory, otherwise AutoCAD will not open the
DXF document. BricsCAD will render the DIMENSION entity by itself, if the graphical
representation is not present, but displays the BLOCK content if present.
dxf.dimstyle
Dimension style (DimStyle) name as string.
dxf.dimtype
Values 0-6 are integer values that represent the dimension type. Values 32, 64, and 128 are
bit values, which are added to the integer values.
┌─────┬───────────────────────────────────────┐
│ 0 │ Linear and Rotated Dimension (DXF) │
├─────┼───────────────────────────────────────┤
│ 1 │ Aligned Dimension (DXF) │
├─────┼───────────────────────────────────────┤
│ 2 │ Angular Dimension (DXF) │
├─────┼───────────────────────────────────────┤
│ 3 │ Diameter Dimension (DXF) │
├─────┼───────────────────────────────────────┤
│ 4 │ Radius Dimension (DXF) │
├─────┼───────────────────────────────────────┤
│ 5 │ Angular 3P Dimension (DXF) │
├─────┼───────────────────────────────────────┤
│ 6 │ Ordinate Dimension (DXF) │
├─────┼───────────────────────────────────────┤
│ 8 │ subclass ezdxf.entities.ArcDimension │
│ │ introduced in DXF R2004 │
├─────┼───────────────────────────────────────┤
│ 32 │ Indicates that graphical │
│ │ representation geometry is referenced │
│ │ by this dimension only. (always set │
│ │ in DXF R13 and later) │
├─────┼───────────────────────────────────────┤
│ 64 │ Ordinate type. This is a bit value │
│ │ (bit 7) used only with integer value │
│ │ 6. If set, ordinate is X-type; if │
│ │ not set, ordinate is Y-type │
├─────┼───────────────────────────────────────┤
│ 128 │ This is a bit value (bit 8) added to │
│ │ the other dimtype values if the │
│ │ dimension text has been positioned at │
│ │ a user-defined location rather than │
│ │ at the default location │
└─────┴───────────────────────────────────────┘
dxf.defpoint
Definition point for all dimension types. (3D Point in WCS)
• Linear- and rotated dimension: dxf.defpoint specifies the dimension line location.
• Arc- and angular dimension: dxf.defpoint and dxfdefpoint4 specify the endpoints of the
line used to determine the second extension line.
dxf.defpoint2
Definition point for linear- and angular dimensions. (3D Point in WCS)
• Linear- and rotated dimension: The dxf.defpoint2 specifies the start point of the first
extension line.
• Arc- and angular dimension: The dxf.defpoint2 and dxf.defpoint3 specify the endpoints of
the line used to determine the first extension line.
dxf.defpoint3
Definition point for linear- and angular dimensions. (3D Point in WCS)
• Linear- and rotated dimension: The dxf.defpoint3 specifies the start point of the second
extension line.
• Arc- and angular dimension: The dxf.defpoint2 and dxf.defpoint3 specify the endpoints of
the line used to determine the first extension line.
dxf.defpoint4
Definition point for diameter-, radius-, and angular dimensions. (3D Point in WCS)
The dxf.defpoint and dxf.defpoint4 specify the endpoints of the line used to determine the
second extension line for arc- and angular dimension:
dxf.defpoint5
This point defines the location of the arc for angular dimensions. (3D Point in OCS)
dxf.angle
Rotation angle of linear and rotated dimensions in degrees. (float)
dxf.leader_length
Leader length for radius and diameter dimensions. (float)
dxf.text_midpoint
Middle point of dimension text. (3D Point in OCS)
dxf.insert
Insertion point for clones of a linear dimensions. (3D Point in OCS)
This value translates the content of the associated anonymous block for cloned linear
dimensions, similar to the insert attribute of the Insert entity.
dxf.attachment_point
Text attachment point (int, DXF R2000), default value is 5.
┌───┬───────────────┐
│ 1 │ Top left │
├───┼───────────────┤
│ 2 │ Top center │
├───┼───────────────┤
│ 3 │ Top right │
├───┼───────────────┤
│ 4 │ Middle left │
├───┼───────────────┤
│ 5 │ Middle center │
├───┼───────────────┤
│ 6 │ Middle right │
├───┼───────────────┤
│ 7 │ Bottom left │
├───┼───────────────┤
│ 8 │ Bottom center │
├───┼───────────────┤
│ 9 │ Bottom right │
└───┴───────────────┘
dxf.line_spacing_style
Dimension text line-spacing style (int, DXF R2000), default value is 1.
┌───┬───────────────────────────────────────┐
│ 1 │ At least (taller characters will │
│ │ override) │
├───┼───────────────────────────────────────┤
│ 2 │ Exact (taller characters will not │
│ │ override) │
└───┴───────────────────────────────────────┘
dxf.line_spacing_factor
Dimension text-line spacing factor. (float, DXF R2000)
Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to
4.00.
dxf.actual_measurement
Actual measurement (float, DXF R2000), this is an optional attribute and often not present.
(read-only value)
dxf.text
Dimension text explicitly entered by the user (str), default value is an empty string.
If empty string or “<>”, the dimension measurement is drawn as the text, if “ ” (one blank
space), the text is suppressed. Anything else will be displayed as the dimension text.
dxf.oblique_angle
The optional dxf.oblique_angle defines the angle of the extension lines for linear
dimension.
dxf.text_rotation
Defines is the rotation angle of the dimension text away from its default orientation (the
direction of the dimension line). (float)
dxf.horizontal_direction
Indicates the horizontal direction for the dimension entity (float).
This attribute determines the orientation of dimension text and lines for horizontal,
vertical, and rotated linear dimensions. This value is the negative of the angle in the
OCS xy-plane between the dimension line and the OCS x-axis.
property dimtype: int
dxf.dimtype without binary flags (32, 62, 128).
property is_dimensional_constraint: bool
Returns True if the DIMENSION entity is a dimensional constraint object.
get_dim_style() -> DimStyle
Returns the associated DimStyle entity.
get_geometry_block() -> BlockLayout | None
Returns BlockLayout of associated anonymous dimension block, which contains the entities
that make up the dimension picture. Returns None if block name is not set or the BLOCK
itself does not exist
get_measurement() -> float | Vec3
Returns the actual dimension measurement in WCS units, no scaling applied for linear
dimensions. Returns angle in degrees for angular dimension from 2 lines and angular
dimension from 3 points. Returns vector from origin to feature location for ordinate
dimensions.
override() -> DimStyleOverride
Returns the DimStyleOverride object.
render() -> None
Renders the graphical representation of the DIMENSION entity as DXF primitives (TEXT, LINE,
ARC, …) into an anonymous content BLOCK.
transform(m: Matrix44) -> Dimension
Transform the DIMENSION entity by transformation matrix m inplace.
Raises NonUniformScalingError() for non uniform scaling.
virtual_entities() -> Iterator[DXFGraphic]
Yields the graphical representation of the anonymous content BLOCK as virtual DXF
primitives (LINE, ARC, TEXT, …).
These virtual entities are located at the original location of the DIMENSION entity, but
they are not stored in the entity database, have no handle and are not assigned to any
layout.
explode(target_layout: BaseLayout | None = None) -> EntityQuery
Explodes the graphical representation of the DIMENSION entity as DXF primitives (LINE, ARC,
TEXT, …) into the target layout, None for the same layout as the source DIMENSION entity.
Returns an EntityQuery container containing all DXF primitives.
Parameters
target_layout – target layout for the DXF primitives, None for same layout as source
DIMENSION entity.
DimStyleOverride
All of the DimStyle attributes can be overridden for each Dimension entity individually.
The DimStyleOverride class manages all the complex dependencies between DimStyle and Dimension, the
different features of all DXF versions and the rendering process to create the Dimension picture as
BLOCK, which is required for AutoCAD.
class ezdxf.entities.DimStyleOverride
dimension
Base Dimension entity.
dimstyle
By dimension referenced DimStyle entity.
dimstyle_attribs
Contains all overridden attributes of dimension, as a dict with DimStyle attribute names as
keys.
__getitem__(key: str) -> Any
Returns DIMSTYLE attribute key, see also get().
__setitem__(key: str, value: Any) -> None
Set DIMSTYLE attribute key in dimstyle_attribs.
__delitem__(key: str) -> None
Deletes DIMSTYLE attribute key from dimstyle_attribs, ignores KeyErrors silently.
get(attribute: str, default: Any = None) -> Any
Returns DIMSTYLE attribute from override dict dimstyle_attribs or base DimStyle.
Returns default value for attributes not supported by DXF R12. This is a hack to use the
same algorithm to render DXF R2000 and DXF R12 DIMENSION entities. But the DXF R2000
attributes are not stored in the DXF R12 file! This method does not catch invalid attribute
names! Check debug log for ignored DIMSTYLE attributes.
pop(attribute: str, default: Any = None) -> Any
Returns DIMSTYLE attribute from override dict dimstyle_attribs and removes this attribute
from override dict.
update(attribs: dict) -> None
Update override dict dimstyle_attribs.
Parameters
attribs – dict of DIMSTYLE attributes
commit() -> None
Writes overridden DIMSTYLE attributes into ACAD:DSTYLE section of XDATA of the DIMENSION
entity.
get_arrow_names() -> tuple[str, str]
Get arrow names as strings like ‘ARCHTICK’ as tuple (dimblk1, dimblk2).
set_arrows(blk: str | None = None, blk1: str | None = None, blk2: str | None = None, ldrblk: str |
None = None, size: float | None = None) -> None
Set arrows or user defined blocks and disable oblique stroke as tick.
Parameters
• blk – defines both arrows at once as name str or user defined block
• blk1 – defines left arrow as name str or as user defined block
• blk2 – defines right arrow as name str or as user defined block
• ldrblk – defines leader arrow as name str or as user defined block
• size – arrow size in drawing units
set_tick(size: float = 1) -> None
Use oblique stroke as tick, disables arrows.
Parameters
size – arrow size in daring units
set_text_align(halign: str | None = None, valign: str | None = None, vshift: float | None = None)
-> None
Set measurement text alignment, halign defines the horizontal alignment, valign defines the
vertical alignment, above1 and above2 means above extension line 1 or 2 and aligned with
extension line.
Parameters
• halign – left, right, center, above1, above2, requires DXF R2000+
• valign – above, center, below
• vshift – vertical text shift, if valign is center; >0 shift upward, <0 shift
downwards
set_tolerance(upper: float, lower: float | None = None, hfactor: float | None = None, align:
MTextLineAlignment | None = None, dec: int | None = None, leading_zeros: bool | None = None,
trailing_zeros: bool | None = None) -> None
Set tolerance text format, upper and lower value, text height factor, number of decimal
places or leading and trailing zero suppression.
Parameters
• upper – upper tolerance value
• lower – lower tolerance value, if None same as upper
• hfactor – tolerance text height factor in relation to the dimension text height
• align – tolerance text alignment enum ezdxf.enums.MTextLineAlignment
• dec – Sets the number of decimal places displayed
• leading_zeros – suppress leading zeros for decimal dimensions if False
• trailing_zeros – suppress trailing zeros for decimal dimensions if False
set_limits(upper: float, lower: float, hfactor: float | None = None, dec: int | None = None,
leading_zeros: bool | None = None, trailing_zeros: bool | None = None) -> None
Set limits text format, upper and lower limit values, text height factor, number of decimal
places or leading and trailing zero suppression.
Parameters
• upper – upper limit value added to measurement value
• lower – lower limit value subtracted from measurement value
• hfactor – limit text height factor in relation to the dimension text height
• dec – Sets the number of decimal places displayed, requires DXF R2000+
• leading_zeros – suppress leading zeros for decimal dimensions if False, requires
DXF R2000+
• trailing_zeros – suppress trailing zeros for decimal dimensions if False, requires
DXF R2000+
set_text_format(prefix: str = '', postfix: str = '', rnd: float | None = None, dec: int | None =
None, sep: str | None = None, leading_zeros: bool | None = None, trailing_zeros: bool | None =
None) -> None
Set dimension text format, like prefix and postfix string, rounding rule and number of
decimal places.
Parameters
• prefix – dimension text prefix text as string
• postfix – dimension text postfix text as string
• rnd – Rounds all dimensioning distances to the specified value, for instance, if
DIMRND is set to 0.25, all distances round to the nearest 0.25 unit. If you set
DIMRND to 1.0, all distances round to the nearest integer.
• dec – Sets the number of decimal places displayed for the primary units of a
dimension. requires DXF R2000+
• sep – “.” or “,” as decimal separator
• leading_zeros – suppress leading zeros for decimal dimensions if False
• trailing_zeros – suppress trailing zeros for decimal dimensions if False
set_dimline_format(color: int | None = None, linetype: str | None = None, lineweight: int | None =
None, extension: float | None = None, disable1: bool | None = None, disable2: bool | None = None)
Set dimension line properties.
Parameters
• color – color index
• linetype – linetype as string
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm
• extension – extension length
• disable1 – True to suppress first part of dimension line
• disable2 – True to suppress second part of dimension line
set_extline_format(color: int | None = None, lineweight: int | None = None, extension: float |
None = None, offset: float | None = None, fixed_length: float | None = None)
Set common extension line attributes.
Parameters
• color – color index
• lineweight – line weight as int, 13 = 0.13mm, 200 = 2.00mm
• extension – extension length above dimension line
• offset – offset from measurement point
• fixed_length – set fixed length extension line, length below the dimension line
set_extline1(linetype: str | None = None, disable=False)
Set attributes of the first extension line.
Parameters
• linetype – linetype for the first extension line
• disable – disable first extension line if True
set_extline2(linetype: str | None = None, disable=False)
Set attributes of the second extension line.
Parameters
• linetype – linetype for the second extension line
• disable – disable the second extension line if True
set_text(text: str = '<>') -> None
Set dimension text.
• text = “ “ to suppress dimension text
• text = “” or “<>” to use measured distance as dimension text
• otherwise display text literally
shift_text(dh: float, dv: float) -> None
Set relative text movement, implemented as user location override without leader.
Parameters
• dh – shift text in text direction
• dv – shift text perpendicular to text direction
set_location(location: UVec, leader=False, relative=False) -> None
Set text location by user, special version for linear dimensions, behaves for other
dimension types like user_location_override().
Parameters
• location – user defined text location
• leader – create leader from text to dimension line
• relative – location is relative to default location.
user_location_override(location: UVec) -> None
Set text location by user, location is relative to the origin of the UCS defined in the
render() method or WCS if the ucs argument is None.
render(ucs: UCS | None = None, discard=False) -> BaseDimensionRenderer
Starts the dimension line rendering process and also writes overridden dimension style
attributes into the DSTYLE XDATA section. The rendering process “draws” the graphical
representation of the DIMENSION entity as DXF primitives (TEXT, LINE, ARC, …) into an
anonymous content BLOCK.
You can discard the content BLOCK for a friendly CAD applications like BricsCAD, because
the rendering of the dimension entity is done automatically by BricsCAD if the content
BLOCK is missing, and the result is in most cases better than the rendering done by ezdxf.
AutoCAD does not render DIMENSION entities automatically, therefore I see AutoCAD as an
unfriendly CAD application.
Parameters
• ucs – user coordinate system
• discard – discard the content BLOCK created by ezdxf, this works for BricsCAD,
AutoCAD refuses to open DXF files containing DIMENSION entities without a content
BLOCK
Returns
The rendering object of the DIMENSION entity for analytics
ArcDimension
The ARC_DIMENSION entity was introduced in DXF R2004 and is not documented in the DXF reference.
SEE ALSO:
Tutorial for Arc Dimensions
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Dimension │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'ARC_DIMENSION' │
├──────────────────────────┼─────────────────────────────────┤
│ factory function │ │
│ │ • add_arc_dim_3p() │
│ │ │
│ │ • add_arc_dim_cra() │
│ │ │
│ │ • add_arc_dim_arc() │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────┤
│ Required DXF version │ R2004 / AC1018 │
└──────────────────────────┴─────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.ArcDimension
dxf.defpoint2
start point of first extension line in OCS
dxf.defpoint3
start point of second extension line in OCS
dxf.defpoint4
center point of arc in OCS
dxf.start_angle
dxf.end_angle
dxf.is_partial
dxf.has_leader
dxf.leader_point1
dxf.leader_point2
dimtype
Returns always 8.
Ellipse
The ELLIPSE entity (DXF Reference) is an elliptic 3D curve defined by the DXF attributes dxf.center, the
dxf.major_axis vector and the dxf.extrusion vector.
The dxf.ratio attribute is the ratio of minor axis to major axis and has to be smaller or equal 1. The
dxf.start_param and dxf.end_param attributes defines the starting- and the end point of the ellipse, a
full ellipse goes from 0 to 2π. The curve always goes from start- to end param in counter clockwise
orientation.
The dxf.extrusion vector defines the normal vector of the ellipse plane. The minor axis direction is
calculated by dxf.extrusion cross dxf.major_axis. The default extrusion vector (0, 0, 1) defines an
ellipse plane parallel to xy-plane of the WCS.
All coordinates and vectors in WCS.
SEE ALSO:
• Tutorial for Simple DXF Entities, section Ellipse
• ezdxf.math.ConstructionEllipse
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'ELLIPSE' │
├──────────────────────────┼─────────────────────────────────┤
│ factory function │ add_ellipse() │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────┘
class ezdxf.entities.Ellipse
dxf.center
Center point of circle (2D/3D Point in WCS)
dxf.major_axis
Endpoint of major axis, relative to the dxf.center (Vec3), default value is (1, 0, 0).
dxf.ratio
Ratio of minor axis to major axis (float), has to be in range from 0.000001 to 1.0, default
value is 1.
dxf.start_param
Start parameter (float), default value is 0.
dxf.end_param
End parameter (float), default value is 2π.
start_point
Returns the start point of the ellipse in WCS.
end_point
Returns the end point of the ellipse in WCS.
minor_axis
Returns the minor axis of the ellipse as Vec3 in WCS.
construction_tool() -> ConstructionEllipse
Returns construction tool ezdxf.math.ConstructionEllipse.
apply_construction_tool(e: ConstructionEllipse) -> Ellipse
Set ELLIPSE data from construction tool ezdxf.math.ConstructionEllipse.
vertices(params: Iterable[float]) -> Iterable[Vec3]
Yields vertices on ellipse for iterable params in WCS.
Parameters
params – param values in the range from 0 to 2π in radians, param goes
counter-clockwise around the extrusion vector, major_axis = local x-axis = 0 rad.
flattening(distance: float, segments: int = 8) -> Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation
segments, if the distance from the center of the approximation segment to the curve is
bigger than distance the segment will be subdivided. Returns a closed polygon for a full
ellipse where the start vertex has the same value as the end vertex.
Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count
params(num: int) -> Iterable[float]
Returns num params from start- to end param in counter-clockwise order.
All params are normalized in the range [0, 2π).
transform(m: Matrix44) -> Ellipse
Transform the ELLIPSE entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float) -> Ellipse
Optimized ELLIPSE translation about dx in x-axis, dy in y-axis and dz in z-axis, returns
self (floating interface).
to_spline(replace=True) -> Spline
Convert ELLIPSE to a Spline entity.
Adds the new SPLINE entity to the entity database and to the same layout as the source
entity.
Parameters
replace – replace (delete) source entity by SPLINE entity if True
classmethod from_arc(entity: DXFGraphic) -> Ellipse
Create a new virtual ELLIPSE entity from an ARC or a CIRCLE entity.
The new entity has no owner, no handle, is not stored in the entity database nor assigned
to any layout!
Hatch
The HATCH entity (DXF Reference) fills a closed area defined by one or more boundary paths by a hatch
pattern, a solid fill, or a gradient fill.
All points in OCS as (x, y) tuples (Hatch.dxf.elevation is the z-axis value).
There are two different hatch pattern default scaling, depending on the HEADER variable $MEASUREMENT, one
for ISO measurement (m, cm, mm, …) and one for imperial measurement (in, ft, yd, …).
The default scaling for predefined hatch pattern will be chosen according this measurement setting in the
HEADER section, this replicates the behavior of BricsCAD and other CAD applications. Ezdxf uses the ISO
pattern definitions as a base line and scales this pattern down by factor 1/25.6 for imperial measurement
usage. The pattern scaling is independent from the drawing units of the document defined by the HEADER
variable $INSUNITS.
SEE ALSO:
Tutorial for Hatch and DXF Units
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'HATCH' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_hatch() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼──────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴──────────────────────────────────────┘
Boundary paths classes
Path manager: BoundaryPaths
• PolylinePath
•
EdgePath
• LineEdge
• ArcEdge
• EllipseEdge
• SplineEdge
Pattern and gradient classes
• Pattern
• PatternLine
• Gradient
class ezdxf.entities.Hatch
dxf.pattern_name
Pattern name as string
dxf.solid_fill
┌───┬───────────────────────────────────────┐
│ 1 │ solid fill, use method │
│ │ Hatch.set_solid_fill() │
├───┼───────────────────────────────────────┤
│ 0 │ pattern fill, use method │
│ │ Hatch.set_pattern_fill() │
└───┴───────────────────────────────────────┘
dxf.associative
┌───┬───────────────────────┐
│ 1 │ associative hatch │
├───┼───────────────────────┤
│ 0 │ not associative hatch │
└───┴───────────────────────┘
Associations are not managed by ezdxf.
dxf.hatch_style
┌───┬────────┐
│ 0 │ normal │
├───┼────────┤
│ 1 │ outer │
├───┼────────┤
│ 2 │ ignore │
└───┴────────┘
(search AutoCAD help for more information)
dxf.pattern_type
┌───┬────────────┐
│ 0 │ user │
├───┼────────────┤
│ 1 │ predefined │
├───┼────────────┤
│ 2 │ custom │
└───┴────────────┘
dxf.pattern_angle
The actual pattern rotation angle in degrees (float). Changing this value does not rotate
the pattern, use set_pattern_angle() for this task.
dxf.pattern_scale
The actual pattern scale factor (float). Changing this value does not scale the pattern use
set_pattern_scale() for this task.
dxf.pattern_double
1 = double pattern size else 0. (int)
dxf.n_seed_points
Count of seed points (use get_seed_points())
dxf.elevation
Z value represents the elevation height of the OCS. (float)
paths BoundaryPaths object.
pattern
Pattern object.
gradient
Gradient object.
seeds A list of seed points as (x, y) tuples.
property has_solid_fill: bool
True if entity has a solid fill. (read only)
property has_pattern_fill: bool
True if entity has a pattern fill. (read only)
property has_gradient_data: bool
True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read
only)
property bgcolor: RGB | None
Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255]
(read/write/del)
usage:
r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color
set_pattern_definition(lines: Sequence, factor: float = 1, angle: float = 0) -> None
Setup pattern definition by a list of definition lines and the definition line is a 4-tuple
(angle, base_point, offset, dash_length_items). The pattern definition should be designed
for a pattern scale factor of 1 and a pattern rotation angle of 0.
• angle: line angle in degrees
• base-point: (x, y) tuple
• offset: (dx, dy) tuple
• dash_length_items: list of dash items (item > 0 is a line, item < 0 is a gap and item
== 0.0 is a point)
Parameters
• lines – list of definition lines
• factor – pattern scale factor
• angle – rotation angle in degrees
set_pattern_scale(scale: float) -> None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale(1) call resets
the pattern scale to the original appearance as defined by the pattern designer, but only
if the pattern attribute dxf.pattern_scale represents the actual scale, it cannot restore
the original pattern scale from the pattern definition itself.
Parameters
scale – pattern scale factor
set_pattern_angle(angle: float) -> None
Sets the pattern rotation angle and rotates the pattern definition.
The method always starts from the original base rotation of 0, the set_pattern_angle(0)
call resets the pattern rotation angle to the original appearance as defined by the pattern
designer, but only if the pattern attribute dxf.pattern_angle represents the actual pattern
rotation, it cannot restore the original rotation angle from the pattern definition itself.
Parameters
angle – pattern rotation angle in degrees
set_solid_fill(color: int = 7, style: int = 1, rgb: RGB | None = None)
Set the solid fill mode and removes all gradient and pattern fill related data.
Parameters
• color – AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
• style – hatch style (0 = normal; 1 = outer; 2 = ignore)
• rgb – true color value as (r, g, b)-tuple - has higher priority than color. True
color support requires DXF R2000.
set_pattern_fill(name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int =
0, style: int = 1, pattern_type: int = 1, definition=None) -> None
Sets the pattern fill mode and removes all gradient related data.
The pattern definition should be designed for a scale factor 1 and a rotation angle of 0
degrees. The predefined hatch pattern like “ANSI33” are scaled according to the HEADER
variable $MEASUREMENT for ISO measurement (m, cm, … ), or imperial units (in, ft, …), this
replicates the behavior of BricsCAD.
Parameters
• name – pattern name as string
• color – pattern color as AutoCAD Color Index (ACI)
• angle – pattern rotation angle in degrees
• scale – pattern scale factor
• double – double size flag
• style – hatch style (0 = normal; 1 = outer; 2 = ignore)
• pattern_type – pattern type (0 = user-defined; 1 = predefined; 2 = custom)
• definition – list of definition lines and a definition line is a 4-tuple [angle,
base_point, offset, dash_length_items], see set_pattern_definition()
set_gradient(color1: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,
centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') -> None
Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004
or newer. A gradient filled hatch is also a solid filled hatch.
Valid gradient type names are:
• “LINEAR”
• “CYLINDER”
• “INVCYLINDER”
• “SPHERICAL”
• “INVSPHERICAL”
• “HEMISPHERICAL”
• “INVHEMISPHERICAL”
• “CURVED”
• “INVCURVED”
Parameters
• color1 – (r, g, b)-tuple for first color, rgb values as int in the range [0, 255]
• color2 – (r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
• rotation – rotation angle in degrees
• centered – determines whether the gradient is centered or not
• one_color – 1 for gradient from color1 to tinted color1
• tint – determines the tinted target color1 for a one color gradient. (valid range
0.0 to 1.0)
• name – name of gradient type, default “LINEAR”
set_seed_points(points: Iterable[tuple[float, float]]) -> None
Set seed points, points is an iterable of (x, y)-tuples. I don’t know why there can be
more than one seed point. All points in OCS (Hatch.dxf.elevation is the Z value)
transform(m: Matrix44) -> Hatch
Transform entity by transformation matrix m inplace.
associate(path: AbstractBoundaryPath, entities: Iterable[DXFEntity])
Set association from hatch boundary path to DXF geometry entities.
A HATCH entity can be associative to a base geometry, this association is not maintained
nor verified by ezdxf, so if you modify the base geometry the geometry of the boundary path
is not updated and no verification is done to check if the associated geometry matches the
boundary path, this opens many possibilities to create invalid DXF files: USE WITH CARE!
remove_association()
Remove associated path elements.
Boundary Paths
The hatch entity is build by different path types, these are the filter flags for the
Hatch.dxf.hatch_style:
• EXTERNAL: defines the outer boundary of the hatch
• OUTERMOST: defines the first tier of inner hatch boundaries
• DEFAULT: default boundary path
As you will learn in the next sections, these are more the recommended usage type for the flags, but the
fill algorithm doesn’t care much about that, for instance an OUTERMOST path doesn’t have to be inside the
EXTERNAL path.
Island Detection
In general the island detection algorithm works always from outside to inside and alternates filled and
unfilled areas. The area between then 1st and the 2nd boundary is filled, the area between the 2nd and
the 3rd boundary is unfilled and so on. The different hatch styles defined by the Hatch.dxf.hatch_style
attribute are created by filtering some boundary path types.
Hatch Style
• HATCH_STYLE_IGNORE: Ignores all paths except the paths marked as EXTERNAL, if there are more than one
path marked as EXTERNAL, they are filled in NESTED style. Creates no hatch if no path is marked as
EXTERNAL.
• HATCH_STYLE_OUTERMOST: Ignores all paths marked as DEFAULT, remaining EXTERNAL and OUTERMOST paths are
filled in NESTED style. Creates no hatch if no path is marked as EXTERNAL or OUTERMOST.
• HATCH_STYLE_NESTED: Use all existing paths.
Hatch Boundary Classes
class ezdxf.entities.BoundaryPaths
Defines the borders of the hatch, a hatch can consist of more than one path.
paths List of all boundary paths. Contains PolylinePath and EdgePath objects. (read/write)
external_paths() -> Iterable[AbstractBoundaryPath]
Iterable of external paths, could be empty.
outermost_paths() -> Iterable[AbstractBoundaryPath]
Iterable of outermost paths, could be empty.
default_paths() -> Iterable[AbstractBoundaryPath]
Iterable of default paths, could be empty.
rendering_paths(hatch_style: int = const.HATCH_STYLE_NESTED) -> Iterable[AbstractBoundaryPath]
Iterable of paths to process for rendering, filters unused boundary paths according to the
given hatch style:
• NESTED: use all boundary paths
• OUTERMOST: use EXTERNAL and OUTERMOST boundary paths
• IGNORE: ignore all paths except EXTERNAL boundary paths
Yields paths in order of EXTERNAL, OUTERMOST and DEFAULT.
append(path: AbstractBoundaryPath) -> None
Append a new boundary path.
Added in version 1.4.
add_polyline_path(path_vertices: Iterable[tuple[float, ...]], is_closed: bool = True, flags: int =
1) -> PolylinePath
Create and add a new PolylinePath object.
Parameters
• path_vertices – iterable of polyline vertices as (x, y) or (x, y, bulge)-tuples.
• is_closed – 1 for a closed polyline else 0
• flags – default(0), external(1), derived(4), textbox(8) or outermost(16)
add_edge_path(flags: int = 1) -> EdgePath
Create and add a new EdgePath object.
Parameters
flags – default(0), external(1), derived(4), textbox(8) or outermost(16)
polyline_to_edge_paths(just_with_bulge=True) -> None
Convert polyline paths including bulge values to line- and arc edges.
Parameters
just_with_bulge – convert only polyline paths including bulge values if True
edge_to_polyline_paths(distance: float, segments: int = 16)
Convert all edge paths to simple polyline paths without bulges.
Parameters
• distance – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be
subdivided.
• segments – minimum segment count per curve
arc_edges_to_ellipse_edges() -> None
Convert all arc edges to ellipse edges.
ellipse_edges_to_spline_edges(num: int = 32) -> None
Convert all ellipse edges to spline edges (approximation).
Parameters
num – count of control points for a full ellipse, partial ellipses have proportional
fewer control points but at least 3.
spline_edges_to_line_edges(factor: int = 8) -> None
Convert all spline edges to line edges (approximation).
Parameters
factor – count of approximation segments = count of control points x factor
all_to_spline_edges(num: int = 64) -> None
Convert all bulge, arc and ellipse edges to spline edges (approximation).
Parameters
num – count of control points for a full circle/ellipse, partial circles/ellipses
have proportional fewer control points but at least 3.
all_to_line_edges(num: int = 64, spline_factor: int = 8) -> None
Convert all bulge, arc and ellipse edges to spline edges and approximate this splines by
line edges.
Parameters
• num – count of control points for a full circle/ellipse, partial circles/ellipses
have proportional fewer control points but at least 3.
• spline_factor – count of spline approximation segments = count of control points x
spline_factor
clear() -> None
Remove all boundary paths.
class ezdxf.entities.BoundaryPathType
POLYLINE
polyline path type
EDGE edge path type
class ezdxf.entities.PolylinePath
A polyline as hatch boundary path.
type Path type as BoundaryPathType.POLYLINE enum
path_type_flags
(bit coded flags)
┌────┬────────────────────────────────┐
│ 0 │ default │
├────┼────────────────────────────────┤
│ 1 │ external │
├────┼────────────────────────────────┤
│ 2 │ polyline, will be set by ezdxf │
├────┼────────────────────────────────┤
│ 4 │ derived (?) │
├────┼────────────────────────────────┤
│ 8 │ textbox │
├────┼────────────────────────────────┤
│ 16 │ outermost │
└────┴────────────────────────────────┘
My interpretation of the path_type_flags, see also Tutorial for Hatch:
• external: path is part of the hatch outer border
• outermost: path is completely inside of one or more external paths
• default: path is completely inside of one or more outermost paths
If there are troubles with AutoCAD, maybe the hatch entity has the Hatch.dxf.pixel_size
attribute set - delete it del hatch.dxf.pixel_size and maybe the problem is solved. Ezdxf
does not use the Hatch.dxf.pixel_size attribute, but it can occur in DXF files created by
other applications.
is_closed
True if polyline path is closed.
vertices
List of path vertices as (x, y, bulge)-tuples. (read/write)
source_boundary_objects
List of handles of the associated DXF entities for associative hatches. There is no
support for associative hatches by ezdxf, you have to do it all by yourself. (read/write)
set_vertices(vertices: Iterable[Sequence[float]], is_closed: bool = True) -> None
Set new vertices as new polyline path, a vertex has to be a (x, y) or a (x, y,
bulge)-tuple.
clear() -> None
Removes all vertices and all handles to associated DXF objects (source_boundary_objects).
class ezdxf.entities.EdgePath
Boundary path build by edges. There are four different edge types: LineEdge, ArcEdge, EllipseEdge
of SplineEdge. Make sure there are no gaps between edges and the edge path must be closed to be
recognized as path. AutoCAD is very picky in this regard. Ezdxf performs no checks on gaps
between the edges and does not prevent creating open loops.
NOTE:
ArcEdge and EllipseEdge are ALWAYS represented in counter-clockwise orientation, even if an
clockwise oriented edge is required to build a closed loop. To add a clockwise oriented curve
swap start- and end angles and set the ccw flag to False and ezdxf will export a correct
clockwise orientated curve.
type Path type as BoundaryPathType.EDGE enum
path_type_flags
(bit coded flags)
┌────┬───────────┐
│ 0 │ default │
├────┼───────────┤
│ 1 │ external │
├────┼───────────┤
│ 16 │ outermost │
└────┴───────────┘
see PolylinePath.path_type_flags
edges List of boundary edges of type LineEdge, ArcEdge, EllipseEdge of SplineEdge
source_boundary_objects
Required for associative hatches, list of handles to the associated DXF entities.
clear() -> None
Delete all edges.
add_line(start: UVec, end: UVec) -> LineEdge
Add a LineEdge from start to end.
Parameters
• start – start point of line, (x, y)-tuple
• end – end point of line, (x, y)-tuple
add_arc(center: UVec, radius: float = 1.0, start_angle: float = 0.0, end_angle: float = 360.0,
ccw: bool = True) -> ArcEdge
Add an ArcEdge.
Adding Clockwise Oriented Arcs:
Clockwise oriented ArcEdge objects are sometimes necessary to build closed loops, but the
ArcEdge objects are always represented in counter-clockwise orientation. To add a
clockwise oriented ArcEdge you have to swap the start- and end angle and set the ccw flag
to False, e.g. to add a clockwise oriented ArcEdge from 180 to 90 degree, add the ArcEdge
in counter-clockwise orientation with swapped angles:
edge_path.add_arc(center, radius, start_angle=90, end_angle=180, ccw=False)
Parameters
• center – center point of arc, (x, y)-tuple
• radius – radius of circle
• start_angle – start angle of arc in degrees (end_angle for a clockwise oriented
arc)
• end_angle – end angle of arc in degrees (start_angle for a clockwise oriented arc)
• ccw – True for counter-clockwise False for clockwise orientation
add_ellipse(center: UVec, major_axis: UVec = (1.0, 0.0), ratio: float = 1.0, start_angle: float =
0.0, end_angle: float = 360.0, ccw: bool = True) -> EllipseEdge
Add an EllipseEdge.
Adding Clockwise Oriented Ellipses:
Clockwise oriented EllipseEdge objects are sometimes necessary to build closed loops, but
the EllipseEdge objects are always represented in counter-clockwise orientation. To add a
clockwise oriented EllipseEdge you have to swap the start- and end angle and set the ccw
flag to False, e.g. to add a clockwise oriented EllipseEdge from 180 to 90 degree, add the
EllipseEdge in counter-clockwise orientation with swapped angles:
edge_path.add_ellipse(center, major_axis, ratio, start_angle=90, end_angle=180, ccw=False)
Parameters
• center – center point of ellipse, (x, y)-tuple
• major_axis – vector of major axis as (x, y)-tuple
• ratio – ratio of minor axis to major axis as float
• start_angle – start angle of ellipse in degrees (end_angle for a clockwise
oriented ellipse)
• end_angle – end angle of ellipse in degrees (start_angle for a clockwise oriented
ellipse)
• ccw – True for counter-clockwise False for clockwise orientation
add_spline(fit_points: Iterable[TypeAliasForwardRef('UVec')] | None = None, control_points:
Iterable[TypeAliasForwardRef('UVec')] | None = None, knot_values: Iterable[float] | None = None,
weights: Iterable[float] | None = None, degree: int = 3, periodic: int = 0, start_tangent:
TypeAliasForwardRef('UVec') | None = None, end_tangent: TypeAliasForwardRef('UVec') | None = None)
-> SplineEdge
Add a SplineEdge.
Parameters
• fit_points – points through which the spline must go, at least 3 fit points are
required. list of (x, y)-tuples
• control_points – affects the shape of the spline, mandatory and AutoCAD crashes on
invalid data. list of (x, y)-tuples
• knot_values – (knot vector) mandatory and AutoCAD crashes on invalid data. list of
floats; ezdxf provides two tool functions to calculate valid knot values:
ezdxf.math.uniform_knot_vector(), ezdxf.math.open_uniform_knot_vector() (default
if None)
• weights – weight of control point, not mandatory, list of floats.
• degree – degree of spline (int)
• periodic – 1 for periodic spline, 0 for none periodic spline
• start_tangent – start_tangent as 2d vector, optional
• end_tangent – end_tangent as 2d vector, optional
WARNING:
Unlike for the spline entity AutoCAD does not calculate the necessary knot_values for
the spline edge itself. On the contrary, if the knot_values in the spline edge are
missing or invalid AutoCAD crashes.
close_gaps(len_tol: float) -> None
Insert line-edges between the existing edges if the gap between these edges are bigger than
len_tol.
Added in version 1.4.
class ezdxf.entities.EdgeType
LINE
ARC
ELLIPSE
SPLINE
class ezdxf.entities.LineEdge
Straight boundary edge.
type Edge type as EdgeType.LINE enum
start Start point as (x, y)-tuple. (read/write)
end End point as (x, y)-tuple. (read/write)
class ezdxf.entities.ArcEdge
Arc as boundary edge in counter-clockwise orientation, see EdgePath.add_arc().
type Edge type as EdgeType.ARC enum
center Center point of arc as (x, y)-tuple. (read/write)
radius Arc radius as float. (read/write)
start_angle
Arc start angle in counter-clockwise orientation in degrees. (read/write)
end_angle
Arc end angle in counter-clockwise orientation in degrees. (read/write)
ccw True for counter clockwise arc else False. (read/write)
class ezdxf.entities.EllipseEdge
Elliptic arc as boundary edge in counter-clockwise orientation, see EdgePath.add_ellipse().
type Edge type as EdgeType.ELLIPSE enum
major_axis_vector
Ellipse major axis vector as (x, y)-tuple. (read/write)
minor_axis_length
Ellipse minor axis length as float. (read/write)
radius Ellipse radius as float. (read/write)
start_angle
Ellipse start angle in counter-clockwise orientation in degrees. (read/write)
end_angle
Ellipse end angle in counter-clockwise orientation in degrees. (read/write)
ccw True for counter clockwise ellipse else False. (read/write)
class ezdxf.entities.SplineEdge
Spline as boundary edge.
type Edge type as EdgeType.SPLINE enum
degree Spline degree as int. (read/write)
rational
1 for rational spline else 0. (read/write)
periodic
1 for periodic spline else 0. (read/write)
knot_values
List of knot values as floats. (read/write)
control_points
List of control points as (x, y)-tuples. (read/write)
fit_points
List of fit points as (x, y)-tuples. (read/write)
weights
List of weights (of control points) as floats. (read/write)
start_tangent
Spline start tangent (vector) as (x, y)-tuple. (read/write)
end_tangent
Spline end tangent (vector) as (x, y)-tuple. (read/write)
Hatch Pattern Definition Classes
class ezdxf.entities.Pattern
lines List of pattern definition lines (read/write). see PatternLine
add_line(angle: float = 0, base_point: UVec = (0, 0), offset: UVec = (0, 0), dash_length_items:
Iterable[float] | None = None) -> None
Create a new pattern definition line and add the line to the Pattern.lines attribute.
clear() -> None
Delete all pattern definition lines.
scale(factor: float = 1, angle: float = 0) -> None
Scale and rotate pattern.
Be careful, this changes the base pattern definition, maybe better use
Hatch.set_pattern_scale() or Hatch.set_pattern_angle().
Parameters
• factor – scaling factor
• angle – rotation angle in degrees
class ezdxf.entities.PatternLine
Represents a pattern definition line, use factory function Pattern.add_line() to create new
pattern definition lines.
angle Line angle in degrees. (read/write)
base_point
Base point as (x, y)-tuple. (read/write)
offset Offset as (x, y)-tuple. (read/write)
dash_length_items
List of dash length items (item > 0 is line, < 0 is gap, 0.0 = dot). (read/write)
Hatch Gradient Fill Class
class ezdxf.entities.Gradient
color1 First rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)
color2 Second rgb color as (r, g, b)-tuple, rgb values in range 0 to 255. (read/write)
one_color
If one_color is 1 - the hatch is filled with a smooth transition between color1 and a
specified tint of color1. (read/write)
rotation
Gradient rotation in degrees. (read/write)
centered
Specifies a symmetrical gradient configuration. If this option is not selected, the
gradient fill is shifted up and to the left, creating the illusion of a light source to the
left of the object. (read/write)
tint Specifies the tint (color1 mixed with white) of a color to be used for a gradient fill of
one color. (read/write)
SEE ALSO:
Tutorial for Hatch Pattern Definition
Helix
The HELIX entity (DXF Reference).
The helix curve is represented by a cubic B-spline curve, therefore the HELIX entity is also derived from
the SPLINE entity.
SEE ALSO:
• Wikipedia article about the helix shape
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Spline │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'HELIX' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_helix() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼──────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴──────────────────────────────────────┘
class ezdxf.entities.Helix
All points in WCS as (x, y, z) tuples
dxf.axis_base_point
The base point of the helix axis (Vec3).
dxf.start_point
The starting point of the helix curve (Vec3). This also defines the base radius as the
distance from the start point to the axis base point.
dxf.axis_vector
Defines the direction of the helix axis (Vec3).
dxf.radius
Defines the top radius of the helix (float).
dxf.turn_height
Defines the pitch (height if one helix turn) of the helix (float).
dxf.turns
The count of helix turns (float).
dxf.handedness
Helix orientation (int).
┌───┬──────────────────────────────────┐
│ 0 │ clock wise (left handed) │
├───┼──────────────────────────────────┤
│ 1 │ counter clockwise (right handed) │
└───┴──────────────────────────────────┘
dxf.constrain
┌───┬───────────────────────────────┐
│ 0 │ constrain turn height (pitch) │
├───┼───────────────────────────────┤
│ 1 │ constrain count of turns │
├───┼───────────────────────────────┤
│ 2 │ constrain total height │
└───┴───────────────────────────────┘
Image
The IMAGE entity (DXF Reference) represents a raster image, the image file itself is not embedded into
the DXF file, it is always a separated file. The IMAGE entity is like a block reference, it can be used
to add the image multiple times at different locations with different scale and rotation angles. Every
IMAGE entity requires an image definition, see entity ImageDef. Ezdxf creates only images in the
xy-plan, it’s possible to place images in 3D space, therefore the Image.dxf.u_pixel and the
Image.dxf.v_pixel vectors has to be set accordingly.
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'IMAGE' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_image() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼──────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴──────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Image
dxf.insert
Insertion point, lower left corner of the image (3D Point in WCS).
dxf.u_pixel
U-vector of a single pixel as (x, y, z) tuple. This vector points along the visual bottom
of the image, starting at the insertion point.
dxf.v_pixel
V-vector of a single pixel as (x, y, z) tuple. This vector points along the visual left
side of the image, starting at the insertion point.
dxf.image_size
Image size in pixels as (x, y) tuple
dxf.image_def_handle
Handle to the image definition entity, see ImageDef
dxf.flags
┌─────────────────────────────┬───┬──────────────────────────────┐
│ Image.SHOW_IMAGE │ 1 │ Show image │
├─────────────────────────────┼───┼──────────────────────────────┤
│ Image.SHOW_WHEN_NOT_ALIGNED │ 2 │ Show image when not aligned │
│ │ │ with screen │
├─────────────────────────────┼───┼──────────────────────────────┤
│ Image.USE_CLIPPING_BOUNDARY │ 4 │ Use clipping boundary │
├─────────────────────────────┼───┼──────────────────────────────┤
│ Image.USE_TRANSPARENCY │ 8 │ Transparency is on │
└─────────────────────────────┴───┴──────────────────────────────┘
dxf.clipping
Clipping state:
┌───┬──────────────┐
│ 0 │ clipping off │
├───┼──────────────┤
│ 1 │ clipping on │
└───┴──────────────┘
dxf.brightness
Brightness value in the range [0, 100], default is 50
dxf.contrast
Contrast value in the range [0, 100], default is 50
dxf.fade
Fade value in the range [0, 100], default is 0
dxf.clipping_boundary_type
┌───┬─────────────┐
│ 1 │ Rectangular │
├───┼─────────────┤
│ 2 │ Polygonal │
└───┴─────────────┘
dxf.count_boundary_points
Number of clip boundary vertices, this attribute is maintained by ezdxf.
dxf.clip_mode
┌───┬─────────┐
│ 0 │ Outside │
├───┼─────────┤
│ 1 │ Inside │
└───┴─────────┘
requires DXF R2010 or newer
boundary_path
Returns the boundray path in raw form in pixel coordinates.
A list of vertices as pixel coordinates, Two vertices describe a rectangle, lower left
corner is (-0.5, -0.5) and upper right corner is (ImageSizeX-0.5, ImageSizeY-0.5), more
than two vertices is a polygon as clipping path. All vertices as pixel coordinates.
(read/write)
image_def
Returns the associated IMAGEDEF entity, see ImageDef.
reset_boundary_path() -> None
Reset boundary path to the default rectangle [(-0.5, -0.5), (ImageSizeX-0.5,
ImageSizeY-0.5)].
set_boundary_path(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Set boundary path to vertices. Two vertices describe a rectangle (lower left and upper
right corner), more than two vertices is a polygon as clipping path.
pixel_boundary_path() -> list[Vec2]
Returns the boundary path as closed loop in pixel coordinates. Resolves the simple form of
two vertices as a rectangle. The image coordinate system has an inverted y-axis and the
top-left corner is (0, 0).
Changed in version 1.2.0: renamed from boundray_path_ocs()
boundary_path_wcs() -> list[Vec3]
Returns the boundary/clipping path in WCS coordinates.
It’s recommended to acquire the clipping path as Path object by the make_path() function:
from ezdxf.path import make_path
image = ... # get image entity
clipping_path = make_path(image)
transform(m: Matrix44) -> Self
Transform IMAGE entity by transformation matrix m inplace.
Leader
The LEADER entity (DXF Reference) represents a pointer line, made up of one or more vertices (or spline
fit points) and an arrowhead. The label or other content to which the Leader is attached is stored as a
separate entity, and is not part of the Leader itself.
The LEADER entity uses parts of the styling infrastructure of the DIMENSION entity.
By default a Leader without any annotation is created. For creating more fancy leaders and annotations
see the documentation provided by Autodesk or Demystifying DXF: LEADER and MULTILEADER implementation
notes .
┌──────────────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼───────────────────────────────────────┤
│ DXF type │ 'LEADER' │
├──────────────────────────┼───────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_leader() │
├──────────────────────────┼───────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼───────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴───────────────────────────────────────┘
class ezdxf.entities.Leader
dxf.dimstyle
Name of Dimstyle as string.
dxf.has_arrowhead
┌───┬──────────┐
│ 0 │ Disabled │
├───┼──────────┤
│ 1 │ Enabled │
└───┴──────────┘
dxf.path_type
Leader path type:
┌───┬────────────────────────┐
│ 0 │ Straight line segments │
├───┼────────────────────────┤
│ 1 │ Spline │
└───┴────────────────────────┘
dxf.annotation_type
┌───┬───────────────────────────────────────┐
│ 0 │ Created with text annotation │
├───┼───────────────────────────────────────┤
│ 1 │ Created with tolerance annotation │
├───┼───────────────────────────────────────┤
│ 2 │ Created with block reference │
│ │ annotation │
├───┼───────────────────────────────────────┤
│ 3 │ Created without any annotation │
│ │ (default) │
└───┴───────────────────────────────────────┘
dxf.hookline_direction
Hook line direction flag:
┌───┬───────────────────────────────────────┐
│ 0 │ Hookline (or end of tangent for a │
│ │ splined leader) is the opposite │
│ │ direction from the horizontal vector │
├───┼───────────────────────────────────────┤
│ 1 │ Hookline (or end of tangent for a │
│ │ splined leader) is the same direction │
│ │ as horizontal vector (see │
│ │ has_hook_line) │
└───┴───────────────────────────────────────┘
dxf.has_hookline
┌───┬────────────────┐
│ 0 │ No hookline │
├───┼────────────────┤
│ 1 │ Has a hookline │
└───┴────────────────┘
dxf.text_height
Text annotation height in drawing units.
dxf.text_width
Text annotation width.
dxf.block_color
Color to use if leader’s DIMCLRD = BYBLOCK
dxf.annotation_handle
Hard reference (handle) to associated annotation (MText, Tolerance, or Insert entity)
dxf.normal_vector
Extrusion vector? default is (0, 0, 1).
.dxf.horizontal_direction
Horizontal direction for leader, default is (1, 0, 0).
dxf.leader_offset_block_ref
Offset of last leader vertex from block reference insertion point, default is (0, 0, 0).
dxf.leader_offset_annotation_placement
Offset of last leader vertex from annotation placement point, default (0, 0, 0).
vertices
List of Vec3 objects, representing the vertices of the leader (3D Point in WCS).
set_vertices(vertices: Iterable[TypeAliasForwardRef('UVec')])
Set vertices of the leader, vertices is an iterable of (x, y [,z]) tuples or Vec3.
transform(m: Matrix44) -> Leader
Transform LEADER entity by transformation matrix m inplace.
virtual_entities() -> Iterator[DXFGraphic]
Yields the DXF primitives the LEADER entity is build up as virtual entities.
These entities are located at the original location, but are not stored in the entity
database, have no handle and are not assigned to any layout.
explode(target_layout: BaseLayout | None = None) -> EntityQuery
Explode parts of the LEADER entity as DXF primitives into target layout, if target layout
is None, the target layout is the layout of the LEADER entity. This method destroys the
source entity.
Returns an EntityQuery container referencing all DXF primitives.
Parameters
target_layout – target layout for the created DXF primitives, None for the same
layout as the source entity.
Line
The LINE entity (DXF Reference) is a 3D line defined by the DXF attributes dxf.start and dxf.end. The
LINE entity has WCS coordinates.
SEE ALSO:
• Tutorial for Simple DXF Entities, section Line
• ezdxf.math.ConstructionRay
• ezdxf.math.ConstructionLine
┌──────────────────────────┬─────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────┤
│ DXF type │ 'LINE' │
├──────────────────────────┼─────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_line() │
├──────────────────────────┼─────────────────────────────────────┤
│ Inherited DXF Attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Line
dxf.start
start point of line (2D/3D Point in WCS)
dxf.end
end point of line (2D/3D Point in WCS)
dxf.thickness
Line thickness in 3D space in direction extrusion, default value is 0. This value should
not be confused with the lineweight value.
dxf.extrusion
extrusion vector, default value is (0, 0, 1)
transform(m: Matrix44) -> Line
Transform the LINE entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float) -> Line
Optimized LINE translation about dx in x-axis, dy in y-axis and dz in z-axis.
LWPolyline
The LWPOLYLINE entity (Lightweight POLYLINE, DXF Reference) is defined as a single graphic entity, which
differs from the old-style Polyline entity, which is defined as a group of sub-entities. LWPolyline
display faster (in AutoCAD) and consume less disk space, it is a planar element, therefore all points are
located in the OCS as (x, y)-tuples (LWPolyline.dxf.elevation is the z-axis value).
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'LWPOLYLINE' │
├──────────────────────────┼─────────────────────────────────┤
│ factory function │ add_lwpolyline() │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────┘
Bulge value
The bulge value is used to create arc shaped line segments for Polyline and LWPolyline entities. The arc
starts at the vertex which includes the bulge value and ends at the following vertex. The bulge value
defines the ratio of the arc sagitta (versine) to half line segment length, a bulge value of 1 defines a
semicircle.
The sign of the bulge value defines the side of the bulge:
• positive value (> 0): bulge is right of line (counter clockwise)
• negative value (< 0): bulge is left of line (clockwise)
• 0 = no bulge
[image]
Start- and end width
The start width and end width values defines the width in drawing units for the following line segment.
To use the default width value for a line segment set value to 0.
Width and bulge values at last point
The width and bulge values of the last point has only a meaning if the polyline is closed, and they apply
to the last line segment from the last to the first point.
SEE ALSO:
Tutorial for LWPolyline and Bulge Related Functions
User Defined Point Format Codes
┌──────┬───────────────────────┐
│ Code │ Point Component │
├──────┼───────────────────────┤
│ x │ x-coordinate │
├──────┼───────────────────────┤
│ y │ y-coordinate │
├──────┼───────────────────────┤
│ s │ start width │
├──────┼───────────────────────┤
│ e │ end width │
├──────┼───────────────────────┤
│ b │ bulge value │
├──────┼───────────────────────┤
│ v │ (x, y [, z]) as tuple │
└──────┴───────────────────────┘
class ezdxf.entities.LWPolyline
dxf.elevation
OCS z-axis value for all polyline points, default=0
dxf.flags
Constants defined in ezdxf.lldxf.const:
┌─────────────────────┬───────┬──────────────────────────────┐
│ dxf.flags │ Value │ Description │
├─────────────────────┼───────┼──────────────────────────────┤
│ LWPOLYLINE_CLOSED │ 1 │ polyline is closed │
├─────────────────────┼───────┼──────────────────────────────┤
│ LWPOLYLINE_PLINEGEN │ 128 │ linetype is generated across │
│ │ │ the points │
└─────────────────────┴───────┴──────────────────────────────┘
dxf.const_width
Constant line width (float), default value is 0.
dxf.count
Count of polyline points (read only), same as len(polyline)
property closed: bool
Get/set closed state of polyline. A closed polyline has a connection segment from the last
vertex to the first vertex.
property is_closed: bool
Get closed state of LWPOLYLINE. Compatibility interface to Polyline
close(state: bool = True) -> None
Set closed state of LWPOLYLINE. Compatibility interface to Polyline
property has_arc: bool
Returns True if LWPOLYLINE has an arc segment.
property has_width: bool
Returns True if LWPOLYLINE has any segment with width attributes or the DXF attribute
const_width is not 0.
__len__() -> int
Returns count of polyline points.
__getitem__(index: int) -> Tuple[float, float, float, float, float]
Returns point at position index as (x, y, start_width, end_width, bulge) tuple.
start_width, end_width and bulge is 0 if not present, supports extended slicing. Point
format is fixed as “xyseb”.
All coordinates in OCS.
__setitem__(index: int, value: Sequence[float]) -> None
Set point at position index as (x, y, [start_width, [end_width, [bulge]]]) tuple. If
start_width or end_width is 0 or left off the default width value is used. If the bulge
value is left off, bulge is 0 by default (straight line). Does NOT support extend slicing.
Point format is fixed as “xyseb”.
All coordinates in OCS.
Parameters
• index – point index
• value – point value as (x, y, [start_width, [end_width, [bulge]]]) tuple
__delitem__(index: int) -> None
Delete point at position index, supports extended slicing.
__iter__() -> Iterator[Tuple[float, float, float, float, float]]
Returns iterable of tuples (x, y, start_width, end_width, bulge).
vertices() -> Iterator[tuple[float, float]]
Returns iterable of all polyline points as (x, y) tuples in OCS (dxf.elevation is the
z-axis value).
vertices_in_wcs() -> Iterator[Vec3]
Returns iterable of all polyline points as Vec3(x, y, z) in WCS.
append(point: Sequence[float], format: str = DEFAULT_FORMAT) -> None
Append point to polyline, format specifies a user defined point format.
All coordinates in OCS.
Parameters
• point – (x, y, [start_width, [end_width, [bulge]]]) tuple
• format – format string, default is “xyseb”, see: format codes
append_points(points: Iterable[Sequence[float]], format: str = DEFAULT_FORMAT) -> None
Append new points to polyline, format specifies a user defined point format.
All coordinates in OCS.
Parameters
• points – iterable of point, point is (x, y, [start_width, [end_width, [bulge]]])
tuple
• format – format string, default is “xyseb”, see: format codes
insert(pos: int, point: Sequence[float], format: str = DEFAULT_FORMAT) -> None
Insert new point in front of positions pos, format specifies a user defined point format.
All coordinates in OCS.
Parameters
• pos – insert position
• point – point data
• format – format string, default is “xyseb”, see: format codes
clear() -> None
Remove all points.
get_points(format: str = DEFAULT_FORMAT) -> list[Sequence[float]]
Returns all points as list of tuples, format specifies a user defined point format.
All points in OCS as (x, y) tuples (dxf.elevation is the z-axis value).
Parameters
format – format string, default is “xyseb”, see format codes
set_points(points: Iterable[Sequence[float]], format: str = DEFAULT_FORMAT) -> None
Remove all points and append new points.
All coordinates in OCS.
Parameters
• points – iterable of point, point is (x, y, [start_width, [end_width, [bulge]]])
tuple
• format – format string, default is “xyseb”, see format codes
points(format: str = DEFAULT_FORMAT) -> Iterator[list[Sequence[float]]]
Context manager for polyline points. Returns a standard Python list of points, according to
the format string.
All coordinates in OCS.
Parameters
format – format string, see format codes
transform(m: Matrix44) -> LWPolyline
Transform the LWPOLYLINE entity by transformation matrix m inplace.
A non-uniform scaling is not supported if the entity contains circular arc segments
(bulges).
Parameters
m – transformation Matrix44
Raises NonUniformScalingError – for non-uniform scaling of entity containing
circular arc segments (bulges)
virtual_entities() -> Iterator[Line | Arc]
Yields the graphical representation of LWPOLYLINE as virtual DXF primitives (LINE or ARC).
These virtual entities are located at the original location, but are not stored in the
entity database, have no handle and are not assigned to any layout.
explode(target_layout: BaseLayout | None = None) -> EntityQuery
Explode the LWPOLYLINE entity as DXF primitives (LINE or ARC) into the target layout, if
the target layout is None, the target layout is the layout of the source entity. This
method destroys the source entity.
Returns an EntityQuery container referencing all DXF primitives.
Parameters
target_layout – target layout for the DXF primitives, None for same layout as the
source entity.
MLine
The MLINE entity (DXF Reference).
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'MLINE' │
├──────────────────────────┼─────────────────────────────────┤
│ factory function │ add_mline() │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────┘
class ezdxf.entities.MLine
dxf.style_name
MLineStyle name stored in Drawing.mline_styles dictionary, use set_style() to change the
MLINESTYLE and update geometry accordingly.
dxf.style_handle
Handle of MLineStyle, use set_style() to change the MLINESTYLE and update geometry
accordingly.
dxf.scale_factor
MLINE scaling factor, use method set_scale_factor() to change the scaling factor and update
geometry accordingly.
dxf.justification
Justification defines the location of the MLINE in relation to the reference line, use
method set_justification() to change the justification and update geometry accordingly.
Constants defined in ezdxf.lldxf.const:
┌──────────────────────┬───────┐
│ dxf.justification │ Value │
├──────────────────────┼───────┤
│ MLINE_TOP │ 0 │
├──────────────────────┼───────┤
│ MLINE_ZERO │ 1 │
├──────────────────────┼───────┤
│ MLINE_BOTTOM │ 2 │
├──────────────────────┼───────┤
│ MLINE_RIGHT (alias) │ 0 │
├──────────────────────┼───────┤
│ MLINE_CENTER (alias) │ 1 │
├──────────────────────┼───────┤
│ MLINE_LEFT (alias) │ 2 │
└──────────────────────┴───────┘
dxf.flags
Use method close() and the properties start_caps and end_caps to change these flags.
Constants defined in ezdxf.lldxf.const:
┌───────────────────────────┬───────┐
│ dxf.flags │ Value │
├───────────────────────────┼───────┤
│ MLINE_HAS_VERTEX │ 1 │
├───────────────────────────┼───────┤
│ MLINE_CLOSED │ 2 │
├───────────────────────────┼───────┤
│ MLINE_SUPPRESS_START_CAPS │ 4 │
├───────────────────────────┼───────┤
│ MLINE_SUPPRESS_END_CAPS │ 8 │
└───────────────────────────┴───────┘
dxf.start_location
Start location of the reference line. (read only)
dxf.count
Count of MLINE vertices. (read only)
dxf.style_element_count
Count of elements in MLineStyle definition. (read only)
dxf.extrusion
Normal vector of the entity plane, but MLINE is not an OCS entity, all vertices of the
reference line are WCS! (read only)
vertices
MLINE vertices as MLineVertex objects, stored in a regular Python list.
property style: MLineStyle | None
Get associated MLINESTYLE.
set_style(name: str) -> None
Set MLINESTYLE by name and update geometry accordingly. The MLINESTYLE definition must
exist.
set_scale_factor(value: float) -> None
Set the scale factor and update geometry accordingly.
set_justification(value: int) -> None
Set MLINE justification and update geometry accordingly. See dxf.justification for valid
settings.
property is_closed: bool
Returns True if MLINE is closed. Compatibility interface to Polyline
close(state: bool = True) -> None
Get/set closed state of MLINE and update geometry accordingly. Compatibility interface to
Polyline
property start_caps: bool
Get/Set start caps state. True to enable start caps and False tu suppress start caps.
property end_caps: bool
Get/Set end caps state. True to enable end caps and False tu suppress start caps.
__len__()
Count of MLINE vertices.
start_location() -> Vec3
Returns the start location of the reference line. Callback function for dxf.start_location.
get_locations() -> list[Vec3]
Returns the vertices of the reference line.
extend(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Append multiple vertices to the reference line.
It is possible to work with 3D vertices, but all vertices have to be in the same plane and
the normal vector of this plan is stored as extrusion vector in the MLINE entity.
clear() -> None
Remove all MLINE vertices.
update_geometry() -> None
Regenerate the MLINE geometry based on current settings.
generate_geometry(vertices: list[Vec3]) -> None
Regenerate the MLINE geometry for new reference line defined by vertices.
transform(m: Matrix44) -> Self
Transform MLINE entity by transformation matrix m inplace.
virtual_entities() -> Iterator[DXFGraphic]
Yields virtual DXF primitives of the MLINE entity as LINE, ARC and HATCH entities.
These entities are located at the original positions, but are not stored in the entity
database, have no handle and are not assigned to any layout.
explode(target_layout: BaseLayout | None = None) -> EntityQuery
Explode the MLINE entity as LINE, ARC and HATCH entities into target layout, if target
layout is None, the target layout is the layout of the MLINE. This method destroys the
source entity.
Returns an EntityQuery container referencing all DXF primitives.
Parameters
target_layout – target layout for DXF primitives, None for same layout as source
entity.
class ezdxf.entities.MLineVertex
location
Reference line vertex location.
line_direction
Reference line direction.
miter_direction
line_params
The line parameterization is a list of float values. The list may contain zero or more
items.
The first value (miter-offset) is the distance from the vertex location along the
miter_direction vector to the point where the line element’s path intersects the miter
vector.
The next value (line-start-offset) is the distance along the line_direction from the
miter/line path intersection point to the actual start of the line element.
The next value (dash-length) is the distance from the start of the line element (dash) to
the first break (gap) in the line element. The successive values continue to list the
start and stop points of the line element in this segment of the mline.
fill_params
The fill parameterization is also a list of float values. Similar to the line
parameterization, it describes the parameterization of the fill area for this mline
segment. The values are interpreted identically to the line parameters and when taken as a
whole for all line elements in the mline segment, they define the boundary of the fill area
for the mline segment.
class ezdxf.entities.MLineStyle
The MLineStyle stores the style properties for the MLINE entity.
dxf.name
dxf.description
dxf.flags
dxf.fill_color
AutoCAD Color Index (ACI) value of the fill color
dxf.start_angle
dxf.end_angle
elements
MLineStyleElements object
update_all()
Update all MLINE entities using this MLINESTYLE.
The update is required if elements were added or removed or the offset of any element was
changed.
class ezdxf.entities.mline.MLineStyleElements
elements
List of MLineStyleElement objects, one for each line element.
MLineStyleElements.__len__()
MLineStyleElements.__getitem__(item)
MLineStyleElements.append(offset: float, color: int = 0, linetype: str = 'BYLAYER') -> None
Append a new line element.
Parameters
• offset – normal offset from the reference line: if justification is MLINE_ZERO,
positive values are above and negative values are below the reference line.
• color – AutoCAD Color Index (ACI) value
• linetype – linetype name
class ezdxf.entities.mline.MLineStyleElement
Named tuple to store properties of a line element.
offset Normal offset from the reference line: if justification is MLINE_ZERO, positive values are
above and negative values are below the reference line.
color AutoCAD Color Index (ACI) value
linetype
Linetype name
Mesh
The MESH entity (DXF Reference) is a 3D surface in WCS build up from vertices and faces similar to the
Polyface entity.
All vertices in WCS as (x, y, z) tuples
┌──────────────────────────┬─────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────┤
│ DXF type │ 'MESH' │
├──────────────────────────┼─────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_mesh() │
├──────────────────────────┼─────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────────┘
SEE ALSO:
Tutorial for Mesh and helper classes: MeshBuilder, MeshVertexMerger
class ezdxf.entities.Mesh
dxf.version
dxf.blend_crease
0 = off, 1 = on
dxf.subdivision_levels
0 for no smoothing else integer greater than 0.
vertices
Vertices as list like VertexArray. (read/write)
edges Edges as list like TagArray. (read/write)
faces Faces as list like TagList. (read/write)
creases
Creases as array.array. (read/write)
edit_data() -> Iterator[MeshData]
Context manager for various mesh data, returns a MeshData instance.
Despite that vertices, edge and faces are accessible as packed data types, the usage of
MeshData by context manager edit_data() is still recommended.
transform(m: Matrix44) -> Mesh
Transform the MESH entity by transformation matrix m inplace.
MeshData
class ezdxf.entities.MeshData
vertices
A standard Python list with (x, y, z) tuples (read/write)
faces A standard Python list with (v1, v2, v3,…) tuples (read/write)
Each face consist of a list of vertex indices (= index in vertices).
edges A Python list with (v1, v2) tuples (read/write). This list represents the edges to which
the edge_crease_values values will be applied. Each edge consist of exact two vertex
indices (= index in vertices).
edge_crease_values
A Python list of float values, one value for each edge. (read/write)
add_face(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> Sequence[int]
Add a face by a list of vertices.
add_edge_crease(v1: int, v2: int, crease: float)
Add an edge crease value, the edge is defined by the vertex indices v1 and v2.
The crease value defines the amount of subdivision that will be applied to this edge. A
crease value of the subdivision level prevents the edge from deformation and a value of 0.0
means no protection from subdividing.
optimize()
Reduce vertex count by merging coincident vertices.
MPolygon
The MPOLYGON entity is not a core DXF entity and is not supported by all CAD applications and DXF
libraries. The MPolygon class is very similar to the Hatch class with small differences in the supported
features and DXF attributes.
The boundary paths of the MPOLYGON are visible and use the graphical DXF attributes of the main entity
like dxf.color, dxf.linetype and so on. The solid filling is only visible if the attribute
dxf.solid_fill is 1, the color of the solid fill is defined by dxf.fill_color as AutoCAD Color Index
(ACI). The MPOLYGON supports ezdxf.entities.Gradient settings like HATCH for DXF R2004 and newer. This
feature is used by method MPolygon.set_solid_fill() to set a solid RGB fill color as linear gradient,
this disables pattern fill automatically. The MPOLYGON does not support associated source path entities,
because the MPOLYGON also represents the boundary paths as visible graphical objects. Hatch patterns are
supported, but the hatch style tag is not supported, the default hatch style is
ezdxf.const.HATCH_STYLE_NESTED and the style flags of the boundary paths are ignored. Background color
for pattern fillings is supported, set background color by property MPolygon.bgcolor as RGB tuple.
NOTE:
Background RGB fill color for solid fill and pattern fill is set differently!
Autodesk products do support polyline paths including bulges. An example for edge paths as boundary
paths is not available or edge paths are not supported. Ezdxf does not export MPOLYGON entities including
edge paths! The BoundaryPaths.edge_to_polyline_paths() method converts all edge paths to simple polyline
paths with approximated curves, this conversion has to be done explicit.
SEE ALSO:
For more information see the ezdxf.entities.Hatch documentation.
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'MPOLYGON' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_mpolygon() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────────────┘
class ezdxf.entities.MPolygon
dxf.pattern_name
Pattern name as string
dxf.solid_fill
┌───┬───────────────────────────────────────┐
│ 1 │ solid fill, better use: │
│ │ MPolygon.set_solid_fill() │
├───┼───────────────────────────────────────┤
│ 0 │ pattern fill, better use: │
│ │ MPolygon.set_pattern_fill() │
└───┴───────────────────────────────────────┘
(search AutoCAD help for more information)
dxf.pattern_type
┌───┬────────────┐
│ 0 │ user │
├───┼────────────┤
│ 1 │ predefined │
├───┼────────────┤
│ 2 │ custom │
└───┴────────────┘
dxf.pattern_angle
Actual pattern angle in degrees (float). Changing this value does not rotate the pattern,
use set_pattern_angle() for this task.
dxf.pattern_scale
Actual pattern scaling factor (float). Changing this value does not scale the pattern use
set_pattern_scale() for this task.
dxf.pattern_double
1 = double pattern size else 0. (int)
dxf.elevation
Z value represents the elevation height of the OCS. (float)
paths BoundaryPaths object.
pattern
Pattern object.
gradient
Gradient object.
property has_solid_fill: bool
True if entity has a solid fill. (read only)
property has_pattern_fill: bool
True if entity has a pattern fill. (read only)
property has_gradient_data: bool
True if entity has a gradient fill. A hatch with gradient fill has also a solid fill. (read
only)
property bgcolor: RGB | None
Set pattern fill background color as (r, g, b)-tuple, rgb values in the range [0, 255]
(read/write/del)
usage:
r, g, b = entity.bgcolor # get pattern fill background color
entity.bgcolor = (10, 20, 30) # set pattern fill background color
del entity.bgcolor # delete pattern fill background color
set_pattern_definition(lines: Sequence, factor: float = 1, angle: float = 0) -> None
Setup pattern definition by a list of definition lines and the definition line is a 4-tuple
(angle, base_point, offset, dash_length_items). The pattern definition should be designed
for a pattern scale factor of 1 and a pattern rotation angle of 0.
• angle: line angle in degrees
• base-point: (x, y) tuple
• offset: (dx, dy) tuple
• dash_length_items: list of dash items (item > 0 is a line, item < 0 is a gap and item
== 0.0 is a point)
Parameters
• lines – list of definition lines
• factor – pattern scale factor
• angle – rotation angle in degrees
set_pattern_scale(scale: float) -> None
Sets the pattern scale factor and scales the pattern definition.
The method always starts from the original base scale, the set_pattern_scale(1) call resets
the pattern scale to the original appearance as defined by the pattern designer, but only
if the pattern attribute dxf.pattern_scale represents the actual scale, it cannot restore
the original pattern scale from the pattern definition itself.
Parameters
scale – pattern scale factor
set_pattern_angle(angle: float) -> None
Sets the pattern rotation angle and rotates the pattern definition.
The method always starts from the original base rotation of 0, the set_pattern_angle(0)
call resets the pattern rotation angle to the original appearance as defined by the pattern
designer, but only if the pattern attribute dxf.pattern_angle represents the actual pattern
rotation, it cannot restore the original rotation angle from the pattern definition itself.
Parameters
angle – pattern rotation angle in degrees
set_solid_fill(color: int = 7, style: int = 1, rgb: RGB | None = None)
Set MPolygon to solid fill mode and removes all gradient and pattern fill related data.
Parameters
• color – AutoCAD Color Index (ACI), (0 = BYBLOCK; 256 = BYLAYER)
• style – hatch style is not supported by MPOLYGON, just for symmetry to HATCH
• rgb – true color value as (r, g, b)-tuple - has higher priority than color. True
color support requires DXF R2004+
set_pattern_fill(name: str, color: int = 7, angle: float = 0.0, scale: float = 1.0, double: int =
0, style: int = 1, pattern_type: int = 1, definition=None) -> None
Sets the pattern fill mode and removes all gradient related data.
The pattern definition should be designed for a scale factor 1 and a rotation angle of 0
degrees. The predefined hatch pattern like “ANSI33” are scaled according to the HEADER
variable $MEASUREMENT for ISO measurement (m, cm, … ), or imperial units (in, ft, …), this
replicates the behavior of BricsCAD.
Parameters
• name – pattern name as string
• color – pattern color as AutoCAD Color Index (ACI)
• angle – pattern rotation angle in degrees
• scale – pattern scale factor
• double – double size flag
• style – hatch style (0 = normal; 1 = outer; 2 = ignore)
• pattern_type – pattern type (0 = user-defined; 1 = predefined; 2 = custom)
• definition – list of definition lines and a definition line is a 4-tuple [angle,
base_point, offset, dash_length_items], see set_pattern_definition()
set_gradient(color1: RGB = RGB(0, 0, 0), color2: RGB = RGB(255, 255, 255), rotation: float = 0.0,
centered: float = 0.0, one_color: int = 0, tint: float = 0.0, name: str = 'LINEAR') -> None
Sets the gradient fill mode and removes all pattern fill related data, requires DXF R2004
or newer. A gradient filled hatch is also a solid filled hatch.
Valid gradient type names are:
• “LINEAR”
• “CYLINDER”
• “INVCYLINDER”
• “SPHERICAL”
• “INVSPHERICAL”
• “HEMISPHERICAL”
• “INVHEMISPHERICAL”
• “CURVED”
• “INVCURVED”
Parameters
• color1 – (r, g, b)-tuple for first color, rgb values as int in the range [0, 255]
• color2 – (r, g, b)-tuple for second color, rgb values as int in the range [0, 255]
• rotation – rotation angle in degrees
• centered – determines whether the gradient is centered or not
• one_color – 1 for gradient from color1 to tinted color1
• tint – determines the tinted target color1 for a one color gradient. (valid range
0.0 to 1.0)
• name – name of gradient type, default “LINEAR”
transform(m: Matrix44) -> DXFPolygon
Transform entity by transformation matrix m inplace.
MText
The MTEXT entity (DXF Reference) fits a multiline text in a specified width but can extend vertically to
an indefinite length. You can format individual words or characters within the MText.
SEE ALSO:
Tutorial for MText and MTextEditor
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'MTEXT' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_mtext() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼──────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴──────────────────────────────────────┘
class ezdxf.entities.MText
dxf.insert
Insertion point (3D Point in OCS)
dxf.char_height
Initial text height (float); default=1.0
dxf.width
Reference text width (float), forces text wrapping at given width.
dxf.attachment_point
Constants defined in ezdxf.lldxf.const:
┌────────────────────────────┬───────┐
│ MText.dxf.attachment_point │ Value │
├────────────────────────────┼───────┤
│ MTEXT_TOP_LEFT │ 1 │
├────────────────────────────┼───────┤
│ MTEXT_TOP_CENTER │ 2 │
├────────────────────────────┼───────┤
│ MTEXT_TOP_RIGHT │ 3 │
├────────────────────────────┼───────┤
│ MTEXT_MIDDLE_LEFT │ 4 │
├────────────────────────────┼───────┤
│ MTEXT_MIDDLE_CENTER │ 5 │
├────────────────────────────┼───────┤
│ MTEXT_MIDDLE_RIGHT │ 6 │
├────────────────────────────┼───────┤
│ MTEXT_BOTTOM_LEFT │ 7 │
├────────────────────────────┼───────┤
│ MTEXT_BOTTOM_CENTER │ 8 │
├────────────────────────────┼───────┤
│ MTEXT_BOTTOM_RIGHT │ 9 │
└────────────────────────────┴───────┘
dxf.flow_direction
Constants defined in ezdxf.const:
┌──────────────────────────┬───────┬──────────────────────────────┐
│ MText.dxf.flow_direction │ Value │ Description │
├──────────────────────────┼───────┼──────────────────────────────┤
│ MTEXT_LEFT_TO_RIGHT │ 1 │ left to right │
├──────────────────────────┼───────┼──────────────────────────────┤
│ MTEXT_TOP_TO_BOTTOM │ 3 │ top to bottom │
├──────────────────────────┼───────┼──────────────────────────────┤
│ MTEXT_BY_STYLE │ 5 │ by style (the flow direction │
│ │ │ is inherited from the │
│ │ │ associated text style) │
└──────────────────────────┴───────┴──────────────────────────────┘
dxf.style
Text style (string); default is “STANDARD”
dxf.text_direction
X-axis direction vector in WCS (3D Point); default value is (1, 0, 0); if dxf.rotation and
dxf.text_direction are present, dxf.text_direction wins.
dxf.rotation
Text rotation in degrees (float); default is 0
dxf.line_spacing_style
Line spacing style (int), see table below
dxf.line_spacing_factor
Percentage of default (3-on-5) line spacing to be applied. Valid values range from 0.25 to
4.00 (float).
Constants defined in ezdxf.lldxf.const:
┌──────────────────────────────┬───────┬──────────────────────────────┐
│ MText.dxf.line_spacing_style │ Value │ Description │
├──────────────────────────────┼───────┼──────────────────────────────┤
│ MTEXT_AT_LEAST │ 1 │ taller characters will │
│ │ │ override │
├──────────────────────────────┼───────┼──────────────────────────────┤
│ MTEXT_EXACT │ 2 │ taller characters will not │
│ │ │ override │
└──────────────────────────────┴───────┴──────────────────────────────┘
dxf.bg_fill
Defines the background fill type. (DXF R2007)
┌───────────────────────┬───────┬─────────────────────────────┐
│ MText.dxf.bg_fill │ Value │ Description │
├───────────────────────┼───────┼─────────────────────────────┤
│ MTEXT_BG_OFF │ 0 │ no background color │
├───────────────────────┼───────┼─────────────────────────────┤
│ MTEXT_BG_COLOR │ 1 │ use specified color │
├───────────────────────┼───────┼─────────────────────────────┤
│ MTEXT_BG_WINDOW_COLOR │ 2 │ use window color (?) │
├───────────────────────┼───────┼─────────────────────────────┤
│ MTEXT_BG_CANVAS_COLOR │ 3 │ use canvas background color │
└───────────────────────┴───────┴─────────────────────────────┘
dxf.box_fill_scale
Determines how much border there is around the text. (DXF R2007)
Requires that the attributes bg_fill, bg_fill_color are present otherwise AutoCAD
complains.
It’s recommended to use set_bg_color()
dxf.bg_fill_color
Background fill color as AutoCAD Color Index (ACI) (DXF R2007)
It’s recommended to use set_bg_color()
dxf.bg_fill_true_color
Background fill color as true color value (DXF R2007), also the dxf.bg_fill_color attribute
must be present otherwise AutoCAD complains.
It’s recommended to use set_bg_color()
dxf.bg_fill_color_name
Background fill color as name string (?) (DXF R2007), also the dxf.bg_fill_color attribute
must be present otherwise AutoCAD complains.
It’s recommended to use set_bg_color()
dxf.transparency
Transparency of background fill color (DXF R2007), not supported by AutoCAD nor BricsCAD.
text MTEXT content as string (read/write).
The line ending character \n will be replaced by the MTEXT line ending \P at DXF export,
but not vice versa the \P character by \n at DXF file loading, therefore loaded MTEXT
entities always use the \P character for line endings.
set_location(insert: UVec, rotation: float | None = None, attachment_point: int | None = None) ->
MText
Sets the attributes dxf.insert, dxf.rotation and dxf.attachment_point, None for
dxf.rotation or dxf.attachment_point preserves the existing value.
get_rotation() -> float
Returns the text rotation in degrees.
set_rotation(angle: float) -> MText
Sets the attribute rotation to angle (in degrees) and deletes dxf.text_direction if
present.
get_text_direction() -> Vec3
Returns the horizontal text direction as Vec3 object, even if only the text rotation is
defined.
set_bg_color(color: int | str | RGB | None, scale: float = 1.5, text_frame=False)
Sets the background color as AutoCAD Color Index (ACI) value, as name string or as (r, g,
b) tuple.
Use the special color name canvas, to set the background color to the canvas background
color. Remove the background filling by setting argument color to None.
Parameters
• color – color as AutoCAD Color Index (ACI), string, (r, g, b) tuple or None
• scale – determines how much border there is around the text, the value is based on
the text height, and should be in the range of [1, 5], where 1 fits exact the
MText entity.
• text_frame – draw a text frame in text color if True
__iadd__(text: str) -> MText
Append text to existing content (text attribute).
append(text: str) -> MText
Append text to existing content (text attribute).
plain_text(split=False, fast=True) -> list[str] | str
Returns the text content without inline formatting codes.
The “fast” mode is accurate if the DXF content was created by reliable (and newer) CAD
applications like AutoCAD or BricsCAD. The “accurate” mode is for some rare cases where
the content was created by older CAD applications or unreliable DXF libraries and CAD
applications.
Parameters
• split – split content text at line breaks if True and returns a list of strings
without line endings
• fast – uses the “fast” mode to extract the plain MTEXT content if True or the
“accurate” mode if set to False
all_columns_plain_text(split=False) -> list[str] | str
Returns the text content of all columns without inline formatting codes.
Parameters
split – split content text at line breaks if True and returns a list of strings
without line endings
all_columns_raw_content() -> str
Returns the text content of all columns as a single string including the inline formatting
codes.
transform(m: Matrix44) -> MText
Transform the MTEXT entity by transformation matrix m inplace.
ucs() -> UCS
Returns the UCS of the MText entity, defined by the insert location (origin), the text
direction or rotation (x-axis) and the extrusion vector (z-axis).
MText Inline Codes
┌──────┬───────────────────────────────────────┐
│ Code │ Description │
├──────┼───────────────────────────────────────┤
│ \L │ Start underline │
├──────┼───────────────────────────────────────┤
│ \l │ Stop underline │
├──────┼───────────────────────────────────────┤
│ \O │ Start overline │
├──────┼───────────────────────────────────────┤
│ \o │ Stop overline │
├──────┼───────────────────────────────────────┤
│ \K │ Start strike-through │
├──────┼───────────────────────────────────────┤
│ \k │ Stop strike-through │
├──────┼───────────────────────────────────────┤
│ \P │ New paragraph (new line) │
├──────┼───────────────────────────────────────┤
│ \p │ Paragraphs properties: indentation, │
│ │ alignment, tabulator stops │
├──────┼───────────────────────────────────────┤
│ \X │ Paragraph wrap on the dimension line │
│ │ (only in dimensions) │
├──────┼───────────────────────────────────────┤
│ \Q │ Slanting (oblique) text by angle - │
│ │ e.g. \Q30; │
├──────┼───────────────────────────────────────┤
│ \H │ Text height - e.g. relative \H3x; │
│ │ absolut \H3; │
├──────┼───────────────────────────────────────┤
│ \W │ Text width - e.g. relative \W0.8x; │
│ │ absolut \W0.8; │
├──────┼───────────────────────────────────────┤
│ \T │ Tracking, character spacing - e.g. │
│ │ relative \T0.5x; absolut \T2; │
├──────┼───────────────────────────────────────┤
│ \F │ Font selection e.g. \Fgdt;o - │
│ │ GDT-tolerance │
├──────┼───────────────────────────────────────┤
│ \S │ Stacking, fractions e.g. \SA^ B; │
│ │ space after “^” is required to avoid │
│ │ caret decoding, \SX/Y; \S1#4; │
├──────┼───────────────────────────────────────┤
│ \A │ Alignment │
│ │ │
│ │ • \A0; = bottom │
│ │ │
│ │ • \A1; = center │
│ │ │
│ │ • \A2; = top │
├──────┼───────────────────────────────────────┤
│ \C │ Color change │
│ │ │
│ │ • \C1; = red │
│ │ │
│ │ • \C2; = yellow │
│ │ │
│ │ • \C3; = green │
│ │ │
│ │ • \C4; = cyan │
│ │ │
│ │ • \C5; = blue │
│ │ │
│ │ • \C6; = magenta │
│ │ │
│ │ • \C7; = white │
├──────┼───────────────────────────────────────┤
│ \~ │ Non breaking space │
├──────┼───────────────────────────────────────┤
│ {} │ Braces - define the text area │
│ │ influenced by the code, codes and │
│ │ braces can be nested up to 8 levels │
│ │ deep │
├──────┼───────────────────────────────────────┤
│ \ │ Escape character - e.g. \{ = “{” │
└──────┴───────────────────────────────────────┘
Convenient constants defined in MTextEditor:
┌──────────────────┬──────────────────────┐
│ Constant │ Description │
├──────────────────┼──────────────────────┤
│ UNDERLINE_START │ start underline text │
├──────────────────┼──────────────────────┤
│ UNDERLINE_STOP │ stop underline text │
├──────────────────┼──────────────────────┤
│ OVERSTRIKE_START │ start overline │
├──────────────────┼──────────────────────┤
│ OVERSTRIKE_STOP │ stop overline │
├──────────────────┼──────────────────────┤
│ STRIKE_START │ start strike through │
├──────────────────┼──────────────────────┤
│ STRIKE_STOP │ stop strike through │
├──────────────────┼──────────────────────┤
│ GROUP_START │ start of group │
├──────────────────┼──────────────────────┤
│ GROUP_END │ end of group │
├──────────────────┼──────────────────────┤
│ NEW_LINE │ start in new line │
├──────────────────┼──────────────────────┤
│ NBSP │ none breaking space │
└──────────────────┴──────────────────────┘
MultiLeader
The MULTILEADER entity (DXF Reference) represents one or more leaders, made up of one or more vertices
(or spline fit points) and an arrowhead. In contrast to the Leader entity the text- or block content is
part of the MULTILEADER entity.
AutoCAD, BricsCAD and maybe other CAD applications do accept “MLEADER” as type string but they always
create entities with “MULTILEADER” as type string.
Because of the complexity of the MULTILEADER entity, the usage of factory methods to create new entities
by special builder classes is recommended:
• add_multileader_mtext() returns a new MultiLeaderMTextBuilder instance
• add_multileader_block() returns a new MultiLeaderBlockBuilder instance
The visual design is based on an associated MLeaderStyle, but almost all attributes are also stored in
the MULTILEADER entity itself.
The attribute MultiLeader.dxf.property_override_flags should indicate which MLEADERSTYLE attributes are
overridden by MULTILEADER attributes, but these flags do not always reflect the state of overridden
attributes. The ezdxf MULTILEADER renderer uses always the attributes from the MULTILEADER entity and
ignores the override flags.
All vertices are WCS coordinates, even those for BLOCK entities which are OCS coordinates for regular
usage.
SEE ALSO:
• ezdxf.entities.MLeaderStyle
• ezdxf.render.MultiLeaderBuilder
• Tutorial for MultiLeader
• MULTILEADER Internals
┌──────────────────────────┬───────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼───────────────────────────────────────────────────────────┤
│ DXF type │ 'MULTILEADER' │
├──────────────────────────┼───────────────────────────────────────────────────────────┤
│ Factory functions │ │
│ │ • ezdxf.layouts.BaseLayout.add_multileader_mtext() │
│ │ │
│ │ • ezdxf.layouts.BaseLayout.add_multileader_block() │
├──────────────────────────┼───────────────────────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼───────────────────────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴───────────────────────────────────────────────────────────┘
class ezdxf.entities.MultiLeader
dxf.arrow_head_handle
handle of the arrow head, see also ezdxf.render.arrows module, “closed filled” arrow if not
set
dxf.arrow_head_size
arrow head size in drawing units
dxf.block_color
block color as raw-color value, default is BY_BLOCK_RAW_VALUE
dxf.block_connection_type
┌───┬─────────────────┐
│ 0 │ center extents │
├───┼─────────────────┤
│ 1 │ insertion point │
└───┴─────────────────┘
dxf.block_record_handle
handle to block record of the BLOCK content
dxf.block_rotation
BLOCK rotation in radians
dxf.block_scale_vector
Vec3 object which stores the scaling factors for the x-, y- and z-axis
dxf.content_type
┌───┬───────────┐
│ 0 │ none │
├───┼───────────┤
│ 1 │ BLOCK │
├───┼───────────┤
│ 2 │ MTEXT │
├───┼───────────┤
│ 3 │ TOLERANCE │
└───┴───────────┘
dxf.dogleg_length
dogleg length in drawing units
dxf.has_dogleg
dxf.has_landing
dxf.has_text_frame
dxf.is_annotative
dxf.is_text_direction_negative
dxf.leader_extend_to_text
dxf.leader_line_color
leader line color as raw-color value
dxf.leader_linetype_handle
handle of the leader linetype, “CONTINUOUS” if not set
dxf.leader_lineweight
dxf.leader_type
┌───┬──────────────────────┐
│ 0 │ invisible │
├───┼──────────────────────┤
│ 1 │ straight line leader │
├───┼──────────────────────┤
│ 2 │ spline leader │
└───┴──────────────────────┘
dxf.property_override_flags
Each bit shows if the MLEADERSTYLE is overridden by the value in the MULTILEADER entity,
but this is not always the case for all values, it seems to be save to always use the value
from the MULTILEADER entity.
dxf.scale
overall scaling factor
dxf.style_handle
handle to the associated MLEADERSTYLE object
dxf.text_IPE_align
unknown meaning
dxf.text_alignment_type
unknown meaning - its not the MTEXT attachment point!
dxf.text_angle_type
┌───┬───────────────────────────────────────┐
│ 0 │ text angle is equal to last leader │
│ │ line segment angle │
├───┼───────────────────────────────────────┤
│ 1 │ text is horizontal │
├───┼───────────────────────────────────────┤
│ 2 │ text angle is equal to last leader │
│ │ line segment angle, but potentially │
│ │ rotated by 180 degrees so the right │
│ │ side is up for readability. │
└───┴───────────────────────────────────────┘
dxf.text_attachment_direction
defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach
to the top & bottom:
┌───┬──────────────────────────────────────┐
│ 0 │ horizontal - left & right of content │
├───┼──────────────────────────────────────┤
│ 1 │ vertical - top & bottom of content │
└───┴──────────────────────────────────────┘
dxf.text_attachment_point
MTEXT attachment point
┌───┬────────────┐
│ 1 │ top left │
├───┼────────────┤
│ 2 │ top center │
├───┼────────────┤
│ 3 │ top right │
└───┴────────────┘
dxf.text_bottom_attachment_type
┌────┬─────────────────────┐
│ 9 │ center │
├────┼─────────────────────┤
│ 10 │ overline and center │
└────┴─────────────────────┘
dxf.text_color
MTEXT color as raw-color value
dxf.text_left_attachment_type
┌───┬───────────────────────────────────────┐
│ 0 │ top of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 1 │ middle of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 2 │ middle of whole MTEXT │
├───┼───────────────────────────────────────┤
│ 3 │ middle of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 4 │ bottom of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 5 │ bottom of bottom MTEXT line & │
│ │ underline bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 6 │ bottom of top MTEXT line & underline │
│ │ top MTEXT line │
├───┼───────────────────────────────────────┤
│ 7 │ bottom of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 8 │ bottom of top MTEXT line & underline │
│ │ all MTEXT lines │
└───┴───────────────────────────────────────┘
dxf.text_right_attachment_type
┌───┬───────────────────────────────────────┐
│ 0 │ top of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 1 │ middle of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 2 │ middle of whole MTEXT │
├───┼───────────────────────────────────────┤
│ 3 │ middle of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 4 │ bottom of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 5 │ bottom of bottom MTEXT line & │
│ │ underline bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 6 │ bottom of top MTEXT line & underline │
│ │ top MTEXT line │
├───┼───────────────────────────────────────┤
│ 7 │ bottom of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 8 │ bottom of top MTEXT line & underline │
│ │ all MTEXT lines │
└───┴───────────────────────────────────────┘
dxf.text_style_handle
handle of the MTEXT text style, “Standard” if not set
dxf.text_top_attachment_type
┌────┬─────────────────────┐
│ 9 │ center │
├────┼─────────────────────┤
│ 10 │ overline and center │
└────┴─────────────────────┘
dxf.version
always 2?
context
MLeaderContext instance
arrow_heads
list of ArrowHeadData
block_attribs
list of AttribData
property has_mtext_content: bool
True if MULTILEADER has MTEXT content.
get_mtext_content() -> str
Get MTEXT content as string, return “” if MULTILEADER has BLOCK content.
set_mtext_content(text: str)
Set MTEXT content as string, does nothing if MULTILEADER has BLOCK content.
property has_block_content: bool
True if MULTILEADER has BLOCK content.
get_block_content() -> dict[str, str]
Get BLOCK attributes as dictionary of (tag, value) pairs. Returns an empty dictionary if
MULTILEADER has MTEXT content.
set_block_content(content: dict[str, str])
Set BLOCK attributes by a dictionary of (tag, value) pairs. Does nothing if MULTILEADER
has MTEXT content.
virtual_entities() -> Iterator[DXFGraphic]
Yields the graphical representation of MULTILEADER as virtual DXF primitives.
These entities are located at the original location, but are not stored in the entity
database, have no handle and are not assigned to any layout.
explode(target_layout: BaseLayout | None = None) -> EntityQuery
Explode MULTILEADER as DXF primitives into target layout, if target layout is None, the
target layout is the layout of the source entity.
Returns an EntityQuery container with all DXF primitives.
Parameters
target_layout – target layout for the DXF primitives, None for same layout as the
source entity.
transform(m: Matrix44) -> MultiLeader
Transform the MULTILEADER entity by transformation matrix m inplace.
Non-uniform scaling is not supported.
Parameters
m – transformation Matrix44
Raises NonUniformScalingError – for non-uniform scaling
class ezdxf.entities.MLeaderContext
leaders
list of LeaderData objects
scale redundant data: MultiLeader.dxf.scale
base_point
insert location as Vec3 of the MTEXT or the BLOCK entity?
char_height
MTEXT char height, already scaled
arrow_head_size
redundant data: MultiLeader.dxf.arrow_head_size
landing_gap_size
left_attachment
redundant data: MultiLeader.dxf.text_left_attachment_type
right_attachment
redundant data: MultiLeader.dxf.text_right_attachment_type
text_align_type
redundant data: MultiLeader.dxf.text_attachment_point
attachment_type
BLOCK alignment?
┌───┬─────────────────┐
│ 0 │ content extents │
├───┼─────────────────┤
│ 1 │ insertion point │
└───┴─────────────────┘
mtext instance of MTextData if content is MTEXT otherwise None
block instance of BlockData if content is BLOCK otherwise None
plane_origin
Vec3
plane_x_axis
Vec3
plane_y_axis
Vec3
plane_normal_reversed
the plan normal is x-axis “cross” y-axis (right-hand-rule), this flag indicates to invert
this plan normal
top_attachment
redundant data: MultiLeader.dxf.text_top_attachment_type
bottom_attachment
redundant data: MultiLeader.dxf.text_bottom_attachment_type
class ezdxf.entities.LeaderData
lines list of LeaderLine
has_last_leader_line
unknown meaning
has_dogleg_vector
last_leader_point
WCS point as Vec3
dogleg_vector
WCS direction as Vec3
dogleg_length
redundant data: MultiLeader.dxf.dogleg_length
index leader index?
attachment_direction
redundant data: MultiLeader.dxf.text_attachment_direction
breaks list of break vertices as Vec3 objects
class ezdxf.entities.LeaderLine
vertices
list of WCS coordinates as Vec3
breaks mixed list of mixed integer indices and break coordinates or None leader lines without
breaks in it
index leader line index?
color leader line color override, ignore override value if BY_BLOCK_RAW_VALUE
class ezdxf.entities.ArrowHeadData
index arrow head index?
handle handle to arrow head block
class ezdxf.entities.AttribData
handle handle to Attdef entity in the BLOCK definition
index unknown meaning
width text width factor?
text Attrib content
class ezdxf.entities.MTextData
stores the content and attributes of the MTEXT entity
default_content
content as string
extrusion
extrusion vector of the MTEXT entity but MTEXT is not an OCS entity!
style_handle
redundant data: MultiLeader.dxf.text_style_handle
insert insert location in WCS coordinates, same as MLeaderContext.base_point?
text_direction
“horizontal” text direction vector in WCS
rotation
rotation angle in radians (!) around the extrusion vector, calculated as it were an OCS
entity
width unscaled column width
defined_height
unscaled defined column height
line_spacing_factor
see MText.dxf.line_spacing_factor
line_spacing_style
see MText.dxf.line_spacing_style
color redundant data: MultiLeader.dxf.text_color
alignment
redundant data: MultiLeader.dxf.text_attachment_point
flow_direction
┌───┬───────────────┐
│ 1 │ horizontal │
├───┼───────────────┤
│ 3 │ vertical │
├───┼───────────────┤
│ 6 │ by text style │
└───┴───────────────┘
bg_color
background color as raw-color value
bg_scale_factor
see MText.dxf.box_fill_scale
bg_transparency
background transparency value
use_window_bg_color
has_bg_fill
column_type
unknown meaning - most likely:
┌───┬─────────┐
│ 0 │ none │
├───┼─────────┤
│ 1 │ static │
├───┼─────────┤
│ 2 │ dynamic │
└───┴─────────┘
use_auto_height
column_width
unscaled column width, redundant data width
column_gutter_width
unscaled column gutter width
column_flow_reversed
column_sizes
list of unscaled columns heights for dynamic column with manual heights
use_word_break
class ezdxf.entities.BlockData
stores the attributes for the Insert entity
block_record_handle
redundant data: MultiLeader.dxf.block_record_handle
extrusion
extrusion vector in WCS
insert insertion location in WCS as Vec3, same as MLeaderContext.base_point?
scale redundant data: MultiLeader.dxf.block_scale_vector
rotation
redundant data: MultiLeader.dxf.block_rotation
color redundant data: MultiLeader.dxf.block_color
Point
The POINT entity (DXF Reference) represents a dimensionless point in WCS.
The POINT styling is a global setting, stored as header variable $PDMODE, this also means all POINT
entities in a DXF document have the same styling:
┌───┬────────────────┐
│ 0 │ center dot (.) │
├───┼────────────────┤
│ 1 │ none ( ) │
├───┼────────────────┤
│ 2 │ cross (+) │
├───┼────────────────┤
│ 3 │ x-cross (x) │
├───┼────────────────┤
│ 4 │ tick (‘) │
└───┴────────────────┘
Combined with these bit values
┌────┬────────┐
│ 32 │ circle │
├────┼────────┤
│ 64 │ Square │
└────┴────────┘
e.g. circle + square + center dot = 32 + 64 + 0 = 96 [image]
The size of the points is defined by the header variable $PDSIZE:
┌────┬───────────────────────────────────────┐
│ 0 │ 5% of draw area height │
├────┼───────────────────────────────────────┤
│ <0 │ Specifies a percentage of the │
│ │ viewport size │
├────┼───────────────────────────────────────┤
│ >0 │ Specifies an absolute size │
└────┴───────────────────────────────────────┘
SEE ALSO:
• Tutorial for Simple DXF Entities, section Point
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'POINT' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_point() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴──────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Point
dxf.location
Location of the point (2D/3D Point in WCS)
dxf.angle
Angle in degrees of the x-axis for the UCS in effect when POINT was drawn (float); used
when PDMODE is nonzero.
transform(m: Matrix44) -> Point
Transform the POINT entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float) -> Point
Optimized POINT translation about dx in x-axis, dy in y-axis and dz in z-axis.
virtual_entities(pdsize: float = 1, pdmode: int = 0) -> Iterator[DXFGraphic]
Yields the graphical representation of POINT as virtual DXF primitives (LINE and CIRCLE).
The dimensionless point is rendered as zero-length line!
Check for this condition:
e.dxftype() == 'LINE' and e.dxf.start.isclose(e.dxf.end)
if the rendering engine can’t handle zero-length lines.
Parameters
• pdsize – point size in drawing units
• pdmode – point styling mode
Polyline
The POLYLINE entity (POLYLINE DXF Reference) is very complex, it’s used to build 2D/3D polylines, 3D
meshes and 3D polyfaces. For every type exists a different wrapper class but they all have the same DXF
type “POLYLINE”. Detect the actual POLYLINE type by the method Polyline.get_mode().
POLYLINE types returned by Polyline.get_mode():
• 'AcDb2dPolyline' for 2D Polyline
• 'AcDb3dPolyline' for 3D Polyline
• 'AcDbPolygonMesh' for Polymesh
• 'AcDbPolyFaceMesh' for Polyface
For 2D entities all vertices in OCS.
For 3D entities all vertices in WCS.
┌──────────────────────────┬───────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼───────────────────────────────────────────┤
│ DXF type │ 'POLYLINE' │
├──────────────────────────┼───────────────────────────────────────────┤
│ 2D factory function │ ezdxf.layouts.BaseLayout.add_polyline2d() │
├──────────────────────────┼───────────────────────────────────────────┤
│ 3D factory function │ ezdxf.layouts.BaseLayout.add_polyline3d() │
├──────────────────────────┼───────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴───────────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Polyline
The Vertex entities are stored in the Python list Polyline.vertices. The VERTEX entities can be
retrieved and deleted by direct access to the Polyline.vertices attribute:
# delete first and second vertex
del polyline.vertices[:2]
dxf.elevation
Elevation point, the X and Y values are always 0, and the Z value is the polyline elevation
(3D Point).
dxf.flags
Constants defined in ezdxf.lldxf.const:
┌────────────────────────────────────┬───────┬──────────────────────────────┐
│ Polyline.dxf.flags │ Value │ Description │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_CLOSED │ 1 │ This is a closed Polyline │
│ │ │ (or a polygon mesh closed in │
│ │ │ the M direction) │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_MESH_CLOSED_M_DIRECTION │ 1 │ equals POLYLINE_CLOSED │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_CURVE_FIT_VERTICES_ADDED │ 2 │ Curve-fit vertices have been │
│ │ │ added │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_SPLINE_FIT_VERTICES_ADDED │ 4 │ Spline-fit vertices have │
│ │ │ been added │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_3D_POLYLINE │ 8 │ This is a 3D Polyline │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_3D_POLYMESH │ 16 │ This is a 3D polygon mesh │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_MESH_CLOSED_N_DIRECTION │ 32 │ The polygon mesh is closed │
│ │ │ in the N direction │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_POLYFACE_MESH │ 64 │ This Polyline is a polyface │
│ │ │ mesh │
├────────────────────────────────────┼───────┼──────────────────────────────┤
│ POLYLINE_GENERATE_LINETYPE_PATTERN │ 128 │ The linetype pattern is │
│ │ │ generated continuously │
│ │ │ around the vertices of this │
│ │ │ Polyline │
└────────────────────────────────────┴───────┴──────────────────────────────┘
dxf.default_start_width
Default line start width (float); default is 0
dxf.default_end_width
Default line end width (float); default is 0
dxf.m_count
Polymesh M vertex count (int); default is 1
dxf.n_count
Polymesh N vertex count (int); default is 1
dxf.m_smooth_density
Smooth surface M density (int); default is 0
dxf.n_smooth_density
Smooth surface N density (int); default is 0
dxf.smooth_type
Curves and smooth surface type (int); default is 0, see table below
Constants for smooth_type defined in ezdxf.lldxf.const:
┌────────────────────────────┬───────┬────────────────────────────┐
│ Polyline.dxf.smooth_type │ Value │ Description │
├────────────────────────────┼───────┼────────────────────────────┤
│ POLYMESH_NO_SMOOTH │ 0 │ no smooth surface fitted │
├────────────────────────────┼───────┼────────────────────────────┤
│ POLYMESH_QUADRATIC_BSPLINE │ 5 │ quadratic B-spline surface │
├────────────────────────────┼───────┼────────────────────────────┤
│ POLYMESH_CUBIC_BSPLINE │ 6 │ cubic B-spline surface │
├────────────────────────────┼───────┼────────────────────────────┤
│ POLYMESH_BEZIER_SURFACE │ 8 │ Bezier surface │
└────────────────────────────┴───────┴────────────────────────────┘
vertices
List of Vertex entities.
is_2d_polyline
True if POLYLINE is a 2D polyline.
is_3d_polyline
True if POLYLINE is a 3D polyline.
is_polygon_mesh
True if POLYLINE is a polygon mesh, see Polymesh
is_poly_face_mesh
True if POLYLINE is a poly face mesh, see Polyface
is_closed
True if POLYLINE is closed.
is_m_closed
True if POLYLINE (as Polymesh) is closed in m direction.
is_n_closed
True if POLYLINE (as Polymesh) is closed in n direction.
has_arc
Returns True if 2D POLYLINE has an arc segment.
has_width
Returns True if 2D POLYLINE has default width values or any segment with width attributes.
get_mode() -> str
Returns POLYLINE type as string:
• “AcDb2dPolyline”
• “AcDb3dPolyline”
• “AcDbPolygonMesh”
• “AcDbPolyFaceMesh”
m_close(status=True) -> None
Close POLYMESH in m direction if status is True (also closes POLYLINE), clears closed state
if status is False.
n_close(status=True) -> None
Close POLYMESH in n direction if status is True, clears closed state if status is False.
close(m_close=True, n_close=False) -> None
Set closed state of POLYMESH and POLYLINE in m direction and n direction. True set closed
flag, False clears closed flag.
__len__() -> int
Returns count of Vertex entities.
__getitem__(pos) -> DXFVertex
Get Vertex entity at position pos, supports list-like slicing.
points() -> Iterator[Vec3]
Returns all polyline points in OCS or WCS coordinates as Vec3.
These are the raw location coordinates stored in the Vertex entities. A separately stored
elevation value will not be applied. The points of 2D polylines are OCS coordinates other
polyline types return WCS coordinates.
points_in_wcs() -> Iterator[Vec3]
Returns all polyline points in WCS coordinates as Vec3.
Added in version 1.4.
append_vertex(point: UVec, dxfattribs=None) -> None
Append a single Vertex entity at location point.
Parameters
• point – as (x, y[, z]) tuple
• dxfattribs – dict of DXF attributes for Vertex class
append_vertices(points: Iterable[TypeAliasForwardRef('UVec')], dxfattribs=None) -> None
Append multiple Vertex entities at location points.
Parameters
• points – iterable of (x, y[, z]) tuples
• dxfattribs – dict of DXF attributes for the VERTEX objects
append_formatted_vertices(points: Iterable[Sequence], format: str = 'xy', dxfattribs=None) -> None
Append multiple Vertex entities at location points.
Parameters
• points – iterable of (x, y, [start_width, [end_width, [bulge]]]) tuple
• format – format string, default is “xy”, see: User Defined Point Format Codes
• dxfattribs – dict of DXF attributes for the VERTEX objects
insert_vertices(pos: int, points: Iterable[TypeAliasForwardRef('UVec')], dxfattribs=None) -> None
Insert vertices points into Polyline.vertices list at insertion location pos .
Parameters
• pos – insertion position of list Polyline.vertices
• points – list of (x, y[, z]) tuples
• dxfattribs – dict of DXF attributes for Vertex class
transform(m: Matrix44) -> Polyline
Transform the POLYLINE entity by transformation matrix m inplace.
A non-uniform scaling is not supported if a 2D POLYLINE contains circular arc segments
(bulges).
Parameters
m – transformation Matrix44
Raises NonUniformScalingError – for non-uniform scaling of 2D POLYLINE
containing circular arc segments (bulges)
virtual_entities() -> Iterator[Line | Arc | Face3d]
Yields the graphical representation of POLYLINE as virtual DXF primitives (LINE, ARC or
3DFACE).
These virtual entities are located at the original location, but are not stored in the
entity database, have no handle and are not assigned to any layout.
explode(target_layout: BaseLayout | None = None) -> EntityQuery
Explode the POLYLINE entity as DXF primitives (LINE, ARC or 3DFACE) into the target layout,
if the target layout is None, the target layout is the layout of the POLYLINE entity.
Returns an EntityQuery container referencing all DXF primitives.
Parameters
target_layout – target layout for DXF primitives, None for same layout as source
entity.
Vertex
A VERTEX (VERTEX DXF Reference) represents a polyline/mesh vertex.
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'VERTEX' │
├──────────────────────────┼─────────────────────────────────┤
│ Factory function │ Polyline.append_vertex() │
├──────────────────────────┼─────────────────────────────────┤
│ Factory function │ Polyline.extend() │
├──────────────────────────┼─────────────────────────────────┤
│ Factory function │ Polyline.insert_vertices() │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF Attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────┘
class ezdxf.entities.Vertex
dxf.location
Vertex location (2D/3D Point OCS when 2D, WCS when 3D)
dxf.start_width
Line segment start width (float); default is 0
dxf.end_width
Line segment end width (float); default is 0
dxf.bulge
Bulge value (float); default is 0.
The bulge value is used to create arc shaped line segments.
dxf.flags
Constants defined in ezdxf.lldxf.const:
┌────────────────────────────────┬───────┬──────────────────────────────┐
│ Vertex.dxf.flags │ Value │ Description │
├────────────────────────────────┼───────┼──────────────────────────────┤
│ VTX_EXTRA_VERTEX_CREATED │ 1 │ Extra vertex created by │
│ │ │ curve-fitting │
├────────────────────────────────┼───────┼──────────────────────────────┤
│ VTX_CURVE_FIT_TANGENT │ 2 │ curve-fit tangent defined │
│ │ │ for this vertex. A curve-fit │
│ │ │ tangent direction of 0 may │
│ │ │ be omitted from the DXF │
│ │ │ output, but is significant │
│ │ │ if this bit is set. │
├────────────────────────────────┼───────┼──────────────────────────────┤
│ VTX_SPLINE_VERTEX_CREATED │ 8 │ spline vertex created by │
│ │ │ spline-fitting │
├────────────────────────────────┼───────┼──────────────────────────────┤
│ VTX_SPLINE_FRAME_CONTROL_POINT │ 16 │ spline frame control point │
├────────────────────────────────┼───────┼──────────────────────────────┤
│ VTX_3D_POLYLINE_VERTEX │ 32 │ 3D polyline vertex │
├────────────────────────────────┼───────┼──────────────────────────────┤
│ VTX_3D_POLYGON_MESH_VERTEX │ 64 │ 3D polygon mesh │
├────────────────────────────────┼───────┼──────────────────────────────┤
│ VTX_3D_POLYFACE_MESH_VERTEX │ 128 │ polyface mesh vertex │
└────────────────────────────────┴───────┴──────────────────────────────┘
dxf.tangent
Curve fit tangent direction (float), used for 2D spline in DXF R12.
dxf.vtx1
Index of 1st vertex, if used as face (feature for experts)
dxf.vtx2
Index of 2nd vertex, if used as face (feature for experts)
dxf.vtx3
Index of 3rd vertex, if used as face (feature for experts)
dxf.vtx4
Index of 4th vertex, if used as face (feature for experts)
is_2d_polyline_vertex
is_3d_polyline_vertex
is_polygon_mesh_vertex
is_poly_face_mesh_vertex
is_face_record
format(format='xyz') -> Sequence
Return formatted vertex components as tuple.
Format codes:
• “x” = x-coordinate
• “y” = y-coordinate
• “z” = z-coordinate
• “s” = start width
• “e” = end width
• “b” = bulge value
• “v” = (x, y, z) as tuple
Args: format: format string, default is “xyz”
Polymesh
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Polyline │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'POLYLINE' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_polymesh() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF Attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────────────┘
class ezdxf.entities.Polymesh
A polymesh is a grid of m_count by n_count vertices, every vertex has its own (x, y, z) location.
The Polymesh is a subclass of Polyline, the DXF type is also “POLYLINE”, the method get_mode()
returns “AcDbPolygonMesh”.
get_mesh_vertex(pos: tuple[int, int]) -> DXFVertex
Get location of a single mesh vertex.
Parameters
pos – 0-based (row, col) tuple, position of mesh vertex
set_mesh_vertex(pos: tuple[int, int], point: UVec, dxfattribs=None)
Set location and DXF attributes of a single mesh vertex.
Parameters
• pos – 0-based (row, col) tuple, position of mesh vertex
• point – (x, y, z) tuple, new 3D coordinates of the mesh vertex
• dxfattribs – dict of DXF attributes
get_mesh_vertex_cache() -> MeshVertexCache
Get a MeshVertexCache object for this POLYMESH. The caching object provides fast access to
the location attribute of mesh vertices.
MeshVertexCache
class ezdxf.entities.MeshVertexCache
Cache mesh vertices in a dict, keys are 0-based (row, col) tuples.
Set vertex location: cache[row, col] = (x, y, z)
Get vertex location: x, y, z = cache[row, col]
vertices
Dict of mesh vertices, keys are 0-based (row, col) tuples.
__getitem__(pos: tuple[int, int]) -> UVec
Get mesh vertex location as (x, y, z)-tuple.
Parameters
pos – 0-based (row, col)-tuple.
__setitem__(pos: tuple[int, int], location: UVec) -> None
Get mesh vertex location as (x, y, z)-tuple.
Parameters
• pos – 0-based (row, col)-tuple.
• location – (x, y, z)-tuple
Polyface
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Polyline │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'POLYLINE' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_polyface() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF Attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────────────┘
SEE ALSO:
Tutorial for Polyface
class ezdxf.entities.Polyface
A polyface consist of multiple 3D areas called faces, only faces with 3 or 4 vertices are
supported. The Polyface is a subclass of Polyline, the DXF type is also “POLYLINE”, the
get_mode() returns “AcDbPolyFaceMesh”.
append_face(face: FaceType, dxfattribs=None) -> None
Append a single face. A face is a sequence of (x, y, z) tuples.
Parameters
• face – sequence of (x, y, z) tuples
• dxfattribs – dict of DXF attributes for the VERTEX objects
append_faces(faces: Iterable[FaceType], dxfattribs=None) -> None
Append multiple faces. faces is a list of single faces and a single face is a sequence of
(x, y, z) tuples.
Parameters
• faces – iterable of sequences of (x, y, z) tuples
• dxfattribs – dict of DXF attributes for the VERTEX entity
faces() -> Iterator[list[DXFVertex]]
Iterable of all faces, a face is a tuple of vertices.
Returns
list of [vertex, vertex, vertex, [vertex,] face_record]
optimize(precision: int = 6) -> None
Rebuilds the Polyface by merging vertices with nearly same vertex locations.
Parameters
precision – floating point precision for determining identical vertex locations
Ray
The RAY entity (DXF Reference) starts at Ray.dxf.point and continues to infinity (construction line).
┌──────────────────────────┬────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.XLine │
├──────────────────────────┼────────────────────────────────────┤
│ DXF type │ 'RAY' │
├──────────────────────────┼────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_ray() │
├──────────────────────────┼────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴────────────────────────────────────┘
class ezdxf.entities.Ray
dxf.start
Start point as (3D Point in WCS)
dxf.unit_vector
Unit direction vector as (3D Point in WCS)
transform(m: Matrix44) -> XLine
Transform the XLINE/RAY entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float) -> XLine
Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.
Region
REGION entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
SEE ALSO:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to
add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?
┌──────────────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Body │
├──────────────────────────┼───────────────────────────────────────┤
│ DXF type │ 'REGION' │
├──────────────────────────┼───────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_region() │
├──────────────────────────┼───────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼───────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴───────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Region
Same attributes and methods as parent class Body.
Shape
The SHAPE entity (DXF Reference) is used like a block references, each SHAPE reference can be scaled and
rotated individually. The SHAPE definitions are stored in external shape files (*.SHX), and ezdxf can
not load or create these shape files.
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'SHAPE' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_shape() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴──────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Shape
dxf.insert
Insertion location as (2D/3D Point in WCS)
dxf.name
Shape name (str)
dxf.size
Shape size (float)
dxf.rotation
Rotation angle in degrees; default value is 0
dxf.xscale
Relative X scale factor (float); default value is 1
dxf.oblique
Oblique angle in degrees (float); default value is 0
transform(m: Matrix44) -> Shape
Transform the SHAPE entity by transformation matrix m inplace.
Solid
The SOLID entity (DXF Reference) is a filled triangle or quadrilateral. Access vertices by name
(entity.dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). If only 3 vertices are provided the
last (3rd) vertex will be repeated in the DXF file.
The SOLID entity stores the vertices in an unusual way, the last two vertices are reversed:
msp.add_solid([(0, 0), (10, 0), (10, 10), (0, 10)])
[image]
Reverse the last two vertices to get the expected square:
msp.add_solid([(0, 0), (10, 0), (0, 10), (10, 10)])
[image]
NOTE:
The quirky vertex order is preserved at the lowest access level because ezdxf is intended as a DXF
file format interface and presents the content of the DXF document to the package user as natively as
possible.
The Solid.vertices() and Solid.wcs_vertices() methods return the vertices in the expected (reversed)
order.
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'SOLID' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_solid() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴──────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Solid
dxf.vtx0
Location of 1. vertex (2D/3D Point in OCS)
dxf.vtx1
Location of 2. vertex (2D/3D Point in OCS)
dxf.vtx2
Location of 3. vertex (2D/3D Point in OCS)
dxf.vtx3
Location of 4. vertex (2D/3D Point in OCS)
transform(m: Matrix44) -> Solid
Transform the SOLID/TRACE entity by transformation matrix m inplace.
vertices(close: bool = False) -> list[Vec3]
Returns OCS vertices in correct order, if argument close is True, last vertex == first
vertex. Does not return the duplicated last vertex if the entity represents a triangle.
wcs_vertices(close: bool = False) -> list[Vec3]
Returns WCS vertices in correct order, if argument close is True, last vertex == first
vertex. Does not return the duplicated last vertex if the entity represents a triangle.
Spline
The SPLINE entity (DXF Reference) is a 3D curve, all coordinates have to be 3D coordinates even if the
spline is just a 2D planar curve.
The spline curve is defined by control points, knot values and weights. The control points establish the
spline, the various types of knot vector determines the shape of the curve and the weights of rational
splines define how strong a control point influences the shape.
A SPLINE can be created just from fit points - knot values and weights are optional (tested with AutoCAD
2010). If you add additional data, be sure you know what you do, because invalid data may invalidate the
whole DXF file.
The function ezdxf.math.fit_points_to_cad_cv() calculates control vertices from given fit points. This
control vertices define a cubic B-spline which matches visually the SPLINE entities created by BricsCAD
and AutoCAD from fit points.
SEE ALSO:
• Wikipedia article about B_splines
• Department of Computer Science and Technology at the Cambridge University
• Tutorial for Spline
┌──────────────────────────┬─────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────┤
│ DXF type │ 'SPLINE' │
├──────────────────────────┼─────────────────────────────────┤
│ Factory function │ see table below │
├──────────────────────────┼─────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────┘
Factory Functions
┌──────────────────────────────────────┬──────────────────────────────┐
│ Basic spline entity │ add_spline() │
├──────────────────────────────────────┼──────────────────────────────┤
│ Spline control frame from fit points │ add_spline_control_frame() │
├──────────────────────────────────────┼──────────────────────────────┤
│ Open uniform spline │ add_open_spline() │
├──────────────────────────────────────┼──────────────────────────────┤
│ Closed uniform spline │ add_closed_spline() │
├──────────────────────────────────────┼──────────────────────────────┤
│ Open rational uniform spline │ add_rational_spline() │
├──────────────────────────────────────┼──────────────────────────────┤
│ Closed rational uniform spline │ add_closed_rational_spline() │
└──────────────────────────────────────┴──────────────────────────────┘
class ezdxf.entities.Spline
All points in WCS as (x, y, z) tuples
dxf.degree
Degree of the spline curve (int).
dxf.flags
Bit coded option flags, constants defined in ezdxf.lldxf.const:
┌─────────────────┬───────┬────────────────────────┐
│ dxf.flags │ Value │ Description │
├─────────────────┼───────┼────────────────────────┤
│ CLOSED_SPLINE │ 1 │ Spline is closed │
├─────────────────┼───────┼────────────────────────┤
│ PERIODIC_SPLINE │ 2 │ │
├─────────────────┼───────┼────────────────────────┤
│ RATIONAL_SPLINE │ 4 │ │
├─────────────────┼───────┼────────────────────────┤
│ PLANAR_SPLINE │ 8 │ │
├─────────────────┼───────┼────────────────────────┤
│ LINEAR_SPLINE │ 16 │ planar bit is also set │
└─────────────────┴───────┴────────────────────────┘
dxf.n_knots
Count of knot values (int), automatically set by ezdxf (read only)
dxf.n_fit_points
Count of fit points (int), automatically set by ezdxf (read only)
dxf.n_control_points
Count of control points (int), automatically set by ezdxf (read only)
dxf.knot_tolerance
Knot tolerance (float); default is 1e-10
dxf.fit_tolerance
Fit tolerance (float); default is 1e-10
dxf.control_point_tolerance
Control point tolerance (float); default is 1e-10
dxf.start_tangent
Start tangent vector as 3D vector in WCS
dxf.end_tangent
End tangent vector as 3D vector in WCS
closed True if spline is closed. A closed spline has a connection from the last control point to
the first control point. (read/write)
control_points
VertexArray of control points in WCS.
fit_points
VertexArray of fit points in WCS.
knots Knot values as array.array('d').
weights
Control point weights as array.array('d').
control_point_count() -> int
Count of control points.
fit_point_count() -> int
Count of fit points.
knot_count() -> int
Count of knot values.
construction_tool() -> BSpline
Returns the construction tool ezdxf.math.BSpline.
apply_construction_tool(s) -> Spline
Apply SPLINE data from a BSpline construction tool or from a geomdl.BSpline.Curve object.
flattening(distance: float, segments: int = 4) -> Iterator[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation
segments between two knots, if the distance from the center of the approximation segment to
the curve is bigger than distance the segment will be subdivided.
Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count between two knots
set_open_uniform(control_points: Sequence[TypeAliasForwardRef('UVec')], degree: int = 3) -> None
Open B-spline with a uniform knot vector, start and end at your first and last control
points.
set_uniform(control_points: Sequence[TypeAliasForwardRef('UVec')], degree: int = 3) -> None
B-spline with a uniform knot vector, does NOT start and end at your first and last control
points.
set_closed(control_points: Sequence[TypeAliasForwardRef('UVec')], degree=3) -> None
Closed B-spline with a uniform knot vector, start and end at your first control point.
set_open_rational(control_points: Sequence[TypeAliasForwardRef('UVec')], weights: Sequence[float],
degree: int = 3) -> None
Open rational B-spline with a uniform knot vector, start and end at your first and last
control points, and has additional control possibilities by weighting each control point.
set_uniform_rational(control_points: Sequence[TypeAliasForwardRef('UVec')], weights:
Sequence[float], degree: int = 3) -> None
Rational B-spline with a uniform knot vector, does NOT start and end at your first and last
control points, and has additional control possibilities by weighting each control point.
set_closed_rational(control_points: Sequence[TypeAliasForwardRef('UVec')], weights:
Sequence[float], degree: int = 3) -> None
Closed rational B-spline with a uniform knot vector, start and end at your first control
point, and has additional control possibilities by weighting each control point.
transform(m: Matrix44) -> Spline
Transform the SPLINE entity by transformation matrix m inplace.
classmethod from_arc(entity: DXFGraphic) -> Spline
Create a new SPLINE entity from a CIRCLE, ARC or ELLIPSE entity.
The new SPLINE entity has no owner, no handle, is not stored in the entity database nor
assigned to any layout!
Surface
SURFACE entity (DXF Reference) created by an ACIS geometry kernel provided by the Spatial Corp.
SEE ALSO:
Ezdxf has only very limited support for ACIS based entities, for more information see the FAQ: How to
add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?
┌──────────────────────────┬────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Body │
├──────────────────────────┼────────────────────────────────────────┤
│ DXF type │ 'SURFACE' │
├──────────────────────────┼────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_surface() │
├──────────────────────────┼────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴────────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Surface
Same attributes and methods as parent class Body.
dxf.u_count
Number of U isolines.
dxf.v_count
Number of V2 isolines.
ExtrudedSurface
(DXF Reference)
┌──────────────────────────┬─────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Surface │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ DXF type │ 'EXTRUDEDSURFACE' │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_extruded_surface() │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ Required DXF version │ DXF R2007 ('AC1021') │
└──────────────────────────┴─────────────────────────────────────────────────┘
class ezdxf.entities.ExtrudedSurface
Same attributes and methods as parent class Surface.
dxf.class_id
dxf.sweep_vector
dxf.draft_angle
dxf.draft_start_distance
dxf.draft_end_distance
dxf.twist_angle
dxf.scale_factor
dxf.align_angle
dxf.solid
dxf.sweep_alignment_flags
┌───┬────────────────────────────────┐
│ 0 │ No alignment │
├───┼────────────────────────────────┤
│ 1 │ Align sweep entity to path │
├───┼────────────────────────────────┤
│ 2 │ Translate sweep entity to path │
├───┼────────────────────────────────┤
│ 3 │ Translate path to sweep entity │
└───┴────────────────────────────────┘
dxf.align_start
dxf.bank
dxf.base_point_set
dxf.sweep_entity_transform_computed
dxf.path_entity_transform_computed
dxf.reference_vector_for_controlling_twist
transformation_matrix_extruded_entity
type: Matrix44
sweep_entity_transformation_matrix
type: Matrix44
path_entity_transformation_matrix
type: Matrix44
LoftedSurface
(DXF Reference)
┌──────────────────────────┬───────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Surface │
├──────────────────────────┼───────────────────────────────────────────────┤
│ DXF type │ 'LOFTEDSURFACE' │
├──────────────────────────┼───────────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_lofted_surface() │
├──────────────────────────┼───────────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼───────────────────────────────────────────────┤
│ Required DXF version │ DXF R2007 ('AC1021') │
└──────────────────────────┴───────────────────────────────────────────────┘
class ezdxf.entities.LoftedSurface
Same attributes and methods as parent class Surface.
dxf.plane_normal_lofting_type
dxf.start_draft_angle
dxf.end_draft_angle
dxf.start_draft_magnitude
dxf.end_draft_magnitude
dxf.arc_length_parameterization
dxf.no_twist
dxf.align_direction
dxf.simple_surfaces
dxf.closed_surfaces
dxf.solid
dxf.ruled_surface
dxf.virtual_guide
set_transformation_matrix_lofted_entity
type: Matrix44
RevolvedSurface
(DXF Reference)
┌──────────────────────────┬─────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Surface │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ DXF type │ 'REVOLVEDSURFACE' │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_revolved_surface() │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────────────────┤
│ Required DXF version │ DXF R2007 ('AC1021') │
└──────────────────────────┴─────────────────────────────────────────────────┘
class ezdxf.entities.RevolvedSurface
Same attributes and methods as parent class Surface.
dxf.class_id
dxf.axis_point
dxf.axis_vector
dxf.revolve_angle
dxf.start_angle
dxf.draft_angle
dxf.start_draft_distance
dxf.end_draft_distance
dxf.twist_angle
dxf.solid
dxf.close_to_axis
transformation_matrix_revolved_entity
type: Matrix44
SweptSurface
(DXF Reference)
┌──────────────────────────┬──────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Surface │
├──────────────────────────┼──────────────────────────────────────────────┤
│ DXF type │ 'SWEPTSURFACE' │
├──────────────────────────┼──────────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_swept_surface() │
├──────────────────────────┼──────────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼──────────────────────────────────────────────┤
│ Required DXF version │ DXF R2007 ('AC1021') │
└──────────────────────────┴──────────────────────────────────────────────┘
class ezdxf.entities.SweptSurface
Same attributes and methods as parent class Surface.
dxf.swept_entity_id
dxf.path_entity_id
dxf.draft_angle
draft_start_distance
dxf.draft_end_distance
dxf.twist_angle
dxf.scale_factor
dxf.align_angle
dxf.solid
dxf.sweep_alignment
dxf.align_start
dxf.bank
dxf.base_point_set
dxf.sweep_entity_transform_computed
dxf.path_entity_transform_computed
dxf.reference_vector_for_controlling_twist
transformation_matrix_sweep_entity
type: Matrix44
transformation_matrix_path_entity()
type: Matrix44
sweep_entity_transformation_matrix()
type: Matrix44
path_entity_transformation_matrix()
type: Matrix44
Text
The TEXT entity (DXF Reference) represents a single line of text. The style attribute stores the
associated Textstyle entity as string, which defines the basic font properties. The text size is stored
as cap-height in the height attribute in drawing units. Text alignments are defined as enums of type
ezdxf.enums.TextEntityAlignment.
SEE ALSO:
See the documentation for the Textstyle class to understand the limitations of text representation in
the DXF format.
Tutorial for Text
┌──────────────────────────┬─────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────┤
│ DXF type │ 'TEXT' │
├──────────────────────────┼─────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_text() │
├──────────────────────────┼─────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Text
dxf.text
Text content as string.
dxf.insert
First alignment point of text (2D/3D Point in OCS), relevant for the adjustments LEFT,
ALIGNED and FIT.
dxf.align_point
The main alignment point of text (2D/3D Point in OCS), if the alignment is anything else
than LEFT, or the second alignment point for the ALIGNED and FIT alignments.
dxf.height
Text height in drawing units as float value, the default value is 1.
dxf.rotation
Text rotation in degrees as float value, the default value is 0.
dxf.oblique
Text oblique angle (slanting) in degrees as float value, the default value is 0 (straight
vertical text).
dxf.style
Textstyle name as case insensitive string, the default value is “Standard”
dxf.width
Width scale factor as float value, the default value is 1.
dxf.halign
Horizontal alignment flag as int value, use the set_placement() and get_align_enum()
methods to handle text alignment, the default value is 0.
┌───┬─────────────────────────────────────┐
│ 0 │ Left │
├───┼─────────────────────────────────────┤
│ 2 │ Right │
├───┼─────────────────────────────────────┤
│ 3 │ Aligned (if vertical alignment = 0) │
├───┼─────────────────────────────────────┤
│ 4 │ Middle (if vertical alignment = 0) │
├───┼─────────────────────────────────────┤
│ 5 │ Fit (if vertical alignment = 0) │
└───┴─────────────────────────────────────┘
dxf.valign
Vertical alignment flag as int value, use the set_placement() and get_align_enum() methods
to handle text alignment, the default value is 0.
┌───┬──────────┐
│ 0 │ Baseline │
├───┼──────────┤
│ 1 │ Bottom │
├───┼──────────┤
│ 2 │ Middle │
├───┼──────────┤
│ 3 │ Top │
└───┴──────────┘
dxf.text_generation_flag
Text generation flags as int value, use the is_backward and is_upside_down attributes to
handle this flags.
┌───┬─────────────────────────────────────┐
│ 2 │ text is backward (mirrored in X) │
├───┼─────────────────────────────────────┤
│ 4 │ text is upside down (mirrored in Y) │
└───┴─────────────────────────────────────┘
property is_backward: bool
Get/set text generation flag BACKWARDS, for mirrored text along the x-axis.
property is_upside_down: bool
Get/set text generation flag UPSIDE_DOWN, for mirrored text along the y-axis.
set_placement(p1: UVec, p2: TypeAliasForwardRef('UVec') | None = None, align: TextEntityAlignment
| None = None) -> Text
Set text alignment and location.
The alignments ALIGNED and FIT are special, they require a second alignment point, the text
is aligned on the virtual line between these two points and sits vertically at the
baseline.
• ALIGNED: Text is stretched or compressed to fit exactly between p1 and p2 and the text
height is also adjusted to preserve height/width ratio.
• FIT: Text is stretched or compressed to fit exactly between p1 and p2 but only the text
width is adjusted, the text height is fixed by the dxf.height attribute.
• MIDDLE: also a special adjustment, centered text like MIDDLE_CENTER, but vertically
centred at the total height of the text.
Parameters
• p1 – first alignment point as (x, y[, z])
• p2 – second alignment point as (x, y[, z]), required for ALIGNED and FIT else
ignored
• align – new alignment as enum TextEntityAlignment, None to preserve the existing
alignment.
get_placement() -> tuple[TextEntityAlignment, Vec3, Vec3 | None]
Returns a tuple (align, p1, p2), align is the alignment enum TextEntityAlignment, p1 is the
alignment point, p2 is only relevant if align is ALIGNED or FIT, otherwise it is None.
get_align_enum() -> TextEntityAlignment
Returns the current text alignment as TextEntityAlignment, see also set_placement().
set_align_enum(align=TextEntityAlignment.LEFT) -> Text
Just for experts: Sets the text alignment without setting the alignment points, set
adjustment points attr:dxf.insert and dxf.align_point manually.
Parameters
align – TextEntityAlignment
transform(m: Matrix44) -> Text
Transform the TEXT entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float) -> Text
Optimized TEXT/ATTRIB/ATTDEF translation about dx in x-axis, dy in y-axis and dz in z-axis,
returns self.
plain_text() -> str
Returns text content without formatting codes.
font_name() -> str
Returns the font name of the associated Textstyle.
fit_length() -> float
Returns the text length for alignments TextEntityAlignment.FIT and
TextEntityAlignment.ALIGNED, defined by the distance from the insertion point to the align
point or 0 for all other alignments.
Trace
The TRACE entity (DXF Reference) is solid filled triangle or quadrilateral. Access vertices by name
(entity.dxf.vtx0 = (1.7, 2.3)) or by index (entity[0] = (1.7, 2.3)). If only 3 vertices are provided the
last (3rd) vertex will be repeated in the DXF file.
The TRACE entity stores the vertices in an unusual way, the last two vertices are reversed:
msp.add_solid([(0, 0), (10, 0), (10, 10), (0, 10)])
[image]
Reverse the last two vertices to get the expected square:
msp.add_solid([(0, 0), (10, 0), (0, 10), (10, 10)])
[image]
NOTE:
The quirky vertex order is preserved at the lowest access level because ezdxf is intended as a DXF
file format interface and presents the content of the DXF document to the package user as natively as
possible.
The Trace.vertices() and Trace.wcs_vertices() methods return the vertices in the expected (reversed)
order.
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'TRACE' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_trace() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴──────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Trace
dxf.vtx0
Location of 1. vertex (2D/3D Point in OCS)
dxf.vtx1
Location of 2. vertex (2D/3D Point in OCS)
dxf.vtx2
Location of 3. vertex (2D/3D Point in OCS)
dxf.vtx3
Location of 4. vertex (2D/3D Point in OCS)
transform(m: Matrix44) -> Solid
Transform the SOLID/TRACE entity by transformation matrix m inplace.
vertices(close: bool = False) -> list[Vec3]
Returns OCS vertices in correct order, if argument close is True, last vertex == first
vertex. Does not return the duplicated last vertex if the entity represents a triangle.
wcs_vertices(close: bool = False) -> list[Vec3]
Returns WCS vertices in correct order, if argument close is True, last vertex == first
vertex. Does not return the duplicated last vertex if the entity represents a triangle.
Underlay
The UNDERLAY entity (DXF Reference) links an underlay file to the DXF file, the file itself is not
embedded into the DXF file, it is always a separated file. The (PDF)UNDERLAY entity is like a block
reference, you can use it multiple times to add the underlay on different locations with different scales
and rotations. But therefore you need a also a (PDF)DEFINITION entity, see UnderlayDefinition.
The DXF standard supports three different file formats: PDF, DWF (DWFx) and DGN. An Underlay can be
clipped by a rectangle or a polygon path. The clipping coordinates are 2D OCS coordinates in drawing
units but without scaling.
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ internal base class │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────────────┘
class ezdxf.entities.Underlay
Base class of PdfUnderlay, DwfUnderlay and DgnUnderlay
dxf.insert
Insertion point, lower left corner of the image in OCS.
dxf.scale_x
Scaling factor in x-direction (float)
dxf.scale_y
Scaling factor in y-direction (float)
dxf.scale_z
Scaling factor in z-direction (float)
dxf.rotation
ccw rotation in degrees around the extrusion vector (float)
dxf.extrusion
extrusion vector, default is (0, 0, 1)
dxf.underlay_def_handle
Handle to the underlay definition entity, see UnderlayDefinition
dxf.flags
┌────────────────────────────────┬───────┬───────────────────────┐
│ dxf.flags │ Value │ Description │
├────────────────────────────────┼───────┼───────────────────────┤
│ UNDERLAY_CLIPPING │ 1 │ clipping is on/off │
├────────────────────────────────┼───────┼───────────────────────┤
│ UNDERLAY_ON │ 2 │ underlay is on/off │
├────────────────────────────────┼───────┼───────────────────────┤
│ UNDERLAY_MONOCHROME │ 4 │ Monochrome │
├────────────────────────────────┼───────┼───────────────────────┤
│ UNDERLAY_ADJUST_FOR_BACKGROUND │ 8 │ Adjust for background │
└────────────────────────────────┴───────┴───────────────────────┘
dxf.contrast
Contrast value (20 - 100; default is 100)
dxf.fade
Fade value (0 - 80; default is 0)
clipping
True or False (read/write)
on True or False (read/write)
monochrome
True or False (read/write)
adjust_for_background
True or False (read/write)
scale Scaling (x, y, z) tuple (read/write)
boundary_path
Boundary path as list of vertices (read/write).
Two vertices describe a rectangle (lower left and upper right corner), more than two
vertices is a polygon as clipping path.
get_underlay_def()
Returns the associated DEFINITION entity. see UnderlayDefinition.
set_underlay_def()
Set the associated DEFINITION entity. see UnderlayDefinition.
reset_boundary_path() -> None
Removes the clipping path.
PdfUnderlay
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Underlay │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'PDFUNDERLAY' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────────────┘
class ezdxf.entities.PdfUnderlay
PDF underlay.
DwfUnderlay
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Underlay │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'DWFUNDERLAY' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────────────┘
class ezdxf.entities.DwfUnderlay
DWF underlay.
DgnUnderlay
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Underlay │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'DGNUNDERLAY' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_underlay() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼─────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴─────────────────────────────────────────┘
class ezdxf.entities.DgnUnderlay
DGN underlay.
Viewport
The VIEWPORT entity (DXF Reference) is a window from a paperspace layout to the modelspace.
┌──────────────────────────┬─────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼─────────────────────────────────────────┤
│ DXF type │ 'VIEWPORT' │
├──────────────────────────┼─────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.Paperspace.add_viewport() │
├──────────────────────────┼─────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
└──────────────────────────┴─────────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Viewport
dxf.center
Center point of the viewport located in the paper space layout in paper space units stored
as 3D point. (Error in the DXF reference)
dxf.width
Viewport width in paperspace units (float)
dxf.height
Viewport height in paperspace units (float)
dxf.status
Viewport status field (int)
┌────┬───────────────────────────────────────┐
│ -1 │ On, but is fully off screen, or is │
│ │ one of the viewports that is not │
│ │ active because the $MAXACTVP count is │
│ │ currently being exceeded. │
├────┼───────────────────────────────────────┤
│ 0 │ Off │
├────┼───────────────────────────────────────┤
│ >0 │ On and active. The value indicates │
│ │ the order of stacking for the │
│ │ viewports, where 1 is the active │
│ │ viewport, 2 is the next, and so │
│ │ forth. │
└────┴───────────────────────────────────────┘
dxf.id Viewport id (int)
dxf.view_center_point
View center point in modelspace stored as 2D point, but represents a WCS point. (Error in
the DXF reference)
dxf.snap_base_point
dxf.snap_spacing
dxf.snap_angle
dxf.grid_spacing
dxf.view_direction_vector
View direction (3D vector in WCS).
dxf.view_target_point
View target point (3D point in WCS).
dxf.perspective_lens_length
Lens focal length in mm as 35mm film equivalent.
dxf.front_clip_plane_z_value
dxf.back_clip_plane_z_value
dxf.view_height
View height in WCS.
dxf.view_twist_angle
dxf.circle_zoom
dxf.flags
Viewport status bit-coded flags:
┌────────────────────┬───────────────────────────────┬──────────────────────────────┐
│ Bit value │ Constant in ezdxf.const │ Description │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 1 (0x1) │ VSF_PERSPECTIVE_MODE │ Enables perspective mode │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 2 (0x2) │ VSF_FRONT_CLIPPING │ Enables front clipping │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 4 (0x4) │ VSF_BACK_CLIPPING │ Enables back clipping │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 8 (0x8) │ VSF_USC_FOLLOW │ Enables UCS follow │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 16 (0x10) │ VSF_FRONT_CLIPPING_NOT_AT_EYE │ Enables front clip not at │
│ │ │ eye │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 32 (0x20) │ VSF_UCS_ICON_VISIBILITY │ Enables UCS icon visibility │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 64 (0x40) │ VSF_UCS_ICON_AT_ORIGIN │ Enables UCS icon at origin │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 128 (0x80) │ VSF_FAST_ZOOM │ Enables fast zoom │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 256 (0x100) │ VSF_SNAP_MODE │ Enables snap mode │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 512 (0x200) │ VSF_GRID_MODE │ Enables grid mode │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 1024 (0x400) │ VSF_ISOMETRIC_SNAP_STYLE │ Enables isometric snap style │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 2048 (0x800) │ VSF_HIDE_PLOT_MODE │ Enables hide plot mode │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 4096 (0x1000) │ VSF_KISOPAIR_TOP │ kIsoPairTop. If set and │
│ │ │ kIsoPairRight is not set, │
│ │ │ then isopair top is enabled. │
│ │ │ If both kIsoPairTop and │
│ │ │ kIsoPairRight are set, then │
│ │ │ isopair left is enabled │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 8192 (0x2000) │ VSF_KISOPAIR_RIGHT │ kIsoPairRight. If set and │
│ │ │ kIsoPairTop is not set, then │
│ │ │ isopair right is enabled │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 16384 (0x4000) │ VSF_LOCK_ZOOM │ Enables viewport zoom │
│ │ │ locking │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 32768 (0x8000) │ VSF_CURRENTLY_ALWAYS_ENABLED │ Currently always enabled │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 65536 (0x10000) │ VSF_NON_RECTANGULAR_CLIPPING │ Enables non-rectangular │
│ │ │ clipping │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 131072 (0x20000) │ VSF_TURN_VIEWPORT_OFF │ Turns the viewport off │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 262144 (0x40000) │ VSF_NO_GRID_LIMITS │ Enables the display of the │
│ │ │ grid beyond the drawing │
│ │ │ limits │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 524288 (0x80000) │ VSF_ADAPTIVE_GRID_DISPLAY │ Enable adaptive grid display │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 1048576 (0x100000) │ VSF_SUBDIVIDE_GRID │ Enables subdivision of the │
│ │ │ grid below the set grid │
│ │ │ spacing when the grid │
│ │ │ display is adaptive │
├────────────────────┼───────────────────────────────┼──────────────────────────────┤
│ 2097152 (0x200000) │ VSF_GRID_FOLLOW_WORKPLANE │ Enables grid follows │
│ │ │ workplane switching │
└────────────────────┴───────────────────────────────┴──────────────────────────────┘
Use helper method set_flag_state() to set and clear viewport flags, e.g. lock viewport:
vp.set_flag_state(ezdxf.const.VSF_LOCK_ZOOM, True)
dxf.clipping_boundary_handle
dxf.plot_style_name
dxf.render_mode
┌───┬───────────────────────────────┐
│ 0 │ 2D Optimized (classic 2D) │
├───┼───────────────────────────────┤
│ 1 │ Wireframe │
├───┼───────────────────────────────┤
│ 2 │ Hidden line │
├───┼───────────────────────────────┤
│ 3 │ Flat shaded │
├───┼───────────────────────────────┤
│ 4 │ Gouraud shaded │
├───┼───────────────────────────────┤
│ 5 │ Flat shaded with wireframe │
├───┼───────────────────────────────┤
│ 6 │ Gouraud shaded with wireframe │
└───┴───────────────────────────────┘
dxf.ucs_per_viewport
dxf.ucs_icon
dxf.ucs_origin
UCS origin as 3D point.
dxf.ucs_x_axis
UCS x-axis as 3D vector.
dxf.ucs_y_axis
UCS y-axis as 3D vector.
dxf.ucs_handle
Handle of UCSTable if UCS is a named UCS. If not present, then UCS is unnamed.
dxf.ucs_ortho_type
┌───┬──────────────────┐
│ 0 │ not orthographic │
├───┼──────────────────┤
│ 1 │ Top │
├───┼──────────────────┤
│ 2 │ Bottom │
├───┼──────────────────┤
│ 3 │ Front │
├───┼──────────────────┤
│ 4 │ Back │
├───┼──────────────────┤
│ 5 │ Left │
├───┼──────────────────┤
│ 6 │ Right │
└───┴──────────────────┘
dxf.ucs_base_handle
Handle of UCSTable of base UCS if UCS is orthographic (Viewport.dxf.ucs_ortho_type is
non-zero). If not present and Viewport.dxf.ucs_ortho_type is non-zero, then base UCS is
taken to be WORLD.
dxf.elevation
dxf.shade_plot_mode
(DXF R2004)
┌───┬──────────────┐
│ 0 │ As Displayed │
├───┼──────────────┤
│ 1 │ Wireframe │
├───┼──────────────┤
│ 2 │ Hidden │
├───┼──────────────┤
│ 3 │ Rendered │
└───┴──────────────┘
dxf.grid_frequency
Frequency of major grid lines compared to minor grid lines. (DXF R2007)
dxf.background_handle
dxf.shade_plot_handle
dxf.visual_style_handle
dxf.default_lighting_flag
dxf.default_lighting_style
┌───┬────────────────────┐
│ 0 │ One distant light │
├───┼────────────────────┤
│ 1 │ Two distant lights │
└───┴────────────────────┘
dxf.view_brightness
dxf.view_contrast
dxf.ambient_light_color_1
as AutoCAD Color Index (ACI)
dxf.ambient_light_color_2
as true color value
dxf.ambient_light_color_3
as true color value
dxf.sun_handle
dxf.ref_vp_object_1
dxf.ref_vp_object_2
dxf.ref_vp_object_3
dxf.ref_vp_object_4
frozen_layers
Set/get frozen layers as list of layer names.
is_frozen(layer_name: str) -> bool
Returns True if layer_name id frozen in this viewport.
freeze(layer_name: str) -> None
Freeze layer_name in this viewport.
thaw(layer_name: str) -> None
Thaw layer_name in this viewport.
has_extended_clipping_path
Returns True if a non-rectangular clipping path is defined.
clipping_rect() -> tuple[Vec2, Vec2]
Returns the lower left and the upper right corner of the clipping rectangle in paperspace
coordinates.
clipping_rect_corners() -> list[Vec2]
Returns the default rectangular clipping path as list of vertices. Use function
ezdxf.path.make_path() to get also non-rectangular shaped clipping paths if defined.
get_aspect_ratio() -> float
Returns the aspect ratio of the viewport, return 0.0 if width or height is zero.
get_modelspace_limits() -> tuple[float, float, float, float]
Returns the limits of the modelspace to view in drawing units as tuple (min_x, min_y,
max_x, max_y).
get_scale() -> float
Returns the scaling factor from modelspace to viewport.
get_transformation_matrix() -> Matrix44
Returns the transformation matrix from modelspace to paperspace coordinates.
Wipeout
The WIPEOUT entity (DXF Reference) is a polygonal area that masks underlying objects with the current
background color. The WIPEOUT entity is based on the IMAGE entity, but usage does not require any
knowledge about the IMAGE entity.
The handles to the support entities ImageDef and ImageDefReactor are always “0”, both are not needed by
the WIPEOUT entity.
┌──────────────────────────┬────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Image │
├──────────────────────────┼────────────────────────────────────────┤
│ DXF type │ 'WIPEOUT' │
├──────────────────────────┼────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_wipeout() │
├──────────────────────────┼────────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼────────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴────────────────────────────────────────┘
WARNING:
Do not instantiate entity classes by yourself - always use the provided factory functions!
class ezdxf.entities.Wipeout
set_masking_area(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Set a new masking area, the area is placed in the layout xy-plane.
XLine
The XLINE entity (DXF Reference) is a construction line that extents to infinity in both directions.
┌──────────────────────────┬──────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFGraphic │
├──────────────────────────┼──────────────────────────────────────┤
│ DXF type │ 'XLINE' │
├──────────────────────────┼──────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.BaseLayout.add_xline() │
├──────────────────────────┼──────────────────────────────────────┤
│ Inherited DXF attributes │ Common graphical DXF attributes │
├──────────────────────────┼──────────────────────────────────────┤
│ Required DXF version │ DXF R2000 ('AC1015') │
└──────────────────────────┴──────────────────────────────────────┘
class ezdxf.entities.XLine
dxf.start
Location point of line as (3D Point in WCS)
dxf.unit_vector
Unit direction vector as (3D Point in WCS)
transform(m: Matrix44) -> XLine
Transform the XLINE/RAY entity by transformation matrix m inplace.
translate(dx: float, dy: float, dz: float) -> XLine
Optimized XLINE/RAY translation about dx in x-axis, dy in y-axis and dz in z-axis.
DXF Objects
All DXF objects can only reside in the OBJECTS section of a DXF document.
The purpose of the OBJECTS section is to allow CAD software developers to define and store custom objects
that are not included in the basic DXF file format. These custom objects can be used to represent complex
data structures, such as database tables or project management information, that are not easily
represented by basic DXF entities.
By including custom objects in the OBJECTS section, CAD software developers can extend the functionality
of their software to support new types of data and objects. For example, a custom application might
define a new type of block or dimension style that is specific to a particular industry or workflow. By
storing this custom object definition in the OBJECTS section, the CAD software can recognize and use the
new object type in a drawing.
In summary, the OBJECTS section is an important part of the DXF file format because it allows CAD
software developers to extend the functionality of their software by defining and storing custom objects
and entity types. This makes it possible to represent complex data structures and workflows in CAD
drawings, and allows CAD software to be customized to meet the specific needs of different industries and
applications.
Dictionary
The DICTIONARY entity is a general storage entity.
AutoCAD maintains items such as MLINE_STYLES and GROUP definitions as objects in dictionaries. Other
applications are free to create and use their own dictionaries as they see fit. The prefix 'ACAD_' is
reserved for use by AutoCAD applications.
Dictionary entries are (key, DXFEntity) pairs for fully loaded or new created DXF documents. The
referenced entities are owned by the dictionary and cannot be graphical entities that always belong to
the layout in which they are located.
Loading DXF files is done in two passes, because at the first loading stage not all referenced objects
are already stored in the entity database. Therefore the entities are stored as handles strings at the
first loading stage and have to be replaced by the real entity at the second loading stage. If the
entity is still a handle string after the second loading stage, the entity does not exist.
Dictionary keys are handled case insensitive by AutoCAD, but not by ezdxf, in doubt use an uppercase key.
AutoCAD stores all keys in uppercase.
┌──────────────────┬────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼────────────────────────────────────────────────────────┤
│ DXF type │ 'DICTIONARY' │
├──────────────────┼────────────────────────────────────────────────────────┤
│ Factory function │ ezdxf.sections.objects.ObjectsSection.add_dictionary() │
└──────────────────┴────────────────────────────────────────────────────────┘
WARNING:
Do not instantiate object classes by yourself - always use the provided factory functions!
class ezdxf.entities.Dictionary
dxf.hard_owned
If set to 1, indicates that elements of the dictionary are to be treated as hard-owned.
dxf.cloning
Duplicate record cloning flag (determines how to merge duplicate entries, ignored by
ezdxf):
┌───┬─────────────────┐
│ 0 │ not applicable │
├───┼─────────────────┤
│ 1 │ keep existing │
├───┼─────────────────┤
│ 2 │ use clone │
├───┼─────────────────┤
│ 3 │ <xref>$0$<name> │
├───┼─────────────────┤
│ 4 │ $0$<name> │
├───┼─────────────────┤
│ 5 │ Unmangle name │
└───┴─────────────────┘
is_hard_owner
Returns True if the dictionary is hard owner of entities. Hard owned entities will be
destroyed by deleting the dictionary.
__len__() -> int
Returns count of dictionary entries.
__contains__(key: str) -> bool
Returns key in self.
__getitem__(key: str) -> DXFEntity
Return self[key].
The returned value can be a handle string if the entity does not exist.
Raises DXFKeyError – key does not exist
__setitem__(key: str, entity: DXFObject) -> None
Set self[key] = entity.
Only DXF objects stored in the OBJECTS section are allowed as content of Dictionary
objects. DXF entities stored in layouts are not allowed.
Raises DXFTypeError – invalid DXF type
__delitem__(key: str) -> None
Delete self[key].
Raises DXFKeyError – key does not exist
keys() Returns a KeysView of all dictionary keys.
items()
Returns an ItemsView for all dictionary entries as (key, entity) pairs. An entity can be a
handle string if the entity does not exist.
count() -> int
Returns count of dictionary entries.
get(key: str, default: DXFObject | None = None) -> DXFObject | None
Returns the DXFEntity for key, if key exist else default. An entity can be a handle string
if the entity does not exist.
add(key: str, entity: DXFObject) -> None
Add entry (key, value).
If the DICTIONARY is hard owner of its entries, the add() does NOT take ownership of the
entity automatically.
Raises
• DXFValueError – invalid entity handle
• DXFTypeError – invalid DXF type
remove(key: str) -> None
Delete entry key. Raises DXFKeyError, if key does not exist. Destroys hard owned DXF
entities.
discard(key: str) -> None
Delete entry key if exists. Does not raise an exception if key doesn’t exist and does not
destroy hard owned DXF entities.
clear() -> None
Delete all entries from the dictionary and destroys hard owned DXF entities.
add_new_dict(key: str, hard_owned: bool = False) -> Dictionary
Create a new sub-dictionary of type Dictionary.
Parameters
• key – name of the sub-dictionary
• hard_owned – entries of the new dictionary are hard owned
get_required_dict(key: str, hard_owned=False) -> Dictionary
Get entry key or create a new Dictionary, if Key not exist.
add_dict_var(key: str, value: str) -> DictionaryVar
Add a new DictionaryVar.
Parameters
• key – entry name as string
• value – entry value as string
add_xrecord(key: str) -> XRecord
Add a new XRecord.
Parameters
key – entry name as string
link_dxf_object(name: str, obj: DXFObject) -> None
Add obj and set owner of obj to this dictionary.
Graphical DXF entities have to reside in a layout and therefore can not be owned by a
Dictionary.
Raises DXFTypeError – obj has invalid DXF type
DictionaryWithDefault
┌──────────────────┬─────────────────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.Dictionary │
├──────────────────┼─────────────────────────────────────────────────────────────────────┤
│ DXF type │ 'ACDBDICTIONARYWDFLT' │
├──────────────────┼─────────────────────────────────────────────────────────────────────┤
│ Factory function │ ezdxf.sections.objects.ObjectsSection.add_dictionary_with_default() │
└──────────────────┴─────────────────────────────────────────────────────────────────────┘
class ezdxf.entities.DictionaryWithDefault
dxf.default
Handle to default entry as hex string like FF00.
get(key: str, default: DXFObject | None = None) -> DXFObject | None
Returns DXFEntity for key or the predefined dictionary wide dxf.default entity if key does
not exist or None if default value also not exist.
set_default(default: DXFObject) -> None
Set dictionary wide default entry.
Parameters
default – default entry as DXFEntity
DictionaryVar
┌──────────────────┬──────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼──────────────────────────────────────────┤
│ DXF type │ 'DICTIONARYVAR' │
├──────────────────┼──────────────────────────────────────────┤
│ Factory function │ ezdxf.entities.Dictionary.add_dict_var() │
└──────────────────┴──────────────────────────────────────────┘
class ezdxf.entities.DictionaryVar
dxf.schema
Object schema number (currently set to 0)
dxf.value
Value as string.
property value: str
Get/set the value of the DictionaryVar as string.
DXFLayout
LAYOUT entity is part of a modelspace or paperspace layout definitions.
┌──────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.PlotSettings │
├──────────────────┼───────────────────────────────────────┤
│ DXF type │ 'LAYOUT' │
├──────────────────┼───────────────────────────────────────┤
│ Factory function │ internal data structure, use Layouts │
│ │ to manage layout objects. │
└──────────────────┴───────────────────────────────────────┘
class ezdxf.entities.DXFLayout
dxf.name
Layout name as shown in tabs by CAD applications
dxf.layout_flags
┌───┬───────────────────────────────────────┐
│ 1 │ Indicates the PSLTSCALE value for │
│ │ this layout when this layout is │
│ │ current │
├───┼───────────────────────────────────────┤
│ 2 │ Indicates the LIMCHECK value for this │
│ │ layout when this layout is current │
└───┴───────────────────────────────────────┘
dxf.tab_order
default is 1
dxf.limmin
default is Vec2(0, 0)
dxf.limmax
default is Vec2(420, 297)
dxf.insert_base
default is Vec3(0, 0, 0)
dxf.extmin
default is Vec3(1e20, 1e20, 1e20)
dxf.extmax
default is Vec3(-1e20, -1e20, -1e20)
dxf.elevation
default is 0
dxf.ucs_origin
default is Vec3(0, 0, 0)
dxf.ucs_xaxis
default is Vec3(1, 0, 0)
dxf.ucs_yaxis
default is Vec3(0, 1, 0)
dxf.ucs_type
┌───┬─────────────────────────┐
│ 0 │ UCS is not orthographic │
├───┼─────────────────────────┤
│ 1 │ Top │
├───┼─────────────────────────┤
│ 2 │ Bottom │
├───┼─────────────────────────┤
│ 3 │ Front │
├───┼─────────────────────────┤
│ 4 │ Back │
├───┼─────────────────────────┤
│ 5 │ Left │
├───┼─────────────────────────┤
│ 6 │ Right │
└───┴─────────────────────────┘
default is 1
dxf.block_record_handle
dxf.viewport_handle
dxf.ucs_handle
dxf.base_ucs_handle
DXFObject
Common base class for all non-graphical DXF objects.
class ezdxf.entities.DXFObject
A class hierarchy marker class and subclass of ezdxf.entities.DXFEntity
GeoData
The GEODATA entity is associated to the Modelspace object. The GEODATA entity is supported since the DXF
version R2000, but was officially documented the first time in the DXF reference for version R2009.
┌──────────────────────┬────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────────┼────────────────────────────────────────┤
│ DXF type │ 'GEODATA' │
├──────────────────────┼────────────────────────────────────────┤
│ Factory function │ ezdxf.layouts.Modelspace.new_geodata() │
├──────────────────────┼────────────────────────────────────────┤
│ Required DXF version │ R2010 ('AC1024') │
└──────────────────────┴────────────────────────────────────────┘
SEE ALSO:
geodata_setup_local_grid.py
WARNING:
Do not instantiate object classes by yourself - always use the provided factory functions!
class ezdxf.entities.GeoData
dxf.version
┌───┬───────┐
│ 1 │ R2009 │
├───┼───────┤
│ 2 │ R2010 │
└───┴───────┘
dxf.coordinate_type
┌───┬─────────────────────────────────┐
│ 0 │ unknown │
├───┼─────────────────────────────────┤
│ 1 │ local grid │
├───┼─────────────────────────────────┤
│ 2 │ projected grid │
├───┼─────────────────────────────────┤
│ 3 │ geographic (latitude/longitude) │
└───┴─────────────────────────────────┘
dxf.block_record_handle
Handle of host BLOCK_RECORD table entry, in general the Modelspace.
dxf.design_point
Reference point in WCS coordinates.
dxf.reference_point
Reference point in geo coordinates, valid only when coordinate type is local grid. The
difference between dxf.design_point and dxf.reference_point defines the translation from
WCS coordinates to geo-coordinates.
dxf.north_direction
North direction as 2D vector. Defines the rotation (about the dxf.design_point) to
transform from WCS coordinates to geo-coordinates
dxf.horizontal_unit_scale
Horizontal unit scale, factor which converts horizontal design coordinates to meters by
multiplication.
dxf.vertical_unit_scale
Vertical unit scale, factor which converts vertical design coordinates to meters by
multiplication.
dxf.horizontal_units
Horizontal units (see BlockRecord). Will be 0 (Unitless) if units specified by horizontal
unit scale is not supported by AutoCAD enumeration.
dxf.vertical_units
Vertical units (see BlockRecord). Will be 0 (Unitless) if units specified by vertical unit
scale is not supported by AutoCAD enumeration.
dxf.up_direction
Up direction as 3D vector.
dxf.scale_estimation_method
┌───┬───────────────────────────────┐
│ 1 │ none │
├───┼───────────────────────────────┤
│ 2 │ user specified scale factor │
├───┼───────────────────────────────┤
│ 3 │ grid scale at reference point │
├───┼───────────────────────────────┤
│ 4 │ prismoidal │
└───┴───────────────────────────────┘
dxf.sea_level_correction
Bool flag specifying whether to do sea level correction.
dxf.user_scale_factor
dxf.sea_level_elevation
dxf.coordinate_projection_radius
dxf.geo_rss_tag
dxf.observation_from_tag
dxf.observation_to_tag
dxf.mesh_faces_count
source_vertices
2D source vertices in the CRS of the GeoData as VertexArray. Used together with
target_vertices to define the transformation from the CRS of the GeoData to WGS84.
target_vertices
2D target vertices in WGS84 (EPSG:4326) as VertexArray. Used together with source_vertices
to define the transformation from the CRS of the geoData to WGS84.
faces List of face definition tuples, each face entry is a 3-tuple of vertex indices (0-based).
coordinate_system_definition
The coordinate system definition string. Stored as XML. Defines the CRS used by the
GeoData. The EPSG number and other details like the axis-ordering of the CRS is stored.
get_crs() -> tuple[int, bool]
Returns the EPSG index and axis-ordering, axis-ordering is True if fist axis is labeled “E”
or “W” and False if first axis is labeled “N” or “S”.
If axis-ordering is False the CRS is not compatible with the __geo_interface__ or GeoJSON
(see chapter 3.1.1).
Raises InvalidGeoDataException – for invalid or unknown XML data
The EPSG number is stored in a tag like:
<Alias id="27700" type="CoordinateSystem">
<ObjectId>OSGB1936.NationalGrid</ObjectId>
<Namespace>EPSG Code</Namespace>
</Alias>
The axis-ordering is stored in a tag like:
<Axis uom="METER">
<CoordinateSystemAxis>
<AxisOrder>1</AxisOrder>
<AxisName>Easting</AxisName>
<AxisAbbreviation>E</AxisAbbreviation>
<AxisDirection>east</AxisDirection>
</CoordinateSystemAxis>
<CoordinateSystemAxis>
<AxisOrder>2</AxisOrder>
<AxisName>Northing</AxisName>
<AxisAbbreviation>N</AxisAbbreviation>
<AxisDirection>north</AxisDirection>
</CoordinateSystemAxis>
</Axis>
get_crs_transformation(*, no_checks: bool = False) -> tuple[Matrix44, int]
Returns the transformation matrix and the EPSG index to transform WCS coordinates into CRS
coordinates. Because of the lack of proper documentation this method works only for tested
configurations, set argument no_checks to True to use the method for untested geodata
configurations, but the results may be incorrect.
Supports only “Local Grid” transformation!
Raises InvalidGeoDataException – for untested geodata configurations
setup_local_grid(*, design_point: UVec, reference_point: UVec, north_direction: UVec = (0, 1),
crs: str = EPSG_3395)
Setup local grid coordinate system. This method is designed to setup CRS similar to
EPSG:3395 World Mercator, the basic features of the CRS should fulfill these assumptions:
• base unit of reference coordinates is 1 meter
• right-handed coordinate system: +Y=north/+X=east/+Z=up
The CRS string is not validated nor interpreted!
HINT:
The reference point must be a 2D cartesian map coordinate and not a globe (lon/lat)
coordinate like stored in GeoJSON or GPS data.
Parameters
• design_point – WCS coordinates of the CRS reference point
• reference_point – CRS reference point in 2D cartesian coordinates
• north_direction – north direction a 2D vertex, default is (0, 1)
• crs – Coordinate Reference System definition XML string, default is the definition
string for EPSG:3395 World Mercator
ImageDef
The IMAGEDEF entity defines an image file, which can be placed by the Image entity.
┌──────────────────────┬───────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────────┼───────────────────────────────────────────────────────┤
│ DXF type │ 'IMAGEDEF' │
├──────────────────────┼───────────────────────────────────────────────────────┤
│ Factory function (1) │ ezdxf.document.Drawing.add_image_def() │
├──────────────────────┼───────────────────────────────────────────────────────┤
│ Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_image_def() │
└──────────────────────┴───────────────────────────────────────────────────────┘
WARNING:
Do not instantiate object classes by yourself - always use the provided factory functions!
class ezdxf.entities.ImageDef
dxf.class_version
Current version is 0.
dxf.filename
Relative (to the DXF file) or absolute path to the image file as string.
dxf.image_size
Image size in pixel as (x, y) tuple.
dxf.pixel_size
Default size of one pixel in drawing units as (x, y) tuple.
dxf.loaded
0 = unloaded; 1 = loaded, default is 1
dxf.resolution_units
┌───┬─────────────┐
│ 0 │ No units │
├───┼─────────────┤
│ 2 │ Centimeters │
├───┼─────────────┤
│ 5 │ Inch │
└───┴─────────────┘
default is 0
ImageDefReactor
class ezdxf.entities.ImageDefReactor
dxf.class_version
dxf.image_handle
MLeaderStyle
The MLEADERSTYLE entity (DXF Reference) stores all attributes required to create new MultiLeader
entities. The meaning of these attributes are not really documented in the DXF Reference. The default
style “Standard” always exist.
SEE ALSO:
• ezdxf.entities.MultiLeader
• ezdxf.render.MultiLeaderBuilder
• Tutorial for MultiLeader
Create a new MLeaderStyle:
import ezdxf
doc = ezdxf.new()
new_style = doc.mleader_styles.new("NewStyle")
Duplicate an existing style:
duplicated_style = doc.mleader_styles.duplicate_entry("Standard", "DuplicatedStyle")
┌──────────────────┬─────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼─────────────────────────────────────────────┤
│ DXF type │ 'MLEADERSTYLE' │
├──────────────────┼─────────────────────────────────────────────┤
│ Factory function │ ezdxf.document.Drawing.mleader_styles.new() │
└──────────────────┴─────────────────────────────────────────────┘
class ezdxf.entities.MLeaderStyle
dxf.align_space
unknown meaning
dxf.arrow_head_handle
handle of default arrow head, see also ezdxf.render.arrows module, by default no handle is
set, which mean default arrow “closed filled”
dxf.arrow_head_size
default arrow head size in drawing units, default is 4.0
dxf.block_color
default block color as ;term:raw color value, default is BY_BLOCK_RAW_VALUE
dxf.block_connection_type
┌───┬─────────────────┐
│ 0 │ center extents │
├───┼─────────────────┤
│ 1 │ insertion point │
└───┴─────────────────┘
dxf.block_record_handle
handle to block record of the BLOCK content, not set by default
dxf.block_rotation
default BLOCK rotation in radians, default is 0.0
dxf.block_scale_x
default block x-axis scale factor, default is 1.0
dxf.block_scale_y
default block y-axis scale factor, default is 1.0
dxf.block_scale_z
default block z-axis scale factor, default is 1.0
dxf.break_gap_size
default break gap size, default is 3.75
dxf.char_height
default MTEXT char height, default is 4.0
dxf.content_type
┌───┬───────────┐
│ 0 │ none │
├───┼───────────┤
│ 1 │ BLOCK │
├───┼───────────┤
│ 2 │ MTEXT │
├───┼───────────┤
│ 3 │ TOLERANCE │
└───┴───────────┘
default is MTEXT (2)
dxf.default_text_content
default MTEXT content as string, default is “”
dxf.dogleg_length
default dogleg length, default is 8.0
dxf.draw_leader_order_type
unknown meaning
dxf.draw_mleader_order_type
unknown meaning
dxf.first_segment_angle_constraint
angle of fist leader segment in radians, default is 0.0
dxf.has_block_rotation
dxf.has_block_scaling
dxf.has_dogleg
default is 1
dxf.has_landing
default is 1
dxf.is_annotative
default is 0
dxf.landing_gap_size
default landing gap size, default is 2.0
dxf.leader_line_color
default leader line color as raw-color value, default is BY_BLOCK_RAW_VALUE
dxf.leader_linetype_handle
handle of default leader linetype
dxf.leader_lineweight
default leader lineweight, default is LINEWEIGHT_BYBLOCK
dxf.leader_type
┌───┬──────────────────────┐
│ 0 │ invisible │
├───┼──────────────────────┤
│ 1 │ straight line leader │
├───┼──────────────────────┤
│ 2 │ spline leader │
└───┴──────────────────────┘
default is 1
dxf.max_leader_segments_points
max count of leader segments, default is 2
dxf.name
MLEADERSTYLE name
dxf.overwrite_property_value
unknown meaning
dxf.scale
overall scaling factor, default is 1.0
dxf.second_segment_angle_constraint
angle of fist leader segment in radians, default is 0.0
dxf.text_align_always_left
use always left side to attach leaders, default is 0
dxf.text_alignment_type
unknown meaning - its not the MTEXT attachment point!
dxf.text_angle_type
┌───┬───────────────────────────────────────┐
│ 0 │ text angle is equal to last leader │
│ │ line segment angle │
├───┼───────────────────────────────────────┤
│ 1 │ text is horizontal │
├───┼───────────────────────────────────────┤
│ 2 │ text angle is equal to last leader │
│ │ line segment angle, but potentially │
│ │ rotated by 180 degrees so the right │
│ │ side is up for readability. │
└───┴───────────────────────────────────────┘
default is 1
dxf.text_attachment_direction
defines whether the leaders attach to the left & right of the content BLOCK/MTEXT or attach
to the top & bottom:
┌───┬──────────────────────────────────────┐
│ 0 │ horizontal - left & right of content │
├───┼──────────────────────────────────────┤
│ 1 │ vertical - top & bottom of content │
└───┴──────────────────────────────────────┘
default is 0
dxf.text_bottom_attachment_type
┌────┬─────────────────────┐
│ 9 │ center │
├────┼─────────────────────┤
│ 10 │ overline and center │
└────┴─────────────────────┘
default is 9
dxf.text_color
default MTEXT color as raw-color value, default is BY_BLOCK_RAW_VALUE
dxf.text_left_attachment_type
┌───┬───────────────────────────────────────┐
│ 0 │ top of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 1 │ middle of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 2 │ middle of whole MTEXT │
├───┼───────────────────────────────────────┤
│ 3 │ middle of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 4 │ bottom of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 5 │ bottom of bottom MTEXT line & │
│ │ underline bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 6 │ bottom of top MTEXT line & underline │
│ │ top MTEXT line │
├───┼───────────────────────────────────────┤
│ 7 │ bottom of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 8 │ bottom of top MTEXT line & underline │
│ │ all MTEXT lines │
└───┴───────────────────────────────────────┘
dxf.text_right_attachment_type
┌───┬───────────────────────────────────────┐
│ 0 │ top of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 1 │ middle of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 2 │ middle of whole MTEXT │
├───┼───────────────────────────────────────┤
│ 3 │ middle of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 4 │ bottom of bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 5 │ bottom of bottom MTEXT line & │
│ │ underline bottom MTEXT line │
├───┼───────────────────────────────────────┤
│ 6 │ bottom of top MTEXT line & underline │
│ │ top MTEXT line │
├───┼───────────────────────────────────────┤
│ 7 │ bottom of top MTEXT line │
├───┼───────────────────────────────────────┤
│ 8 │ bottom of top MTEXT line & underline │
│ │ all MTEXT lines │
└───┴───────────────────────────────────────┘
dxf.text_style_handle
handle of the default MTEXT text style, not set by default, which means “Standard”
dxf.text_top_attachment_type
┌────┬─────────────────────┐
│ 9 │ center │
├────┼─────────────────────┤
│ 10 │ overline and center │
└────┴─────────────────────┘
Placeholder
The ACDBPLACEHOLDER object for internal usage.
┌──────────────────┬─────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼─────────────────────────────────────────────────────────┤
│ DXF type │ 'ACDBPLACEHOLDER' │
├──────────────────┼─────────────────────────────────────────────────────────┤
│ Factory function │ ezdxf.sections.objects.ObjectsSection.add_placeholder() │
└──────────────────┴─────────────────────────────────────────────────────────┘
WARNING:
Do not instantiate object classes by yourself - always use the provided factory functions!
class ezdxf.entities.Placeholder
PlotSettings
All PLOTSETTINGS attributes are part of the DXFLayout entity, I don’t know if this entity also appears as
standalone entity.
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'PLOTSETTINGS' │
├──────────────────┼──────────────────────────┤
│ Factory function │ internal data structure │
└──────────────────┴──────────────────────────┘
class ezdxf.entities.PlotSettings
dxf.page_setup_name
default is “”
dxf.plot_configuration_file
default is “Adobe PDF”
dxf.paper_size
default is “A3”
dxf.plot_view_name
default is “”
dxf.left_margin
default is 7.5 mm
dxf.bottom_margin
default is 20 mm
dxf.right_margin
default is 7.5 mm
dxf.top_margin
default is 20 mm
dxf.paper_width
default is 420 mm
dxf.paper_height
default is 297 mm
dxf.plot_origin_x_offset
default is 0
dxf.plot_origin_y_offset
default is 0
dxf.plot_window_x1
default is 0
dxf.plot_window_y1
default is 0
dxf.plot_window_x2
default is 0
dxf.plot_window_y2
default is 0
dxf.scale_numerator
default is 1
dxf.scale_denominator
default is 1
dxf.plot_layout_flags
┌───────┬───────────────────────────────────────┐
│ 1 │ plot viewport borders │
├───────┼───────────────────────────────────────┤
│ 2 │ show plot-styles │
├───────┼───────────────────────────────────────┤
│ 4 │ plot centered │
├───────┼───────────────────────────────────────┤
│ 8 │ plot hidden == hide paperspace │
│ │ entities? │
├───────┼───────────────────────────────────────┤
│ 16 │ use standard scale │
├───────┼───────────────────────────────────────┤
│ 32 │ plot with plot-styles │
├───────┼───────────────────────────────────────┤
│ 64 │ scale lineweights │
├───────┼───────────────────────────────────────┤
│ 128 │ plot entity lineweights │
├───────┼───────────────────────────────────────┤
│ 512 │ draw viewports first │
├───────┼───────────────────────────────────────┤
│ 1024 │ model type │
├───────┼───────────────────────────────────────┤
│ 2048 │ update paper │
├───────┼───────────────────────────────────────┤
│ 4096 │ zoom to paper on update │
├───────┼───────────────────────────────────────┤
│ 8192 │ initializing │
├───────┼───────────────────────────────────────┤
│ 16384 │ prev plot-init │
└───────┴───────────────────────────────────────┘
default is 688
dxf.plot_paper_units
┌───┬─────────────────────┐
│ 0 │ Plot in inches │
├───┼─────────────────────┤
│ 1 │ Plot in millimeters │
├───┼─────────────────────┤
│ 2 │ Plot in pixels │
└───┴─────────────────────┘
dxf.plot_rotation
┌───┬─────────────────────────────┐
│ 0 │ No rotation │
├───┼─────────────────────────────┤
│ 1 │ 90 degrees counterclockwise │
├───┼─────────────────────────────┤
│ 2 │ Upside-down │
├───┼─────────────────────────────┤
│ 3 │ 90 degrees clockwise │
└───┴─────────────────────────────┘
dxf.plot_type
┌───┬───────────────────────────────────────┐
│ 0 │ Last screen display │
├───┼───────────────────────────────────────┤
│ 1 │ Drawing extents │
├───┼───────────────────────────────────────┤
│ 2 │ Drawing limits │
├───┼───────────────────────────────────────┤
│ 3 │ View specified by code 6 │
├───┼───────────────────────────────────────┤
│ 4 │ Window specified by codes 48, 49, │
│ │ 140, and 141 │
├───┼───────────────────────────────────────┤
│ 5 │ Layout information │
└───┴───────────────────────────────────────┘
dxf.current_style_sheet
default is “”
dxf.standard_scale_type
┌────┬───────────────┐
│ 0 │ Scaled to Fit │
├────┼───────────────┤
│ 1 │ 1/128”=1’ │
├────┼───────────────┤
│ 2 │ 1/64”=1’ │
├────┼───────────────┤
│ 3 │ 1/32”=1’ │
├────┼───────────────┤
│ 4 │ 1/16”=1’ │
├────┼───────────────┤
│ 5 │ 3/32”=1’ │
├────┼───────────────┤
│ 6 │ 1/8”=1’ │
├────┼───────────────┤
│ 7 │ 3/16”=1’ │
├────┼───────────────┤
│ 8 │ 1/4”=1’ │
├────┼───────────────┤
│ 9 │ 3/8”=1’ │
├────┼───────────────┤
│ 10 │ 1/2”=1’ │
├────┼───────────────┤
│ 11 │ 3/4”=1’ │
├────┼───────────────┤
│ 12 │ 1”=1’ │
├────┼───────────────┤
│ 13 │ 3”=1’ │
├────┼───────────────┤
│ 14 │ 6”=1’ │
├────┼───────────────┤
│ 15 │ 1’=1’ │
├────┼───────────────┤
│ 16 │ 1:1 │
├────┼───────────────┤
│ 17 │ 1:2 │
├────┼───────────────┤
│ 18 │ 1:4 │
├────┼───────────────┤
│ 19 │ 1:8 │
├────┼───────────────┤
│ 20 │ 1:10 │
├────┼───────────────┤
│ 21 │ 1:16 │
├────┼───────────────┤
│ 22 │ 1:20 │
├────┼───────────────┤
│ 23 │ 1:30 │
├────┼───────────────┤
│ 24 │ 1:40 │
├────┼───────────────┤
│ 25 │ 1:50 │
├────┼───────────────┤
│ 26 │ 1:100 │
├────┼───────────────┤
│ 27 │ 2:1 │
├────┼───────────────┤
│ 28 │ 4:1 │
├────┼───────────────┤
│ 29 │ 8:1 │
├────┼───────────────┤
│ 30 │ 10:1 │
├────┼───────────────┤
│ 31 │ 100:1 │
├────┼───────────────┤
│ 32 │ 1000:1 │
└────┴───────────────┘
dxf.shade_plot_mode
┌───┬──────────────┐
│ 0 │ As Displayed │
├───┼──────────────┤
│ 1 │ Wireframe │
├───┼──────────────┤
│ 2 │ Hidden │
├───┼──────────────┤
│ 3 │ Rendered │
└───┴──────────────┘
dxf.shade_plot_resolution_level
┌───┬──────────────┐
│ 0 │ Draft │
├───┼──────────────┤
│ 1 │ Preview │
├───┼──────────────┤
│ 2 │ Normal │
├───┼──────────────┤
│ 3 │ Presentation │
├───┼──────────────┤
│ 4 │ Maximum │
├───┼──────────────┤
│ 5 │ Custom │
└───┴──────────────┘
dxf.shade_plot_custom_dpi
default is 300
dxf.unit_factor
default is 1
dxf.paper_image_origin_x
default is 0
dxf.paper_image_origin_y
default is 0
dxf.shade_plot_handle
SpatialFilter
The SPATIAL_FILTER object stores the clipping path for external references and block references. For
more information about getting, setting and removing clippings paths read the docs for the
ezdxf.xclip.XClip class.
The HEADER variable $XCLIPFRAME determines if the clipping path is displayed and plotted:
┌───┬────────────────────────────┐
│ 0 │ not displayed, not plotted │
├───┼────────────────────────────┤
│ 1 │ displayed, not plotted │
├───┼────────────────────────────┤
│ 2 │ displayed and plotted │
└───┴────────────────────────────┘
SEE ALSO:
• ezdxf.xclip
• Knowledge Graph: https://ezdxf.mozman.at/notes/#/page/spatial_filter
┌──────────────────┬──────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼──────────────────────────┤
│ DXF type │ 'SPATIAL_FILTER' │
├──────────────────┼──────────────────────────┤
│ Factory function │ internal data structure │
└──────────────────┴──────────────────────────┘
class ezdxf.entities.SpatialFilter
dxf.back_clipping_plane_distance
Defines the distance of the back clipping plane from the origin in direction of the
extrusion vector.
dxf.is_clipping_enabled
Block reference clipping is enabled when 1 and disabled when 0.
dxf.extrusion
Defines the orientation of the OCS
dxf.front_clipping_plane_distance
Defines the distance of the front clipping plane from the origin in direction of the
extrusion vector.
dxf.has_back_clipping_plane
dxf.has_front_clipping_plane
dxf.origin
Defines the origin of the OCS
property boundary_vertices: tuple[Vec2, ...]
Returns the clipping path vertices in OCS coordinates.
property inverse_insert_matrix: Matrix44
Returns the inverse insert matrix.
This matrix is the inverse of the original block reference (insert entity) transformation.
The original block reference transformation is the one that is applied to all entities in
the block when the block reference is regenerated.
property transform_matrix: Matrix44
Returns the transform matrix.
This matrix transforms points into the coordinate system of the clip boundary.
set_boundary_vertices(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Set the clipping path vertices in OCS coordinates.
set_inverse_insert_matrix(m: Matrix44) -> None
set_transform_matrix(m: Matrix44) -> None
Sun
The SUN entity defines properties of the sun.
┌──────────────────┬───────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼───────────────────────────────────────┤
│ DXF type │ 'SUN' │
├──────────────────┼───────────────────────────────────────┤
│ Factory function │ creating a new SUN entity is not │
│ │ supported │
└──────────────────┴───────────────────────────────────────┘
class ezdxf.entities.Sun
dxf.version
Current version is 1.
dxf.status
on = 1 or off = 0
dxf.color
AutoCAD Color Index (ACI) value of the sun.
dxf.true_color
true-color value of the sun.
dxf.intensity
Intensity value in the range of [0, 1]. (float)
dxf.julian_day
use calendardate() to convert dxf.julian_day to datetime.datetime object.
dxf.time
Day time in seconds past midnight. (int)
dxf.daylight_savings_time
dxf.shadows
┌───┬─────────────────────────┐
│ 0 │ Sun do not cast shadows │
├───┼─────────────────────────┤
│ 1 │ Sun do cast shadows │
└───┴─────────────────────────┘
dxf.shadow_type
dxf.shadow_map_size
dxf.shadow_softness
UnderlayDefinition
UnderlayDefinition (DXF Reference) defines an underlay file, which can be placed by the Underlay entity.
┌──────────────────────┬──────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ DXF type │ internal base class │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │
└──────────────────────┴──────────────────────────────────────────────────────────┘
class ezdxf.entities.UnderlayDefinition
Base class of PdfDefinition, DwfDefinition and DgnDefinition
dxf.filename
Relative (to the DXF file) or absolute path to the underlay file as string.
dxf.name
Defines which part of the underlay file to display.
┌───────┬──────────────────┐
│ “pdf” │ PDF page number │
├───────┼──────────────────┤
│ “dgn” │ always “default” │
├───────┼──────────────────┤
│ “dwf” │ ? │
└───────┴──────────────────┘
WARNING:
Do not instantiate object classes by yourself - always use the provided factory functions!
PdfDefinition
┌──────────────────────┬──────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.UnderlayDefinition │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ DXF type │ 'PDFDEFINITION' │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │
└──────────────────────┴──────────────────────────────────────────────────────────┘
class ezdxf.entities.PdfDefinition
PDF underlay file.
DwfDefinition
┌──────────────────────┬──────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.UnderlayDefinition │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ DXF type │ 'DWFDEFINITION' │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │
└──────────────────────┴──────────────────────────────────────────────────────────┘
class ezdxf.entities.DwfDefinition
DWF underlay file.
DgnDefinition
┌──────────────────────┬──────────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.UnderlayDefinition │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ DXF type │ 'DGNDEFINITION' │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (1) │ ezdxf.document.Drawing.add_underlay_def() │
├──────────────────────┼──────────────────────────────────────────────────────────┤
│ Factory function (2) │ ezdxf.sections.objects.ObjectsSection.add_underlay_def() │
└──────────────────────┴──────────────────────────────────────────────────────────┘
class ezdxf.entities.DgnDefinition
DGN underlay file.
XRecord
Important class for storing application defined data in DXF files.
The XRECORD entities are used to store and manage arbitrary data. They are composed of DXF group codes
ranging from 1 through 369. This object is similar in concept to XDATA but is not limited by size or
order.
To reference a XRECORD by an DXF entity, store the handle of the XRECORD in the XDATA section,
application defined data or the ExtensionDict of the DXF entity.
SEE ALSO:
• Extended Data (XDATA)
• Extension Dictionary
• Storing Custom Data in DXF Files
┌──────────────────┬─────────────────────────────────────────────────────┐
│ Subclass of │ ezdxf.entities.DXFObject │
├──────────────────┼─────────────────────────────────────────────────────┤
│ DXF type │ 'XRECORD' │
├──────────────────┼─────────────────────────────────────────────────────┤
│ Factory function │ ezdxf.sections.objects.ObjectsSection.add_xrecord() │
└──────────────────┴─────────────────────────────────────────────────────┘
WARNING:
Do not instantiate object classes by yourself - always use the provided factory functions!
class ezdxf.entities.XRecord
dxf.cloning
Duplicate record cloning flag (determines how to merge duplicate entries, ignored by
ezdxf):
┌───┬─────────────────┐
│ 0 │ not applicable │
├───┼─────────────────┤
│ 1 │ keep existing │
├───┼─────────────────┤
│ 2 │ use clone │
├───┼─────────────────┤
│ 3 │ <xref>$0$<name> │
├───┼─────────────────┤
│ 4 │ $0$<name> │
├───┼─────────────────┤
│ 5 │ Unmangle name │
└───┴─────────────────┘
tags Raw DXF tag container Tags. Be careful ezdxf does not validate the content of XRECORDS.
clear() -> None
Remove all DXF tags.
reset(tags: Iterable[tuple[int, Any] | DXFTag]) -> None
Reset DXF tags.
extend(tags: Iterable[tuple[int, Any] | DXFTag]) -> None
Extend DXF tags.
Extended Data (XDATA)
Extended data (XDATA) is a DXF tags structure to store arbitrary data in DXF entities. The XDATA is
associated to an AppID and only one tag list is supported for each AppID per entity.
WARNING:
Low level usage of XDATA is an advanced feature, it is the responsibility of the programmer to create
valid XDATA structures. Any errors can invalidate the DXF file!
This section shows how to store DXF tags directly in DXF entity but there is also a more user friendly
and safer way to store custom XDATA in DXF entities:
• XDataUserList
• XDataUserDict
Use the high level methods of DXFEntity to manage XDATA tags.
• has_xdata()
• get_xdata()
• set_xdata()
Get XDATA tags as a ezdxf.lldxf.tags.Tags data structure, without the mandatory first tag (1001, AppID):
if entity.has_xdata("EZDXF"):
tags = entity.get_xdata("EZDXF")
# or use alternatively:
try:
tags = entity.get_xdata("EZDXF")
except DXFValueError:
# XDATA for "EZDXF" does not exist
...
Set DXF tags as list of (group code, value) tuples or as ezdxf.lldxf.tags.Tags data structure, valid DXF
tags for XDATA are documented in the section about the Extended Data internals. The mandatory first tag
(1001, AppID) is inserted automatically if not present.
Set only new XDATA tags:
if not entity.has_xdata("EZDXF"):
entity.set_xdata("EZDXF", [(1000, "MyString")])
Replace or set new XDATA tags:
entity.set_xdata("EZDXF", [(1000, "MyString")])
SEE ALSO:
• Tutorial: Storing Custom Data in DXF Files
• Internals about Extended Data tags
• Internal XDATA management class: XData
• DXF R2018 Reference
Application-Defined Data (AppData)
The application-defined data feature is not very well documented in the DXF reference, so usage as custom
data store is not recommended. AutoCAD uses these feature to store the handle to the extension dictionary
(ExtensionDict) of a DXF entity and the handles to the persistent reactors (Reactors) of a DXF entity.
Use the high level methods of DXFEntity to manage application-defined data tags.
• has_app_data()
• get_app_data()
• set_app_data()
• discard_app_data()
HINT:
Ezdxf uses special classes to manage the extension dictionary and the reactor handles. These features
cannot be accessed by the methods above.
Set application-defined data:
entity.set_app_data("YOURAPPID", [(1, "DataString")]))
Setting the content tags can contain the opening structure tag (102, “{YOURAPPID”) and the closing tag
(102, “}”), but doesn’t have to. The returned Tags objects does not contain these structure tags. Which
tags are valid for application-defined data is not documented.
The AppID has to have an entry in the AppID table.
Get application-defined data:
if entity.has_app_data("YOURAPPID"):
tags = entity.get_app_data("YOURAPPID")
# tags content is [DXFTag(1, 'DataString')]
SEE ALSO:
• Internals about Application-Defined Codes
• Internal AppData management class: AppData
Extension Dictionary
Every entity can have an extension dictionary, which can reference arbitrary DXF objects from the OBJECTS
section but not graphical entities. Using this mechanism, several applications can attach data to the
same entity. The usage of extension dictionaries is more complex than Extended Data (XDATA) but also
more flexible with higher capacity for adding data.
Use the high level methods of DXFEntity to manage extension dictionaries.
• has_extension_dict()
• get_extension_dict()
• new_extension_dict()
• discard_extension_dict()
The main data storage objects referenced by extension dictionaries are:
• Dictionary, structural container
• DictionaryVar, stores a single string
• XRecord, stores arbitrary data
SEE ALSO:
• Tutorial: Storing Custom Data in DXF Files
class ezdxf.entities.xdict.ExtensionDict
Internal management class for extension dictionaries.
SEE ALSO:
• Underlying DXF Dictionary class
• DXF Internals: Extension Dictionary
• DXF R2018 Reference
property is_alive
Returns True if the underlying Dictionary object is not deleted.
__contains__(key: str)
Return key in self.
__getitem__(key: str)
Get self[key].
__setitem__(key: str, value)
Set self[key] to value.
Only DXF objects stored in the OBJECTS section are allowed as content of the extension
dictionary. DXF entities stored in layouts are not allowed.
Raises DXFTypeError – invalid DXF type
__delitem__(key: str)
Delete self[key], destroys referenced entity.
__len__()
Returns count of extension dictionary entries.
get(key: str, default=None) -> DXFEntity | None
Return extension dictionary entry key.
keys() Returns a KeysView of all extension dictionary keys.
items()
Returns an ItemsView for all extension dictionary entries as (key, entity) pairs. An entity
can be a handle string if the entity does not exist.
discard(key: str) -> None
Discard extension dictionary entry key.
add_dictionary(name: str, hard_owned: bool = True) -> Dictionary
Create a new Dictionary object as extension dictionary entry name.
add_dictionary_var(name: str, value: str) -> DictionaryVar
Create a new DictionaryVar object as extension dictionary entry name.
add_xrecord(name: str) -> XRecord
Create a new XRecord object as extension dictionary entry name.
link_dxf_object(name: str, obj: DXFObject) -> None
Link obj to the extension dictionary as entry name.
Linked objects are owned by the extensions dictionary and therefore cannot be a graphical
entity, which have to be owned by a BaseLayout.
Raises DXFTypeError – obj has invalid DXF type
destroy()
Destroy the underlying Dictionary object.
Reactors
Persistent reactors are optional object handles of objects registering themselves as reactors on an
object. Any DXF object or DXF entity may have reactors.
Use the high level methods of DXFEntity to manage persistent reactor handles.
• has_reactors()
• get_reactors()
• set_reactors()
• append_reactor_handle()
• discard_reactor_handle()
Ezdxf keeps these reactors only up to date, if this is absolute necessary according to the DXF reference.
SEE ALSO:
• Internals about Persistent Reactors
• Internal Reactors management class: Reactors
Block Reference Management
The package ezdxf is not designed as a CAD library and does not automatically monitor all internal
changes. This enables faster entity processing at the cost of an unknown state of the DXF document.
In order to carry out precise BLOCK reference management, i.e. to handle dependencies or to delete unused
BLOCK definition, the block reference status (counter) must be acquired explicitly by the package user.
All block reference management structures must be explicitly recreated each time the document content is
changed. This is not very efficient, but it is safe.
WARNING:
The DXF reference does not document all uses of blocks. The INSERT entity is just one explicit use
case, but there are also many indirect block references and the customizability of DXF allows you to
store block names and handles in many places.
There are some rules for storing names and handles and this module checks all of these known rules,
but there is no guarantee that everyone follows these rules.
Therefore, it is still possible to destroy a DXF document by deleting an absolutely necessary block
definition.
Always remember that ezdxf is not intended or suitable as a basis for a CAD application!
class ezdxf.blkrefs.BlockDefinitionIndex(doc: Drawing)
Index of all BlockRecord entities representing real BLOCK definitions, excluding all BlockRecord
entities defining model space or paper space layouts. External references (XREF) and XREF overlays
are included.
property block_records: Iterator[BlockRecord]
Returns an iterator of all BlockRecord entities representing BLOCK definitions.
rebuild()
Rebuild index from scratch.
has_handle(handle: str) -> bool
Returns True if a BlockRecord for the given block record handle exist.
by_handle(handle: str) -> BlockRecord | None
Returns the BlockRecord for the given block record handle or None.
has_name(name: str) -> bool
Returns True if a BlockRecord for the given block name exist.
by_name(name: str) -> BlockRecord | None
Returns BlockRecord for the given block name or None.
class ezdxf.blkrefs.BlockReferenceCounter(doc: Drawing, index: BlockDefinitionIndex | None = None)
Counts all block references in a DXF document.
Check if a block is referenced by any entity or any resource (DIMSYTLE, MLEADERSTYLE) in a DXF
document:
import ezdxf
from ezdxf.blkrefs import BlockReferenceCounter
doc = ezdxf.readfile("your.dxf")
counter = BlockReferenceCounter(doc)
count = counter.by_name("XYZ")
print(f"Block 'XYZ' if referenced {count} times.")
by_handle(handle: str) -> int
Returns the block reference count for a given BlockRecord handle.
by_name(block_name: str) -> int
Returns the block reference count for a given block name.
ezdxf.blkrefs.find_unreferenced_blocks(doc: Drawing) -> set[str]
Returns the names of all block definitions without references.
WARNING:
The DXF reference does not document all uses of blocks. The INSERT entity is just one explicit
use case, but there are also many indirect block references and the customizability of DXF
allows you to store block names and handles in many places.
There are some rules for storing names and handles and this module checks all of these known
rules, but there is no guarantee that everyone follows these rules.
Therefore, it is still possible to destroy a DXF document by deleting an absolutely necessary
block definition.
Added in version 1.3.5.
Const
The module ezdxf.lldxf.const, is also accessible from the ezdxf namespace:
from ezdxf.lldxf.const import DXF12
import ezdxf
print(DXF12)
print(ezdxf.const.DXF12)
DXF Version Strings
┌─────────┬──────────┬─────────┐
│ Name │ Version │ Alias │
├─────────┼──────────┼─────────┤
│ DXF9 │ “AC1004” │ “R9” │
├─────────┼──────────┼─────────┤
│ DXF10 │ “AC1006” │ “R10” │
├─────────┼──────────┼─────────┤
│ DXF12 │ “AC1009” │ “R12” │
├─────────┼──────────┼─────────┤
│ DXF13 │ “AC1012” │ “R13” │
├─────────┼──────────┼─────────┤
│ DXF14 │ “AC1014” │ “R14” │
├─────────┼──────────┼─────────┤
│ DXF2000 │ “AC1015” │ “R2000” │
├─────────┼──────────┼─────────┤
│ DXF2004 │ “AC1018” │ “R2004” │
├─────────┼──────────┼─────────┤
│ DXF2007 │ “AC1021” │ “R2007” │
├─────────┼──────────┼─────────┤
│ DXF2010 │ “AC1024” │ “R2010” │
├─────────┼──────────┼─────────┤
│ DXF2013 │ “AC1027” │ “R2013” │
├─────────┼──────────┼─────────┤
│ DXF2018 │ “AC1032” │ “R2018” │
└─────────┴──────────┴─────────┘
Exceptions
class ezdxf.lldxf.const.DXFError
Base exception for all ezdxf exceptions.
class ezdxf.lldxf.const.DXFStructureError(DXFError)
class ezdxf.lldxf.const.DXFVersionError(DXFError)
Errors related to features not supported by the chosen DXF Version
class ezdxf.lldxf.const.DXFValueError(DXFError)
class ezdxf.lldxf.const.DXFInvalidLineType(DXFValueError)
class ezdxf.lldxf.const.DXFBlockInUseError(DXFValueError)
class ezdxf.lldxf.const.DXFKeyError(DXFError)
class ezdxf.lldxf.const.DXFUndefinedBlockError(DXFKeyError)
class ezdxf.lldxf.const.DXFAttributeError(DXFError)
class ezdxf.lldxf.const.DXFIndexError(DXFError)
class ezdxf.lldxf.const.DXFTypeError(DXFError)
class ezdxf.lldxf.const.DXFTableEntryError(DXFValueError)
Colors
Colors Module
This module provides functions and constants to manage all kinds of colors in DXF documents.
Converter Functions
ezdxf.colors.rgb2int(rgb: RGB | tuple[int, int, int]) -> int
Combined integer value from (r, g, b) tuple.
ezdxf.colors.int2rgb(value: int) -> RGB
Split RGB integer value into (r, g, b) tuple.
ezdxf.colors.aci2rgb(index: int) -> RGB
Convert AutoCAD Color Index (ACI) into (r, g, b) tuple, based on default AutoCAD colors.
ezdxf.colors.luminance(color: Sequence[float]) -> float
Returns perceived luminance for an RGB color in the range [0.0, 1.0] from dark to light.
ezdxf.colors.decode_raw_color(value: int) -> tuple[int, int | RGB]
Decode raw-color value as tuple(type, Union[aci, (r, g, b)]), the true color value is a (r, g, b)
tuple.
ezdxf.colors.decode_raw_color_int(value: int) -> tuple[int, int]
Decode raw-color value as tuple(type, int), the true color value is a 24-bit int value.
ezdxf.colors.encode_raw_color(value: int | RGB) -> int
Encode true-color value or AutoCAD Color Index (ACI) color value into a :term: raw color value.
ezdxf.colors.transparency2float(value: int) -> float
Returns transparency value as float from 0 to 1, 0 for no transparency (opaque) and 1 for 100%
transparency.
Parameters
value – DXF integer transparency value, 0 for 100% transparency and 255 for opaque
ezdxf.colors.float2transparency(value: float) -> int
Returns DXF transparency value as integer in the range from 0 to 255, where 0 is 100% transparent
and 255 is opaque.
Parameters
value – transparency value as float in the range from 0 to 1, where 0 is opaque and 1 is
100% transparent.
RGB Class
class ezdxf.colors.RGB(r: int, g: int, b: int)
Named tuple representing an RGB color value.
r red channel in range [0, 255]
Type int
g green channel in range [0, 255]
Type int
b blue channel in range [0, 255]
Type int
property luminance: float
Returns perceived luminance for an RGB color in range [0.0, 1.0] from dark to light.
to_hex() -> str
Returns the color value as hex string “#RRGGBB”.
classmethod from_hex(color: str) -> Self
Returns an RGB instance from a hex color string, the color string is a hex string “RRGGBB”
with an optional leading “#”, an appended alpha channel is ignore.
to_floats() -> tuple[float, float, float]
Returns the color value as a tuple of floats in range [0, 1].
classmethod from_floats(rgb: tuple[float, float, float]) -> Self
Returns an RGB instance from floats in range [0, 1].
RGBA Class
class ezdxf.colors.RGBA(r: int, g: int, b: int, a: int = 255)
Named tuple representing an RGBA color value. The default alpha channel is 255 (opaque).
r red channel in range [0, 255]
Type int
g green channel in range [0, 255]
Type int
b blue channel in range [0, 255]
Type int
a alpha channel in range [0, 255], where 0 is transparent and 255 is opaque
Type int
property luminance: float
Returns perceived luminance for an RGB color in range [0.0, 1.0] from dark to light.
to_hex() -> str
Returns the color value as hex string “#RRGGBBAA”.
classmethod from_hex(color: str) -> Self
Returns an RGBA instance from a hex color string, the color string is a hex string
“RRGGBBAA” with an optional leading “#”. The alpha channel is optional. The default alpha
channel is 255 (opaque).
to_floats() -> tuple[float, float, float, float]
Returns the color value as a tuple of floats in range [0, 1].
classmethod from_floats(values: Sequence[float]) -> Self
Returns an RGBA instance from floats in range [0, 1].
The alpha channel is optional. The default alpha channel is 255 (opaque).
ACI Color Values
Common AutoCAD Color Index (ACI) values, also accessible as IntEnum ezdxf.enums.ACI
┌─────────────────────────────┬─────┐
│ BYBLOCK │ 0 │
├─────────────────────────────┼─────┤
│ BYLAYER │ 256 │
├─────────────────────────────┼─────┤
│ BYOBJECT │ 257 │
├─────────────────────────────┼─────┤
│ RED │ 1 │
├─────────────────────────────┼─────┤
│ YELLOW │ 2 │
├─────────────────────────────┼─────┤
│ GREEN │ 3 │
├─────────────────────────────┼─────┤
│ CYAN │ 4 │
├─────────────────────────────┼─────┤
│ BLUE │ 5 │
├─────────────────────────────┼─────┤
│ MAGENTA │ 6 │
├─────────────────────────────┼─────┤
│ BLACK (on light background) │ 7 │
├─────────────────────────────┼─────┤
│ WHITE (on dark background) │ 7 │
├─────────────────────────────┼─────┤
│ GRAY │ 8 │
├─────────────────────────────┼─────┤
│ LIGHT_GRAY │ 9 │
└─────────────────────────────┴─────┘
Default Palettes
Default color mappings from AutoCAD Color Index (ACI) to true-color values.
┌─────────────┬───────────────────────────────┐
│ model space │ DXF_DEFAULT_COLORS │
├─────────────┼───────────────────────────────┤
│ paper space │ DXF_DEFAULT_PAPERSPACE_COLORS │
└─────────────┴───────────────────────────────┘
Raw Color Types
┌──────────────────────┬──────┐
│ COLOR_TYPE_BY_LAYER │ 0xC0 │
├──────────────────────┼──────┤
│ COLOR_TYPE_BY_BLOCK │ 0xC1 │
├──────────────────────┼──────┤
│ COLOR_TYPE_RGB │ 0xC2 │
├──────────────────────┼──────┤
│ COLOR_TYPE_ACI │ 0xC3 │
├──────────────────────┼──────┤
│ COLOR_TYPE_WINDOW_BG │ 0xC8 │
└──────────────────────┴──────┘
Raw Color Vales
┌─────────────────────┬─────────────┐
│ BY_LAYER_RAW_VALUE │ -1073741824 │
├─────────────────────┼─────────────┤
│ BY_BLOCK_RAW_VALUE │ -1056964608 │
├─────────────────────┼─────────────┤
│ WINDOW_BG_RAW_VALUE │ -939524096 │
└─────────────────────┴─────────────┘
Transparency Values
┌──────────────────────┬───────────┐
│ OPAQUE │ 0x20000FF │
├──────────────────────┼───────────┤
│ TRANSPARENCY_10 │ 0x20000E5 │
├──────────────────────┼───────────┤
│ TRANSPARENCY_20 │ 0x20000CC │
├──────────────────────┼───────────┤
│ TRANSPARENCY_30 │ 0x20000B2 │
├──────────────────────┼───────────┤
│ TRANSPARENCY_40 │ 0x2000099 │
├──────────────────────┼───────────┤
│ TRANSPARENCY_50 │ 0x200007F │
├──────────────────────┼───────────┤
│ TRANSPARENCY_60 │ 0x2000066 │
├──────────────────────┼───────────┤
│ TRANSPARENCY_70 │ 0x200004C │
├──────────────────────┼───────────┤
│ TRANSPARENCY_80 │ 0x2000032 │
├──────────────────────┼───────────┤
│ TRANSPARENCY_90 │ 0x2000019 │
├──────────────────────┼───────────┤
│ TRANSPARENCY_BYBLOCK │ 0x1000000 │
└──────────────────────┴───────────┘
Enums
TextEntityAlignment
class ezdxf.enums.TextEntityAlignment(*values)
Text alignment enum for the Text, Attrib and AttDef entities.
LEFT
CENTER
RIGHT
ALIGNED
MIDDLE
FIT
BOTTOM_LEFT
BOTTOM_CENTER
BOTTOM_RIGHT
MIDDLE_LEFT
MIDDLE_CENTER
MIDDLE_RIGHT
TOP_LEFT
TOP_CENTER
TOP_RIGHT
MTextEntityAlignment
class ezdxf.enums.MTextEntityAlignment(*values)
Text alignment enum for the MText entity.
TOP_LEFT
TOP_CENTER
TOP_RIGHT
MIDDLE_LEFT
MIDDLE_CENTER
MIDDLE_RIGHT
BOTTOM_LEFT
BOTTOM_CENTER
BOTTOM_RIGHT
MTextParagraphAlignment
class ezdxf.enums.MTextParagraphAlignment(*values)
DEFAULT
LEFT
RIGHT
CENTER
JUSTIFIED
DISTRIBUTED
MTextFlowDirection
class ezdxf.enums.MTextFlowDirection(*values)
LEFT_TO_RIGHT
TOP_TO_BOTTOM
BY_STYLE
MTextLineAlignment
class ezdxf.enums.MTextLineAlignment(*values)
BOTTOM
MIDDLE
TOP
MTextStroke
class ezdxf.enums.MTextStroke(*values)
Combination of flags is supported: UNDERLINE + STRIKE_THROUGH
UNDERLINE
STRIKE_THROUGH
OVERLINE
MTextLineSpacing
class ezdxf.enums.MTextLineSpacing(*values)
AT_LEAST
EXACT
MTextBackgroundColor
class ezdxf.enums.MTextBackgroundColor(*values)
OFF
COLOR
WINDOW
CANVAS
InsertUnits
class ezdxf.enums.InsertUnits(*values)
Unitless
Inches
Feet
Miles
Millimeters
Centimeters
Meters
Kilometers
Microinches
Mils
Yards
Angstroms
Nanometers
Microns
Decimeters
Decameters
Hectometers
Gigameters
AstronomicalUnits
Lightyears
Parsecs
USSurveyFeet
USSurveyInch
USSurveyYard
USSurveyMile
Measurement
class ezdxf.enums.Measurement(*values)
Imperial
Metric
LengthUnits
class ezdxf.enums.LengthUnits(*values)
Scientific
Decimal
Engineering
Architectural
Fractional
AngularUnits
class ezdxf.enums.AngularUnits(*values)
DecimalDegrees
DegreesMinutesSeconds
Grad
Radians
SortEntities
class ezdxf.enums.SortEntities(*values)
DISABLE
SELECTION
Sorts for object selection
SNAP Sorts for object snap
REDRAW Sorts for redraws; obsolete
MSLIDE Sorts for MSLIDE command slide creation; obsolete
REGEN Sorts for REGEN commands
PLOT Sorts for plotting
POSTSCRIPT
Sorts for PostScript output; obsolete
ACI
class ezdxf.enums.ACI(*values)
AutoCAD Color Index
BYBLOCK
BYLAYER
BYOBJECT
RED
YELLOW
GREEN
CYAN
BLUE
MAGENTA
BLACK
WHITE
GRAY
LIGHT_GRAY
EndCaps
class ezdxf.enums.EndCaps(*values)
Lineweight end caps setting for new objects.
NONE
ROUND
ANGLE
SQUARE
JoinStyle
class ezdxf.enums.JoinStyle(*values)
Lineweight joint setting for new objects.
NONE
ROUND
ANGLE
FLAT
Math
Core
Math core module: ezdxf.math
These are the core math functions and classes which should be imported from ezdxf.math.
Utility Functions
┌──────────────────────────┬───────────────────────────────────────┐
│ arc_angle_span_deg │ Returns the counter-clockwise angle │
│ │ span from start to end in degrees. │
├──────────────────────────┼───────────────────────────────────────┤
│ arc_angle_span_rad │ Returns the counter-clockwise angle │
│ │ span from start to end in radians. │
├──────────────────────────┼───────────────────────────────────────┤
│ arc_chord_length │ Returns the chord length for an arc │
│ │ defined by radius and the sagitta. │
├──────────────────────────┼───────────────────────────────────────┤
│ arc_segment_count │ Returns the count of required │
│ │ segments for the approximation of an │
│ │ arc for a given maximum sagitta. │
├──────────────────────────┼───────────────────────────────────────┤
│ area │ Returns the area of a polygon. │
├──────────────────────────┼───────────────────────────────────────┤
│ closest_point │ Returns the closest point to a give │
│ │ base point. │
├──────────────────────────┼───────────────────────────────────────┤
│ ellipse_param_span │ Returns the counter-clockwise params │
│ │ span of an elliptic arc from start- │
│ │ to end param. │
├──────────────────────────┼───────────────────────────────────────┤
│ has_matrix_2d_stretching │ Returns True if matrix m performs a │
│ │ non-uniform xy-scaling. │
├──────────────────────────┼───────────────────────────────────────┤
│ has_matrix_3d_stretching │ Returns True if matrix m performs a │
│ │ non-uniform xyz-scaling. │
├──────────────────────────┼───────────────────────────────────────┤
│ open_uniform_knot_vector │ Returns an open (clamped) uniform │
│ │ knot vector for a B-spline of order │
│ │ and count control points. │
├──────────────────────────┼───────────────────────────────────────┤
│ required_knot_values │ Returns the count of required │
│ │ knot-values for a B-spline of order │
│ │ and count control points. │
├──────────────────────────┼───────────────────────────────────────┤
│ uniform_knot_vector │ Returns an uniform knot vector for a │
│ │ B-spline of order and count control │
│ │ points. │
├──────────────────────────┼───────────────────────────────────────┤
│ xround │ Extended rounding function. │
├──────────────────────────┼───────────────────────────────────────┤
│ gps_to_world_mercator │ Transform GPS (long/lat) to World │
│ │ Mercator. │
├──────────────────────────┼───────────────────────────────────────┤
│ world_mercator_to_gps │ Transform World Mercator to GPS. │
└──────────────────────────┴───────────────────────────────────────┘
ezdxf.math.closest_point(base: UVec, points: Iterable[TypeAliasForwardRef('UVec')]) -> Vec3 | None
Returns the closest point to a give base point.
Parameters
• base – base point as Vec3 compatible object
• points – iterable of points as Vec3 compatible object
ezdxf.math.uniform_knot_vector(count: int, order: int, normalize=False) -> list[float]
Returns an uniform knot vector for a B-spline of order and count control points.
order = degree + 1
Parameters
• count – count of control points
• order – spline order
• normalize – normalize values in range [0, 1] if True
ezdxf.math.open_uniform_knot_vector(count: int, order: int, normalize=False) -> list[float]
Returns an open (clamped) uniform knot vector for a B-spline of order and count control points.
order = degree + 1
Parameters
• count – count of control points
• order – spline order
• normalize – normalize values in range [0, 1] if True
ezdxf.math.required_knot_values(count: int, order: int) -> int
Returns the count of required knot-values for a B-spline of order and count control points.
Parameters
• count – count of control points, in text-books referred as “n + 1”
• order – order of B-Spline, in text-books referred as “k”
Relationship:
“p” is the degree of the B-spline, text-book notation.
• k = p + 1
• 2 ≤ k ≤ n + 1
ezdxf.math.xround(value: float, rounding: float = 0.) -> float
Extended rounding function.
The argument rounding defines the rounding limit:
┌──────┬───────────────────────────────────────┐
│ 0 │ remove fraction │
├──────┼───────────────────────────────────────┤
│ 0.1 │ round next to x.1, x.2, … x.0 │
├──────┼───────────────────────────────────────┤
│ 0.25 │ round next to x.25, x.50, x.75 or │
│ │ x.00 │
├──────┼───────────────────────────────────────┤
│ 0.5 │ round next to x.5 or x.0 │
├──────┼───────────────────────────────────────┤
│ 1.0 │ round to a multiple of 1: remove │
│ │ fraction │
├──────┼───────────────────────────────────────┤
│ 2.0 │ round to a multiple of 2: xxx2, xxx4, │
│ │ xxx6 … │
├──────┼───────────────────────────────────────┤
│ 5.0 │ round to a multiple of 5: xxx5 or │
│ │ xxx0 │
├──────┼───────────────────────────────────────┤
│ 10.0 │ round to a multiple of 10: xx10, │
│ │ xx20, … │
└──────┴───────────────────────────────────────┘
Parameters
• value – float value to round
• rounding – rounding limit
ezdxf.math.area(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> float
Returns the area of a polygon.
Returns the projected area in the xy-plane for any vertices (z-axis will be ignored).
ezdxf.math.arc_angle_span_deg(start: float, end: float) -> float
Returns the counter-clockwise angle span from start to end in degrees.
Returns the angle span in the range of [0, 360], 360 is a full circle. Full circle handling is a
special case, because normalization of angles which describe a full circle would return 0 if
treated as regular angles. e.g. (0, 360) → 360, (0, -360) → 360, (180, -180) → 360. Input angles
with the same value always return 0 by definition: (0, 0) → 0, (-180, -180) → 0, (360, 360) → 0.
ezdxf.math.arc_angle_span_rad(start: float, end: float) -> float
Returns the counter-clockwise angle span from start to end in radians.
Returns the angle span in the range of [0, 2π], 2π is a full circle. Full circle handling is a
special case, because normalization of angles which describe a full circle would return 0 if
treated as regular angles. e.g. (0, 2π) → 2π, (0, -2π) → 2π, (π, -π) → 2π. Input angles with the
same value always return 0 by definition: (0, 0) → 0, (-π, -π) → 0, (2π, 2π) → 0.
ezdxf.math.arc_segment_count(radius: float, angle: float, sagitta: float) -> int
Returns the count of required segments for the approximation of an arc for a given maximum ‐
sagitta.
Parameters
• radius – arc radius
• angle – angle span of the arc in radians
• sagitta – max. distance from the center of an arc segment to the center of its chord
ezdxf.math.arc_chord_length(radius: float, sagitta: float) -> float
Returns the chord length for an arc defined by radius and the sagitta.
Parameters
• radius – arc radius
• sagitta – distance from the center of the arc to the center of its base
ezdxf.math.ellipse_param_span(start_param: float, end_param: float) -> float
Returns the counter-clockwise params span of an elliptic arc from start- to end param.
Returns the param span in the range [0, 2π], 2π is a full ellipse. Full ellipse handling is a
special case, because normalization of params which describe a full ellipse would return 0 if
treated as regular params. e.g. (0, 2π) → 2π, (0, -2π) → 2π, (π, -π) → 2π. Input params with the
same value always return 0 by definition: (0, 0) → 0, (-π, -π) → 0, (2π, 2π) → 0.
Alias to function: ezdxf.math.arc_angle_span_rad()
ezdxf.math.has_matrix_2d_stretching(m: Matrix44) -> bool
Returns True if matrix m performs a non-uniform xy-scaling. Uniform scaling is not stretching in
this context.
Does not check if the target system is a cartesian coordinate system, use the Matrix44 property
is_cartesian for that.
ezdxf.math.has_matrix_3d_stretching(m: Matrix44) -> bool
Returns True if matrix m performs a non-uniform xyz-scaling. Uniform scaling is not stretching in
this context.
Does not check if the target system is a cartesian coordinate system, use the Matrix44 property
is_cartesian for that.
ezdxf.math.gps_to_world_mercator(longitude: float, latitude: float) -> tuple[float, float]
Transform GPS (long/lat) to World Mercator.
Transform WGS84 EPSG:4326 location given as latitude and longitude in decimal degrees as used by
GPS into World Mercator cartesian 2D coordinates in meters EPSG:3395.
Parameters
• longitude – represents the longitude value (East-West) in decimal degrees
• latitude – represents the latitude value (North-South) in decimal degrees.
Added in version 1.3.0.
ezdxf.math.world_mercator_to_gps(x: float, y: float, tol: float = 1e-6) -> tuple[float, float]
Transform World Mercator to GPS.
Transform WGS84 World Mercator EPSG:3395 location given as cartesian 2D coordinates x, y in meters
into WGS84 decimal degrees as longitude and latitude EPSG:4326 as used by GPS.
Parameters
• x – coordinate WGS84 World Mercator
• y – coordinate WGS84 World Mercator
• tol – accuracy for latitude calculation
Added in version 1.3.0.
Bulge Related Functions
┌─────────────────────────────┬───────────────────────────────────────┐
│ arc_to_bulge │ Returns bulge parameters from arc │
│ │ parameters. │
├─────────────────────────────┼───────────────────────────────────────┤
│ bulge_3_points │ Returns bulge value defined by three │
│ │ points. │
├─────────────────────────────┼───────────────────────────────────────┤
│ bulge_center │ Returns center of arc described by │
│ │ the given bulge parameters. │
├─────────────────────────────┼───────────────────────────────────────┤
│ bulge_radius │ Returns radius of arc defined by the │
│ │ given bulge parameters. │
├─────────────────────────────┼───────────────────────────────────────┤
│ bulge_to_arc │ Returns arc parameters from bulge │
│ │ parameters. │
├─────────────────────────────┼───────────────────────────────────────┤
│ bulge_from_radius_and_chord │ Returns the bulge value for the given │
│ │ arc radius and chord length. │
├─────────────────────────────┼───────────────────────────────────────┤
│ bulge_from_arc_angle │ Returns the bulge value for the given │
│ │ arc angle. │
└─────────────────────────────┴───────────────────────────────────────┘
SEE ALSO:
Description of the Bulge value.
ezdxf.math.arc_to_bulge(center: UVec, start_angle: float, end_angle: float, radius: float) -> tuple[Vec2,
Vec2, float]
Returns bulge parameters from arc parameters.
Parameters
• center – circle center point as Vec2 compatible object
• start_angle – start angle in radians
• end_angle – end angle in radians
• radius – circle radius
Returns
(start_point, end_point, bulge)
Return type
tuple
ezdxf.math.bulge_3_points(start_point: UVec, end_point: UVec, point: UVec) -> float
Returns bulge value defined by three points.
Based on 3-Points to Bulge by Lee Mac.
Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• point – arbitrary point as Vec2 compatible object
ezdxf.math.bulge_center(start_point: UVec, end_point: UVec, bulge: float) -> Vec2
Returns center of arc described by the given bulge parameters.
Based on Bulge Center by Lee Mac.
Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• bulge – bulge value as float
ezdxf.math.bulge_radius(start_point: UVec, end_point: UVec, bulge: float) -> float
Returns radius of arc defined by the given bulge parameters.
Based on Bulge Radius by Lee Mac
Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• bulge – bulge value
ezdxf.math.bulge_to_arc(start_point: UVec, end_point: UVec, bulge: float) -> tuple[Vec2, float, float,
float]
Returns arc parameters from bulge parameters.
The arcs defined by bulge values of LWPolyline and 2D Polyline entities start at the vertex which
includes the bulge value and ends at the following vertex.
IMPORTANT:
The return values always describe a counter-clockwise oriented arc, so for clockwise arcs
(negative bulge values) the start and end angles are swapped and the arc starts at the
end_point and ends at the start_point.
Based on Bulge to Arc by Lee Mac.
Parameters
• start_point – start vertex as Vec2 compatible object
• end_point – end vertex as Vec2 compatible object
• bulge – bulge value
Returns
(center, start_angle, end_angle, radius)
Return type
Tuple
ezdxf.math.bulge_from_radius_and_chord(radius: float, chord: float) -> float
Returns the bulge value for the given arc radius and chord length. Returns 0 if the radius is
zero or the radius is too small for the given chord length to create an arc.
Parameters
• radius – arc radius
• chord – chord length
ezdxf.math.bulge_from_arc_angle(angle: float) -> float
Returns the bulge value for the given arc angle.
Parameters
angle – arc angle in radians
2D Graphic Functions
┌──────────────────────────────┬───────────────────────────────────────┐
│ convex_hull_2d │ Returns the 2D convex hull of given │
│ │ points. │
├──────────────────────────────┼───────────────────────────────────────┤
│ distance_point_line_2d │ Returns the normal distance from │
│ │ point to 2D line defined by start- │
│ │ and end point. │
├──────────────────────────────┼───────────────────────────────────────┤
│ intersect_polylines_2d │ Returns the intersection points for │
│ │ two polylines as list of Vec2 │
│ │ objects, the list is empty if no │
│ │ intersection points exist. │
├──────────────────────────────┼───────────────────────────────────────┤
│ intersection_line_line_2d │ Compute the intersection of two lines │
│ │ in the xy-plane. │
├──────────────────────────────┼───────────────────────────────────────┤
│ is_axes_aligned_rectangle_2d │ Returns True if the given points │
│ │ represent a rectangle aligned with │
│ │ the coordinate system axes. │
├──────────────────────────────┼───────────────────────────────────────┤
│ is_convex_polygon_2d │ Returns True if the 2D polygon is │
│ │ convex. │
├──────────────────────────────┼───────────────────────────────────────┤
│ is_point_in_polygon_2d │ Test if point is inside polygon. │
├──────────────────────────────┼───────────────────────────────────────┤
│ is_point_left_of_line │ Returns True if point is "left of │
│ │ line" defined by start- and end │
│ │ point, a colinear point is also "left │
│ │ of line" if argument colinear is │
│ │ True. │
├──────────────────────────────┼───────────────────────────────────────┤
│ is_point_on_line_2d │ Returns True if point is on line. │
├──────────────────────────────┼───────────────────────────────────────┤
│ offset_vertices_2d │ Yields vertices of the offset line to │
│ │ the shape defined by vertices. │
├──────────────────────────────┼───────────────────────────────────────┤
│ point_to_line_relation │ Returns -1 if point is left line, +1 │
│ │ if point is right of line and 0 if │
│ │ point is on the line. │
├──────────────────────────────┼───────────────────────────────────────┤
│ rytz_axis_construction │ The Rytz’s axis construction is a │
│ │ basic method of descriptive Geometry │
│ │ to find the axes, the semi-major axis │
│ │ and semi-minor axis, starting from │
│ │ two conjugated half-diameters. │
└──────────────────────────────┴───────────────────────────────────────┘
ezdxf.math.convex_hull_2d(points: Iterable[TypeAliasForwardRef('UVec')]) -> list[Vec2]
Returns the 2D convex hull of given points.
Returns a closed polyline, first vertex is equal to the last vertex.
Parameters
points – iterable of points, z-axis is ignored
ezdxf.math.distance_point_line_2d(point: Vec2, start: Vec2, end: Vec2) -> float
Returns the normal distance from point to 2D line defined by start- and end point.
ezdxf.math.intersect_polylines_2d(p1: Sequence[Vec2], p2: Sequence[Vec2], abs_tol=1e-10) -> list[Vec2]
Returns the intersection points for two polylines as list of Vec2 objects, the list is empty if no
intersection points exist. Does not return self intersection points of p1 or p2. Duplicate
intersection points are removed from the result list, but the list does not have a particular
order! You can sort the result list by result.sort() to introduce an order.
Parameters
• p1 – first polyline as sequence of Vec2 objects
• p2 – second polyline as sequence of Vec2 objects
• abs_tol – absolute tolerance for comparisons
ezdxf.math.intersection_line_line_2d(line1: Sequence[Vec2], line2: Sequence[Vec2], virtual=True,
abs_tol=TOLERANCE) -> Vec2 | None
Compute the intersection of two lines in the xy-plane.
Parameters
• line1 – start- and end point of first line to test e.g. ((x1, y1), (x2, y2)).
• line2 – start- and end point of second line to test e.g. ((x3, y3), (x4, y4)).
• virtual – True returns any intersection point, False returns only real intersection
points.
• abs_tol – tolerance for intersection test.
Returns
None if there is no intersection point (parallel lines) or intersection point as Vec2
ezdxf.math.is_axes_aligned_rectangle_2d(points: list[Vec2]) -> bool
Returns True if the given points represent a rectangle aligned with the coordinate system axes.
The sides of the rectangle must be parallel to the x- and y-axes of the coordinate system. The
rectangle can be open or closed (first point == last point) and oriented clockwise or
counter-clockwise. Only works with 4 or 5 vertices, rectangles that have sides with collinear
edges are not considered rectangles.
Added in version 1.2.0.
ezdxf.math.is_convex_polygon_2d(polygon: list[Vec2], *, strict=False, epsilon=1e-6) -> bool
Returns True if the 2D polygon is convex.
This function supports open and closed polygons with clockwise or counter-clockwise vertex
orientation.
Coincident vertices will always be skipped and if argument strict is True, polygons with collinear
vertices are not considered as convex.
This solution works only for simple non-self-intersecting polygons!
ezdxf.math.is_point_in_polygon_2d(point: Vec2, polygon: list[Vec2], abs_tol=TOLERANCE) -> int
Test if point is inside polygon. Returns +1 for inside, 0 for on the boundary and -1 for
outside.
Supports convex and concave polygons with clockwise or counter-clockwise oriented polygon
vertices. Does not raise an exception for degenerated polygons.
Parameters
• point – 2D point to test as Vec2
• polygon – list of 2D points as Vec2
• abs_tol – tolerance for distance check
Returns
+1 for inside, 0 for on the boundary, -1 for outside
ezdxf.math.is_point_left_of_line(point: Vec2, start: Vec2, end: Vec2, colinear=False) -> bool
Returns True if point is “left of line” defined by start- and end point, a colinear point is also
“left of line” if argument colinear is True.
Parameters
• point – 2D point to test as Vec2
• start – line definition point as Vec2
• end – line definition point as Vec2
• colinear – a colinear point is also “left of line” if True
ezdxf.math.is_point_on_line_2d(point: Vec2, start: Vec2, end: Vec2, ray=True, abs_tol=TOLERANCE) -> bool
Returns True if point is on line.
Parameters
• point – 2D point to test as Vec2
• start – line definition point as Vec2
• end – line definition point as Vec2
• ray – if True point has to be on the infinite ray, if False point has to be on the line
segment
• abs_tol – tolerance for on the line test
ezdxf.math.offset_vertices_2d(vertices: Iterable[TypeAliasForwardRef('UVec')], offset: float, closed:
bool = False) -> Iterable[Vec2]
Yields vertices of the offset line to the shape defined by vertices. The source shape consist of
straight segments and is located in the xy-plane, the z-axis of input vertices is ignored. Takes
closed shapes into account if argument closed is True, which yields intersection of first and last
offset segment as first vertex for a closed shape. For closed shapes the first and last vertex can
be equal, else an implicit closing segment from last to first vertex is added. A shape with equal
first and last vertex is not handled automatically as closed shape.
WARNING:
Adjacent collinear segments in opposite directions, same as a turn by 180 degree (U-turn),
leads to unexpected results.
Parameters
• vertices – source shape defined by vertices
• offset – line offset perpendicular to direction of shape segments defined by vertices
order, offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of line segment
• closed – True to handle as closed shape
source = [(0, 0), (3, 0), (3, 3), (0, 3)]
result = list(offset_vertices_2d(source, offset=0.5, closed=True))
[image]
Example for a closed collinear shape, which creates 2 additional vertices and the first one has an
unexpected location:
source = [(0, 0), (0, 1), (0, 2), (0, 3)]
result = list(offset_vertices_2d(source, offset=0.5, closed=True))
[image]
ezdxf.math.point_to_line_relation(point: Vec2, start: Vec2, end: Vec2, abs_tol=TOLERANCE) -> int
Returns -1 if point is left line, +1 if point is right of line and 0 if point is on the line. The
line is defined by two vertices given as arguments start and end.
Parameters
• point – 2D point to test as Vec2
• start – line definition point as Vec2
• end – line definition point as Vec2
• abs_tol – tolerance for minimum distance to line
ezdxf.math.rytz_axis_construction(d1: Vec3, d2: Vec3) -> tuple[Vec3, Vec3, float]
The Rytz’s axis construction is a basic method of descriptive Geometry to find the axes, the
semi-major axis and semi-minor axis, starting from two conjugated half-diameters.
Source: Wikipedia
Given conjugated diameter d1 is the vector from center C to point P and the given conjugated
diameter d2 is the vector from center C to point Q. Center of ellipse is always (0, 0, 0). This
algorithm works for 2D/3D vectors.
Parameters
• d1 – conjugated semi-major axis as Vec3
• d2 – conjugated semi-minor axis as Vec3
Returns
Tuple of (major axis, minor axis, ratio)
3D Graphic Functions
┌───────────────────────────────────┬───────────────────────────────────────┐
│ basic_transformation │ Returns a combined transformation │
│ │ matrix for translation, scaling and │
│ │ rotation about the z-axis. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ best_fit_normal │ Returns the "best fit" normal for a │
│ │ plane defined by three or more │
│ │ vertices. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ bezier_to_bspline │ Convert multiple quadratic or cubic │
│ │ Bèzier curves into a single cubic │
│ │ B-spline. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ closed_uniform_bspline │ Creates a closed uniform (periodic) ‐ │
│ │ B-spline curve (open curve). │
├───────────────────────────────────┼───────────────────────────────────────┤
│ cubic_bezier_bbox │ Returns the BoundingBox of a cubic │
│ │ Bézier curve of type Bezier4P. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ cubic_bezier_from_3p │ Returns a cubic Bèzier curve Bezier4P │
│ │ from three points. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ cubic_bezier_from_arc │ Returns an approximation for a │
│ │ circular 2D arc by multiple cubic │
│ │ Bézier-curves. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ cubic_bezier_from_ellipse │ Returns an approximation for an │
│ │ elliptic arc by multiple cubic │
│ │ Bézier-curves. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ cubic_bezier_interpolation │ Returns an interpolation curve for │
│ │ given data points as multiple cubic │
│ │ Bézier-curves. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ distance_point_line_3d │ Returns the normal distance from a │
│ │ point to a 3D line. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ estimate_end_tangent_magnitude │ Estimate tangent magnitude of start- │
│ │ and end tangents. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ estimate_tangents │ Estimate tangents for curve defined │
│ │ by given fit points. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ fit_points_to_cad_cv │ Returns a cubic BSpline from fit │
│ │ points as close as possible to common │
│ │ CAD applications like BricsCAD. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ fit_points_to_cubic_bezier │ Returns a cubic BSpline from fit │
│ │ points without end tangents. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ global_bspline_interpolation │ B-spline interpolation by the Global │
│ │ Curve Interpolation. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ have_bezier_curves_g1_continuity │ Return True if the given adjacent │
│ │ Bézier curves have G1 continuity. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ intersect_polylines_3d │ Returns the intersection points for │
│ │ two polylines as list of Vec3 │
│ │ objects, the list is empty if no │
│ │ intersection points exist. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ intersection_line_line_3d │ Returns the intersection point of two │
│ │ 3D lines, returns None if lines do │
│ │ not intersect. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ intersection_line_polygon_3d │ Returns the intersection point of the │
│ │ 3D line form start to end and the │
│ │ given polygon. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ intersection_ray_polygon_3d │ Returns the intersection point of the │
│ │ infinite 3D ray defined by origin and │
│ │ the direction vector and the given │
│ │ polygon. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ intersection_ray_ray_3d │ Calculate intersection of two 3D │
│ │ rays, returns a 0-tuple for parallel │
│ │ rays, a 1-tuple for intersecting rays │
│ │ and a 2-tuple for not intersecting │
│ │ and not parallel rays with points of │
│ │ the closest approach on each ray. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ is_planar_face │ Returns True if sequence of vectors │
│ │ is a planar face. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ is_vertex_order_ccw_3d │ Returns True when the given 3D │
│ │ vertices have a counter-clockwise │
│ │ order around the given normal vector. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ linear_vertex_spacing │ Returns count evenly spaced vertices │
│ │ from start to end. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ local_cubic_bspline_interpolation │ B-spline interpolation by 'Local │
│ │ Cubic Curve Interpolation', which │
│ │ creates B-spline from fit points and │
│ │ estimated tangent direction at │
│ │ start-, end- and passing points. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ normal_vector_3p │ Returns normal vector for 3 points, │
│ │ which is the normalized cross product │
│ │ for: a->b x a->c. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ open_uniform_bspline │ Creates an open uniform (periodic) ‐ │
│ │ B-spline curve (open curve). │
├───────────────────────────────────┼───────────────────────────────────────┤
│ quadratic_bezier_bbox │ Returns the BoundingBox of a │
│ │ quadratic Bézier curve of type │
│ │ Bezier3P. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ quadratic_bezier_from_3p │ Returns a quadratic Bèzier curve │
│ │ Bezier3P from three points. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ quadratic_to_cubic_bezier │ Convert quadratic Bèzier curves (‐ │
│ │ ezdxf.math.Bezier3P) into cubic │
│ │ Bèzier curves (ezdxf.math.Bezier4P). │
├───────────────────────────────────┼───────────────────────────────────────┤
│ rational_bspline_from_arc │ Returns a rational B-splines for a │
│ │ circular 2D arc. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ rational_bspline_from_ellipse │ Returns a rational B-splines for an │
│ │ elliptic arc. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ safe_normal_vector │ Safe function to detect the normal │
│ │ vector for a face or polygon defined │
│ │ by 3 or more vertices. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ spherical_envelope │ Calculate the spherical envelope for │
│ │ the given points. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ split_bezier │ Split a Bèzier curve at parameter t. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ split_polygon_by_plane │ Split a convex polygon by the given │
│ │ plane. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ subdivide_face │ Subdivides faces by subdividing edges │
│ │ and adding a center vertex. │
├───────────────────────────────────┼───────────────────────────────────────┤
│ subdivide_ngons │ Subdivides faces into triangles by │
│ │ adding a center vertex. │
└───────────────────────────────────┴───────────────────────────────────────┘
SEE ALSO:
The free online book 3D Math Primer for Graphics and Game Development is a very good resource for
learning vector math and other graphic related topics, it is easy to read for beginners and especially
targeted to programmers.
ezdxf.math.basic_transformation(move: UVec = (0, 0, 0), scale: UVec = (1, 1, 1), z_rotation: float = 0)
-> Matrix44
Returns a combined transformation matrix for translation, scaling and rotation about the z-axis.
Parameters
• move – translation vector
• scale – x-, y- and z-axis scaling as float triplet, e.g. (2, 2, 1)
• z_rotation – rotation angle about the z-axis in radians
ezdxf.math.best_fit_normal(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> Vec3
Returns the “best fit” normal for a plane defined by three or more vertices. This function
tolerates imperfect plane vertices. Safe function to detect the extrusion vector of flat arbitrary
polygons.
ezdxf.math.bezier_to_bspline(curves: Iterable[Bezier3P | Bezier4P]) -> BSpline
Convert multiple quadratic or cubic Bèzier curves into a single cubic B-spline.
For good results the curves must be lined up seamlessly, i.e. the starting point of the following
curve must be the same as the end point of the previous curve. G1 continuity or better at the
connection points of the Bézier curves is required to get best results.
ezdxf.math.closed_uniform_bspline(control_points: Iterable[TypeAliasForwardRef('UVec')], order: int = 4,
weights: Iterable[float] | None = None) -> BSpline
Creates a closed uniform (periodic) B-spline curve (open curve).
This B-spline does not pass any of the control points.
Parameters
• control_points – iterable of control points as Vec3 compatible objects
• order – spline order (degree + 1)
• weights – iterable of weight values
ezdxf.math.cubic_bezier_bbox(curve: Bezier4P, *, abs_tol=1e-12) -> BoundingBox
Returns the BoundingBox of a cubic Bézier curve of type Bezier4P.
ezdxf.math.cubic_bezier_from_3p(p1: UVec, p2: UVec, p3: UVec) -> Bezier4P
Returns a cubic Bèzier curve Bezier4P from three points. The curve starts at p1, goes through p2
and ends at p3. (source: pomax-2)
ezdxf.math.cubic_bezier_from_arc(center: UVec = (0, 0, 0), radius: float = 1, start_angle: float = 0,
end_angle: float = 360, segments: int = 1) -> Iterator[Bezier4P[Vec3]]
Returns an approximation for a circular 2D arc by multiple cubic Bézier-curves.
Parameters
• center – circle center as Vec3 compatible object
• radius – circle radius
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• segments – count of Bèzier-curve segments, at least one segment for each quarter (90
deg), 1 for as few as possible.
ezdxf.math.cubic_bezier_from_ellipse(ellipse: ConstructionEllipse, segments: int = 1) -> Iterator[‐
Bezier4P[Vec3]]
Returns an approximation for an elliptic arc by multiple cubic Bézier-curves.
Parameters
• ellipse – ellipse parameters as ConstructionEllipse object
• segments – count of Bèzier-curve segments, at least one segment for each quarter (π/2), 1
for as few as possible.
ezdxf.math.cubic_bezier_interpolation(points: Iterable[TypeAliasForwardRef('UVec')]) -> Iterable[‐
Bezier4P[Vec3]]
Returns an interpolation curve for given data points as multiple cubic Bézier-curves. Returns n-1
cubic Bézier-curves for n given data points, curve i goes from point[i] to point[i+1].
Parameters
points – data points
ezdxf.math.distance_point_line_3d(point: Vec3, start: Vec3, end: Vec3) -> float
Returns the normal distance from a point to a 3D line.
Parameters
• point – point to test
• start – start point of the 3D line
• end – end point of the 3D line
ezdxf.math.estimate_end_tangent_magnitude(points: list[Vec3], method: str = 'chord') -> tuple[float,
float]
Estimate tangent magnitude of start- and end tangents.
Available estimation methods:
• “chord”: total chord length, curve approximation by straight segments
• “arc”: total arc length, curve approximation by arcs
• “bezier-n”: total length from cubic bezier curve approximation, n segments per section
Parameters
• points – start-, end- and passing points of curve
• method – tangent magnitude estimation method
ezdxf.math.estimate_tangents(points: list[Vec3], method: str = '5-points', normalize=True) -> list[Vec3]
Estimate tangents for curve defined by given fit points. Calculated tangents are normalized
(unit-vectors).
Available tangent estimation methods:
• “3-points”: 3 point interpolation
• “5-points”: 5 point interpolation
• “bezier”: tangents from an interpolated cubic bezier curve
• “diff”: finite difference
Parameters
• points – start-, end- and passing points of curve
• method – tangent estimation method
• normalize – normalize tangents if True
Returns
tangents as list of Vec3 objects
ezdxf.math.fit_points_to_cad_cv(fit_points: Iterable[TypeAliasForwardRef('UVec')], tangents:
Iterable[TypeAliasForwardRef('UVec')] | None = None) -> BSpline
Returns a cubic BSpline from fit points as close as possible to common CAD applications like
BricsCAD.
There exist infinite numerical correct solution for this setup, but some facts are known:
• CAD applications use the global curve interpolation with start- and end derivatives if the end
tangents are defined otherwise the equation system will be completed by setting the second
derivatives of the start and end point to 0, for more information read this answer on
stackoverflow: https://stackoverflow.com/a/74863330/6162864
• The degree of the B-spline is always 3 regardless which degree is stored in the SPLINE entity,
this is only valid for B-splines defined by fit points
• Knot parametrization method is “chord”
• Knot distribution is “natural”
Parameters
• fit_points – points the spline is passing through
• tangents – start- and end tangent, default is autodetect
ezdxf.math.fit_points_to_cubic_bezier(fit_points: Iterable[TypeAliasForwardRef('UVec')]) -> BSpline
Returns a cubic BSpline from fit points without end tangents.
This function uses the cubic Bèzier interpolation to create multiple Bèzier curves and combine
them into a single B-spline, this works for short simple splines better than the
fit_points_to_cad_cv(), but is worse for longer and more complex splines.
Parameters
fit_points – points the spline is passing through
ezdxf.math.global_bspline_interpolation(fit_points: Iterable[TypeAliasForwardRef('UVec')], degree: int =
3, tangents: Iterable[TypeAliasForwardRef('UVec')] | None = None, method: str = 'chord') -> BSpline
B-spline interpolation by the Global Curve Interpolation. Given are the fit points and the degree
of the B-spline. The function provides 3 methods for generating the parameter vector t:
• “uniform”: creates a uniform t vector, from 0 to 1 evenly spaced, see uniform method
• “chord”, “distance”: creates a t vector with values proportional to the fit point distances, see
chord length method
• “centripetal”, “sqrt_chord”: creates a t vector with values proportional to the fit point
sqrt(distances), see centripetal method
• “arc”: creates a t vector with values proportional to the arc length between fit points.
It is possible to constraint the curve by tangents, by start- and end tangent if only two tangents
are given or by one tangent for each fit point.
If tangents are given, they represent 1st derivatives and should be scaled if they are unit
vectors, if only start- and end tangents given the function estimate_end_tangent_magnitude() helps
with an educated guess, if all tangents are given, scaling by chord length is a reasonable choice
(Piegl & Tiller).
Parameters
• fit_points – fit points of B-spline, as list of Vec3 compatible objects
• tangents – if only two vectors are given, take the first and the last vector as start-
and end tangent constraints or if for all fit points a tangent is given use all tangents
as interpolation constraints (optional)
• degree – degree of B-spline
• method – calculation method for parameter vector t
Returns
BSpline
ezdxf.math.have_bezier_curves_g1_continuity(b1: Bezier3P | Bezier4P, b2: Bezier3P | Bezier4P, g1_tol:
float = 1e-4) -> bool
Return True if the given adjacent Bézier curves have G1 continuity.
ezdxf.math.intersect_polylines_3d(p1: Sequence[Vec3], p2: Sequence[Vec3], abs_tol=1e-10) -> list[Vec3]
Returns the intersection points for two polylines as list of Vec3 objects, the list is empty if no
intersection points exist. Does not return self intersection points of p1 or p2. Duplicate
intersection points are removed from the result list, but the list does not have a particular
order! You can sort the result list by result.sort() to introduce an order.
Parameters
• p1 – first polyline as sequence of Vec3 objects
• p2 – second polyline as sequence of Vec3 objects
• abs_tol – absolute tolerance for comparisons
ezdxf.math.intersection_line_line_3d(line1: Sequence[Vec3], line2: Sequence[Vec3], virtual: bool = True,
abs_tol: float = 1e-10) -> Vec3 | None
Returns the intersection point of two 3D lines, returns None if lines do not intersect.
Parameters
• line1 – first line as tuple of two points as Vec3 objects
• line2 – second line as tuple of two points as Vec3 objects
• virtual – True returns any intersection point, False returns only real intersection
points
• abs_tol – absolute tolerance for comparisons
ezdxf.math.intersection_line_polygon_3d(start: Vec3, end: Vec3, polygon: Iterable[Vec3], *,
coplanar=True, boundary=True, abs_tol=PLANE_EPSILON) -> Vec3 | None
Returns the intersection point of the 3D line form start to end and the given polygon.
Parameters
• start – start point of 3D line as Vec3
• end – end point of 3D line as Vec3
• polygon – 3D polygon as iterable of Vec3
• coplanar – if True a coplanar start- or end point as intersection point is valid
• boundary – if True an intersection point at the polygon boundary line is valid
• abs_tol – absolute tolerance for comparisons
ezdxf.math.intersection_ray_polygon_3d(origin: Vec3, direction: Vec3, polygon: Iterable[Vec3], *,
boundary=True, abs_tol=PLANE_EPSILON) -> Vec3 | None
Returns the intersection point of the infinite 3D ray defined by origin and the direction vector
and the given polygon.
Parameters
• origin – origin point of the 3D ray as Vec3
• direction – direction vector of the 3D ray as Vec3
• polygon – 3D polygon as iterable of Vec3
• boundary – if True intersection points at the polygon boundary line are valid
• abs_tol – absolute tolerance for comparisons
ezdxf.math.intersection_ray_ray_3d(ray1: Sequence[Vec3], ray2: Sequence[Vec3], abs_tol=TOLERANCE) ->
Sequence[Vec3]
Calculate intersection of two 3D rays, returns a 0-tuple for parallel rays, a 1-tuple for
intersecting rays and a 2-tuple for not intersecting and not parallel rays with points of the
closest approach on each ray.
Parameters
• ray1 – first ray as tuple of two points as Vec3 objects
• ray2 – second ray as tuple of two points as Vec3 objects
• abs_tol – absolute tolerance for comparisons
ezdxf.math.is_planar_face(face: Sequence[Vec3], abs_tol=1e-9) -> bool
Returns True if sequence of vectors is a planar face.
Parameters
• face – sequence of Vec3 objects
• abs_tol – tolerance for normals check
ezdxf.math.is_vertex_order_ccw_3d(vertices: list[Vec3], normal: Vec3) -> bool
Returns True when the given 3D vertices have a counter-clockwise order around the given normal
vector.
Works for convex and concave shapes. Does not check or care if all vertices are located in a flat
plane or if the normal vector is really perpendicular to the shape, but the result may be
incorrect in that cases.
Parameters
• vertices (list) – corner vertices of a flat shape (polygon)
• normal (Vec3) – normal vector of the shape
Raises ValueError – input has less than 3 vertices
ezdxf.math.linear_vertex_spacing(start: Vec3, end: Vec3, count: int) -> list[Vec3]
Returns count evenly spaced vertices from start to end.
ezdxf.math.local_cubic_bspline_interpolation(fit_points: Iterable[TypeAliasForwardRef('UVec')], method:
str = '5-points', tangents: Iterable[TypeAliasForwardRef('UVec')] | None = None) -> BSpline
B-spline interpolation by ‘Local Cubic Curve Interpolation’, which creates B-spline from fit
points and estimated tangent direction at start-, end- and passing points.
Source: Piegl & Tiller: “The NURBS Book” - chapter 9.3.4
Available tangent estimation methods:
• “3-points”: 3 point interpolation
• “5-points”: 5 point interpolation
• “bezier”: cubic bezier curve interpolation
• “diff”: finite difference
or pass pre-calculated tangents, which overrides tangent estimation.
Parameters
• fit_points – all B-spline fit points as Vec3 compatible objects
• method – tangent estimation method
• tangents – tangents as Vec3 compatible objects (optional)
Returns
BSpline
ezdxf.math.normal_vector_3p(a: Vec3, b: Vec3, c: Vec3) -> Vec3
Returns normal vector for 3 points, which is the normalized cross product for: a->b x a->c.
ezdxf.math.open_uniform_bspline(control_points: Iterable[TypeAliasForwardRef('UVec')], order: int = 4,
weights: Iterable[float] | None = None) -> BSpline
Creates an open uniform (periodic) B-spline curve (open curve).
This is an unclamped curve, which means the curve passes none of the control points.
Parameters
• control_points – iterable of control points as Vec3 compatible objects
• order – spline order (degree + 1)
• weights – iterable of weight values
ezdxf.math.quadratic_bezier_bbox(curve: Bezier3P, *, abs_tol=1e-12) -> BoundingBox
Returns the BoundingBox of a quadratic Bézier curve of type Bezier3P.
ezdxf.math.quadratic_bezier_from_3p(p1: UVec, p2: UVec, p3: UVec) -> Bezier3P
Returns a quadratic Bèzier curve Bezier3P from three points. The curve starts at p1, goes through
p2 and ends at p3. (source: pomax-2)
ezdxf.math.quadratic_to_cubic_bezier(curve: Bezier3P) -> Bezier4P
Convert quadratic Bèzier curves (ezdxf.math.Bezier3P) into cubic Bèzier curves (‐
ezdxf.math.Bezier4P).
ezdxf.math.rational_bspline_from_arc(center: Vec3 = (0, 0), radius: float = 1, start_angle: float = 0,
end_angle: float = 360, segments: int = 1) -> BSpline
Returns a rational B-splines for a circular 2D arc.
Parameters
• center – circle center as Vec3 compatible object
• radius – circle radius
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• segments – count of spline segments, at least one segment for each quarter (90 deg),
default is 1, for as few as needed.
ezdxf.math.rational_bspline_from_ellipse(ellipse: ConstructionEllipse, segments: int = 1) -> BSpline
Returns a rational B-splines for an elliptic arc.
Parameters
• ellipse – ellipse parameters as ConstructionEllipse object
• segments – count of spline segments, at least one segment for each quarter (π/2), default
is 1, for as few as needed.
ezdxf.math.safe_normal_vector(vertices: Sequence[Vec3]) -> Vec3
Safe function to detect the normal vector for a face or polygon defined by 3 or more vertices.
ezdxf.math.spherical_envelope(points: Sequence[TypeAliasForwardRef('UVec')]) -> tuple[Vec3, float]
Calculate the spherical envelope for the given points. Returns the centroid (a.k.a. geometric
center) and the radius of the enclosing sphere.
NOTE:
The result does not represent the minimal bounding sphere!
ezdxf.math.split_bezier(control_points: Sequence[T], t: float) -> tuple[list[T], list[T]]
Split a Bèzier curve at parameter t.
Returns the control points for two new Bèzier curves of the same degree and type as the input
curve. (source: pomax-1)
Parameters
• control_points – of the Bèzier curve as Vec2 or Vec3 objects. Requires 3 points for a
quadratic curve, 4 points for a cubic curve , …
• t – parameter where to split the curve in the range [0, 1]
ezdxf.math.split_polygon_by_plane(polygon: Iterable[Vec3], plane: Plane, *, coplanar=True,
abs_tol=PLANE_EPSILON) -> tuple[Sequence[Vec3], Sequence[Vec3]]
Split a convex polygon by the given plane.
Returns a tuple of front- and back vertices (front, back). Returns also coplanar polygons if the
argument coplanar is True, the coplanar vertices goes into either front or back depending on their
orientation with respect to this plane.
ezdxf.math.subdivide_face(face: Sequence[Vec3], quads: bool = True) -> Iterator[Sequence[Vec3]]
Subdivides faces by subdividing edges and adding a center vertex.
Parameters
• face – a sequence of Vec3
• quads – create quad faces if True else create triangles
ezdxf.math.subdivide_ngons(faces: Iterable[Sequence[Vec3]], max_vertex_count=4) -> Iterator[Sequence[‐
Vec3]]
Subdivides faces into triangles by adding a center vertex.
Parameters
• faces – iterable of faces as sequence of Vec3
• max_vertex_count – subdivide only ngons with more vertices
Transformation Classes
┌──────────┬───────────────────────────────────────┐
│ Matrix44 │ An optimized 4x4 transformation │
│ │ matrix. │
├──────────┼───────────────────────────────────────┤
│ OCS │ Establish an OCS for a given │
│ │ extrusion vector. │
├──────────┼───────────────────────────────────────┤
│ UCS │ Establish a user coordinate system (‐ │
│ │ UCS). │
└──────────┴───────────────────────────────────────┘
OCS Class
class ezdxf.math.OCS(extrusion: UVec = Z_AXIS)
Establish an OCS for a given extrusion vector.
Parameters
extrusion – extrusion vector.
ux x-axis unit vector
uy y-axis unit vector
uz z-axis unit vector
from_wcs(point: UVec) -> Vec3
Returns OCS vector for WCS point.
points_from_wcs(points: Iterable[TypeAliasForwardRef('UVec')]) -> Iterator[Vec3]
Returns iterable of OCS vectors from WCS points.
to_wcs(point: UVec) -> Vec3
Returns WCS vector for OCS point.
points_to_wcs(points: Iterable[TypeAliasForwardRef('UVec')]) -> Iterator[Vec3]
Returns iterable of WCS vectors for OCS points.
render_axis(layout: BaseLayout, length: float = 1, colors: RGB = RGB(1, 3, 5)) -> None
Render axis as 3D lines into a layout.
UCS Class
class ezdxf.math.UCS(origin: UVec = (0, 0, 0), ux: TypeAliasForwardRef('UVec') | None = None, uy:
TypeAliasForwardRef('UVec') | None = None, uz: TypeAliasForwardRef('UVec') | None = None)
Establish a user coordinate system (UCS). The UCS is defined by the origin and two unit vectors
for the x-, y- or z-axis, all axis in WCS. The missing axis is the cross product of the given
axis.
If x- and y-axis are None: ux = (1, 0, 0), uy = (0, 1, 0), uz = (0, 0, 1).
Unit vectors don’t have to be normalized, normalization is done at initialization, this is also
the reason why scaling gets lost by copying or rotating.
Parameters
• origin – defines the UCS origin in world coordinates
• ux – defines the UCS x-axis as vector in WCS
• uy – defines the UCS y-axis as vector in WCS
• uz – defines the UCS z-axis as vector in WCS
ux x-axis unit vector
uy y-axis unit vector
uz z-axis unit vector
is_cartesian
Returns True if cartesian coordinate system.
copy() -> UCS
Returns a copy of this UCS.
to_wcs(point: Vec3) -> Vec3
Returns WCS point for UCS point.
points_to_wcs(points: Iterable[Vec3]) -> Iterator[Vec3]
Returns iterable of WCS vectors for UCS points.
direction_to_wcs(vector: Vec3) -> Vec3
Returns WCS direction for UCS vector without origin adjustment.
from_wcs(point: Vec3) -> Vec3
Returns UCS point for WCS point.
points_from_wcs(points: Iterable[Vec3]) -> Iterator[Vec3]
Returns iterable of UCS vectors from WCS points.
direction_from_wcs(vector: Vec3) -> Vec3
Returns UCS vector for WCS vector without origin adjustment.
to_ocs(point: Vec3) -> Vec3
Returns OCS vector for UCS point.
The OCS is defined by the z-axis of the UCS.
points_to_ocs(points: Iterable[Vec3]) -> Iterator[Vec3]
Returns iterable of OCS vectors for UCS points.
The OCS is defined by the z-axis of the UCS.
Parameters
points – iterable of UCS vertices
to_ocs_angle_deg(angle: float) -> float
Transforms angle from current UCS to the parent coordinate system (most likely the WCS)
including the transformation to the OCS established by the extrusion vector UCS.uz.
Parameters
angle – in UCS in degrees
transform(m: Matrix44) -> UCS
General inplace transformation interface, returns self (floating interface).
Parameters
m – 4x4 transformation matrix (ezdxf.math.Matrix44)
rotate(axis: UVec, angle: float) -> UCS
Returns a new rotated UCS, with the same origin as the source UCS. The rotation vector is
located in the origin and has WCS coordinates e.g. (0, 0, 1) is the WCS z-axis as rotation
vector.
Parameters
• axis – arbitrary rotation axis as vector in WCS
• angle – rotation angle in radians
rotate_local_x(angle: float) -> UCS
Returns a new rotated UCS, rotation axis is the local x-axis.
Parameters
angle – rotation angle in radians
rotate_local_y(angle: float) -> UCS
Returns a new rotated UCS, rotation axis is the local y-axis.
Parameters
angle – rotation angle in radians
rotate_local_z(angle: float) -> UCS
Returns a new rotated UCS, rotation axis is the local z-axis.
Parameters
angle – rotation angle in radians
shift(delta: UVec) -> UCS
Shifts current UCS by delta vector and returns self.
Parameters
delta – shifting vector
moveto(location: UVec) -> UCS
Place current UCS at new origin location and returns self.
Parameters
location – new origin in WCS
static from_x_axis_and_point_in_xy(origin: UVec, axis: UVec, point: UVec) -> UCS
Returns a new UCS defined by the origin, the x-axis vector and an arbitrary point in the
xy-plane.
Parameters
• origin – UCS origin as (x, y, z) tuple in WCS
• axis – x-axis vector as (x, y, z) tuple in WCS
• point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in
WCS
static from_x_axis_and_point_in_xz(origin: UVec, axis: UVec, point: UVec) -> UCS
Returns a new UCS defined by the origin, the x-axis vector and an arbitrary point in the
xz-plane.
Parameters
• origin – UCS origin as (x, y, z) tuple in WCS
• axis – x-axis vector as (x, y, z) tuple in WCS
• point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple in
WCS
static from_y_axis_and_point_in_xy(origin: UVec, axis: UVec, point: UVec) -> UCS
Returns a new UCS defined by the origin, the y-axis vector and an arbitrary point in the
xy-plane.
Parameters
• origin – UCS origin as (x, y, z) tuple in WCS
• axis – y-axis vector as (x, y, z) tuple in WCS
• point – arbitrary point unlike the origin in the xy-plane as (x, y, z) tuple in
WCS
static from_y_axis_and_point_in_yz(origin: UVec, axis: UVec, point: UVec) -> UCS
Returns a new UCS defined by the origin, the y-axis vector and an arbitrary point in the
yz-plane.
Parameters
• origin – UCS origin as (x, y, z) tuple in WCS
• axis – y-axis vector as (x, y, z) tuple in WCS
• point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple in
WCS
static from_z_axis_and_point_in_xz(origin: UVec, axis: UVec, point: UVec) -> UCS
Returns a new UCS defined by the origin, the z-axis vector and an arbitrary point in the
xz-plane.
Parameters
• origin – UCS origin as (x, y, z) tuple in WCS
• axis – z-axis vector as (x, y, z) tuple in WCS
• point – arbitrary point unlike the origin in the xz-plane as (x, y, z) tuple in
WCS
static from_z_axis_and_point_in_yz(origin: UVec, axis: UVec, point: UVec) -> UCS
Returns a new UCS defined by the origin, the z-axis vector and an arbitrary point in the
yz-plane.
Parameters
• origin – UCS origin as (x, y, z) tuple in WCS
• axis – z-axis vector as (x, y, z) tuple in WCS
• point – arbitrary point unlike the origin in the yz-plane as (x, y, z) tuple in
WCS
render_axis(layout: BaseLayout, length: float = 1, colors: RGB = RGB(1, 3, 5))
Render axis as 3D lines into a layout.
Matrix44
class ezdxf.math.Matrix44(*args)
An optimized 4x4 transformation matrix.
The utility functions for constructing transformations and transforming vectors and points assumes
that vectors are stored as row vectors, meaning when multiplied, transformations are applied left
to right (e.g. vAB transforms v by A then by B).
Matrix44 initialization:
• Matrix44() returns the identity matrix.
• Matrix44(values) values is an iterable with the 16 components of the matrix.
• Matrix44(row1, row2, row3, row4) four rows, each row with four values.
__repr__() -> str
Returns the representation string of the matrix in row-major order: Matrix44((col0, col1,
col2, col3), (...), (...), (...))
get_row(row: int) -> tuple[float, ...]
Get row as list of four float values.
Parameters
row – row index [0 .. 3]
set_row(row: int, values: Sequence[float]) -> None
Sets the values in a row.
Parameters
• row – row index [0 .. 3]
• values – iterable of four row values
get_col(col: int) -> tuple[float, ...]
Returns a column as a tuple of four floats.
Parameters
col – column index [0 .. 3]
set_col(col: int, values: Sequence[float])
Sets the values in a column.
Parameters
• col – column index [0 .. 3]
• values – iterable of four column values
copy() -> Matrix44
Returns a copy of same type.
__copy__() -> Matrix44
Returns a copy of same type.
classmethod scale(sx: float, sy: float | None = None, sz: float | None = None) -> Matrix44
Returns a scaling transformation matrix. If sy is None, sy = sx, and if sz is None sz = sx.
classmethod translate(dx: float, dy: float, dz: float) -> Matrix44
Returns a translation matrix for translation vector (dx, dy, dz).
classmethod x_rotate(angle: float) -> Matrix44
Returns a rotation matrix about the x-axis.
Parameters
angle – rotation angle in radians
classmethod y_rotate(angle: float) -> Matrix44
Returns a rotation matrix about the y-axis.
Parameters
angle – rotation angle in radians
classmethod z_rotate(angle: float) -> Matrix44
Returns a rotation matrix about the z-axis.
Parameters
angle – rotation angle in radians
classmethod axis_rotate(axis: UVec, angle: float) -> Matrix44
Returns a rotation matrix about an arbitrary axis.
Parameters
• axis – rotation axis as (x, y, z) tuple or Vec3 object
• angle – rotation angle in radians
classmethod xyz_rotate(angle_x: float, angle_y: float, angle_z: float) -> Matrix44
Returns a rotation matrix for rotation about each axis.
Parameters
• angle_x – rotation angle about x-axis in radians
• angle_y – rotation angle about y-axis in radians
• angle_z – rotation angle about z-axis in radians
classmethod shear_xy(angle_x: float = 0, angle_y: float = 0) -> Matrix44
Returns a translation matrix for shear mapping (visually similar to slanting) in the
xy-plane.
Parameters
• angle_x – slanting angle in x direction in radians
• angle_y – slanting angle in y direction in radians
classmethod perspective_projection(left: float, right: float, top: float, bottom: float, near:
float, far: float) -> Matrix44
Returns a matrix for a 2D projection.
Parameters
• left – Coordinate of left of screen
• right – Coordinate of right of screen
• top – Coordinate of the top of the screen
• bottom – Coordinate of the bottom of the screen
• near – Coordinate of the near clipping plane
• far – Coordinate of the far clipping plane
classmethod perspective_projection_fov(fov: float, aspect: float, near: float, far: float) ->
Matrix44
Returns a matrix for a 2D projection.
Parameters
• fov – The field of view (in radians)
• aspect – The aspect ratio of the screen (width / height)
• near – Coordinate of the near clipping plane
• far – Coordinate of the far clipping plane
static chain(*matrices: Matrix44) -> Matrix44
Compose a transformation matrix from one or more matrices.
static ucs(ux: Vec3 = X_AXIS, uy: Vec3 = Y_AXIS, uz: Vec3 = Z_AXIS, origin: Vec3 = NULLVEC) ->
Matrix44
Returns a matrix for coordinate transformation from WCS to UCS. For transformation from
UCS to WCS, transpose the returned matrix.
Parameters
• ux – x-axis for UCS as unit vector
• uy – y-axis for UCS as unit vector
• uz – z-axis for UCS as unit vector
• origin – UCS origin as location vector
__hash__()
Return hash(self).
__getitem__(index: tuple[int, int])
Get (row, column) element.
__setitem__(index: tuple[int, int], value: float)
Set (row, column) element.
__iter__() -> Iterator[float]
Iterates over all matrix values.
rows() -> Iterator[tuple[float, ...]]
Iterate over rows as 4-tuples.
columns() -> Iterator[tuple[float, ...]]
Iterate over columns as 4-tuples.
__mul__(other: Matrix44) -> Matrix44
Returns a new matrix as result of the matrix multiplication with another matrix.
__imul__(other: Matrix44) -> Matrix44
Inplace multiplication with another matrix.
transform(vector: UVec) -> Vec3
Returns a transformed vertex.
transform_direction(vector: UVec, normalize=False) -> Vec3
Returns a transformed direction vector without translation.
transform_vertices(vectors: Iterable[TypeAliasForwardRef('UVec')]) -> Iterator[Vec3]
Returns an iterable of transformed vertices.
fast_2d_transform(points: Iterable[TypeAliasForwardRef('UVec')]) -> Iterator[Vec2]
Fast transformation of 2D points. For 3D input points the z-axis will be ignored. This
only works reliable if only 2D transformations have been applied to the 4x4 matrix!
Profiling results - speed gains over transform_vertices():
• pure Python code: ~1.6x
• Python with C-extensions: less than 1.1x
• PyPy 3.8: ~4.3x
But speed isn’t everything, returning the processed input points as Vec2 instances is
another advantage.
Added in version 1.1.
transform_directions(vectors: Iterable[TypeAliasForwardRef('UVec')], normalize=False) ->
Iterator[Vec3]
Returns an iterable of transformed direction vectors without translation.
transpose() -> None
Swaps the rows for columns inplace.
determinant() -> float
Returns determinant.
inverse() -> None
Calculates the inverse of the matrix.
Raises ZeroDivisionError – if matrix has no inverse.
property is_cartesian: bool
Returns True if target coordinate system is a right handed orthogonal coordinate system.
property is_orthogonal: bool
Returns True if target coordinate system has orthogonal axis.
Does not check for left- or right handed orientation, any orientation of the axis valid.
Basic Construction Classes
┌──────────────────────┬───────────────────────────────────────┐
│ BoundingBox │ 3D bounding box. │
├──────────────────────┼───────────────────────────────────────┤
│ BoundingBox2d │ 2D bounding box. │
├──────────────────────┼───────────────────────────────────────┤
│ ConstructionArc │ Construction tool for 2D arcs. │
├──────────────────────┼───────────────────────────────────────┤
│ ConstructionBox │ Construction tool for 2D rectangles. │
├──────────────────────┼───────────────────────────────────────┤
│ ConstructionCircle │ Construction tool for 2D circles. │
├──────────────────────┼───────────────────────────────────────┤
│ ConstructionEllipse │ Construction tool for 3D ellipsis. │
├──────────────────────┼───────────────────────────────────────┤
│ ConstructionLine │ Construction tool for 2D lines. │
├──────────────────────┼───────────────────────────────────────┤
│ ConstructionPolyline │ Construction tool for 3D polylines. │
├──────────────────────┼───────────────────────────────────────┤
│ ConstructionRay │ Construction tool for infinite 2D │
│ │ rays. │
├──────────────────────┼───────────────────────────────────────┤
│ Plane │ Construction tool for 3D planes. │
├──────────────────────┼───────────────────────────────────────┤
│ Shape2d │ Construction tools for 2D shapes. │
├──────────────────────┼───────────────────────────────────────┤
│ Vec2 │ Immutable 2D vector class. │
├──────────────────────┼───────────────────────────────────────┤
│ Vec3 │ Immutable 3D vector class. │
└──────────────────────┴───────────────────────────────────────┘
UVec
class ezdxf.math.UVec
Type alias for Union[Sequence[float], Vec2, Vec3]
Vec3
class ezdxf.math.Vec3(*args)
Immutable 3D vector class.
This class is optimized for universality not for speed. Immutable means you can’t change (x, y,
z) components after initialization:
v1 = Vec3(1, 2, 3)
v2 = v1
v2.z = 7 # this is not possible, raises AttributeError
v2 = Vec3(v2.x, v2.y, 7) # this creates a new Vec3() object
assert v1.z == 3 # and v1 remains unchanged
Vec3 initialization:
• Vec3(), returns Vec3(0, 0, 0)
• Vec3((x, y)), returns Vec3(x, y, 0)
• Vec3((x, y, z)), returns Vec3(x, y, z)
• Vec3(x, y), returns Vec3(x, y, 0)
• Vec3(x, y, z), returns Vec3(x, y, z)
Addition, subtraction, scalar multiplication and scalar division left and right-handed are
supported:
v = Vec3(1, 2, 3)
v + (1, 2, 3) == Vec3(2, 4, 6)
(1, 2, 3) + v == Vec3(2, 4, 6)
v - (1, 2, 3) == Vec3(0, 0, 0)
(1, 2, 3) - v == Vec3(0, 0, 0)
v * 3 == Vec3(3, 6, 9)
3 * v == Vec3(3, 6, 9)
Vec3(3, 6, 9) / 3 == Vec3(1, 2, 3)
-Vec3(1, 2, 3) == (-1, -2, -3)
Comparison between vectors and vectors or tuples is supported:
Vec3(1, 2, 3) < Vec3 (2, 2, 2)
(1, 2, 3) < tuple(Vec3(2, 2, 2)) # conversion necessary
Vec3(1, 2, 3) == (1, 2, 3)
bool(Vec3(1, 2, 3)) is True
bool(Vec3(0, 0, 0)) is False
x x-axis value
y y-axis value
z z-axis value
xy Vec3 as (x, y, 0), projected on the xy-plane.
xyz Vec3 as (x, y, z) tuple.
vec2 Real 2D vector as Vec2 object.
magnitude
Length of vector.
magnitude_xy
Length of vector in the xy-plane.
magnitude_square
Square length of vector.
is_null
Vec3(0, 0, 0). Has a fixed absolute testing tolerance of 1e-12!
Type True if all components are close to zero
angle Angle between vector and x-axis in the xy-plane in radians.
angle_deg
Returns angle of vector and x-axis in the xy-plane in degrees.
spatial_angle
Spatial angle between vector and x-axis in radians.
spatial_angle_deg
Spatial angle between vector and x-axis in degrees.
__str__() -> str
Return '(x, y, z)' as string.
__repr__() -> str
Return 'Vec3(x, y, z)' as string.
__len__() -> int
Returns always 3.
__hash__() -> int
Returns hash value of vector, enables the usage of vector as key in set and dict.
copy() -> Vec3
Returns a copy of vector as Vec3 object.
__copy__() -> Vec3
Returns a copy of vector as Vec3 object.
__deepcopy__(memodict: dict) -> Vec3
copy.deepcopy() support.
__getitem__(index: int) -> float
Support for indexing:
• v[0] is v.x
• v[1] is v.y
• v[2] is v.z
__iter__() -> Iterator[float]
Returns iterable of x-, y- and z-axis.
__abs__() -> float
Returns length (magnitude) of vector.
replace(x: float | None = None, y: float | None = None, z: float | None = None) -> Vec3
Returns a copy of vector with replaced x-, y- and/or z-axis.
classmethod generate(items: Iterable[TypeAliasForwardRef('UVec')]) -> Iterator[Vec3]
Returns an iterable of Vec3 objects.
classmethod list(items: Iterable[TypeAliasForwardRef('UVec')]) -> list[Vec3]
Returns a list of Vec3 objects.
classmethod tuple(items: Iterable[TypeAliasForwardRef('UVec')]) -> Sequence[Vec3]
Returns a tuple of Vec3 objects.
classmethod from_angle(angle: float, length: float = 1.0) -> Vec3
Returns a Vec3 object from angle in radians in the xy-plane, z-axis = 0.
classmethod from_deg_angle(angle: float, length: float = 1.0) -> Vec3
Returns a Vec3 object from angle in degrees in the xy-plane, z-axis = 0.
orthogonal(ccw: bool = True) -> Vec3
Returns orthogonal 2D vector, z-axis is unchanged.
Parameters
ccw – counter-clockwise if True else clockwise
lerp(other: UVec, factor=0.5) -> Vec3
Returns linear interpolation between self and other.
Parameters
• other – end point as Vec3 compatible object
• factor – interpolation factor (0 = self, 1 = other, 0.5 = mid point)
is_parallel(other: Vec3, *, rel_tol: float = 1e-9, abs_tol: float = 1e-12) -> bool
Returns True if self and other are parallel to vectors.
project(other: UVec) -> Vec3
Returns projected vector of other onto self.
normalize(length: float = 1.0) -> Vec3
Returns normalized vector, optional scaled by length.
reversed() -> Vec3
Returns negated vector (-self).
isclose(other: UVec, *, rel_tol: float = 1e-9, abs_tol: float = 1e-12) -> bool
Returns True if self is close to other. Uses math.isclose() to compare all axis.
Learn more about the math.isclose() function in PEP 485.
__neg__() -> Vec3
Returns negated vector (-self).
__bool__() -> bool
Returns True if vector is not (0, 0, 0).
__eq__(other: UVec) -> bool
Equal operator.
Parameters
other – Vec3 compatible object
__lt__(other: UVec) -> bool
Lower than operator.
Parameters
other – Vec3 compatible object
__add__(other: UVec) -> Vec3
Add Vec3 operator: self + other.
__radd__(other: UVec) -> Vec3
RAdd Vec3 operator: other + self.
__sub__(other: UVec) -> Vec3
Sub Vec3 operator: self - other.
__rsub__(other: UVec) -> Vec3
RSub Vec3 operator: other - self.
__mul__(other: float) -> Vec3
Scalar Mul operator: self * other.
__rmul__(other: float) -> Vec3
Scalar RMul operator: other * self.
__truediv__(other: float) -> Vec3
Scalar Div operator: self / other.
dot(other: UVec) -> float
Dot operator: self . other
Parameters
other – Vec3 compatible object
cross(other: UVec) -> Vec3
Cross operator: self x other
Parameters
other – Vec3 compatible object
distance(other: UVec) -> float
Returns distance between self and other vector.
angle_about(base: UVec, target: UVec) -> float
Returns counter-clockwise angle in radians about self from base to target when projected
onto the plane defined by self as the normal vector.
Parameters
• base – base vector, defines angle 0
• target – target vector
angle_between(other: UVec) -> float
Returns angle between self and other in radians. +angle is counter clockwise orientation.
Parameters
other – Vec3 compatible object
rotate(angle: float) -> Vec3
Returns vector rotated about angle around the z-axis.
Parameters
angle – angle in radians
rotate_deg(angle: float) -> Vec3
Returns vector rotated about angle around the z-axis.
Parameters
angle – angle in degrees
static sum(items: Iterable[TypeAliasForwardRef('UVec')]) -> Vec3
Add all vectors in items.
ezdxf.math.X_AXIS
Vec3(1, 0, 0)
ezdxf.math.Y_AXIS
Vec3(0, 1, 0)
ezdxf.math.Z_AXIS
Vec3(0, 0, 1)
ezdxf.math.NULLVEC
Vec3(0, 0, 0)
Vec2
class ezdxf.math.Vec2(v=(0.0, 0.0), y=None)
Immutable 2D vector class.
Parameters
• v – vector object with x and y attributes/properties or a sequence of float [x, y, ...]
or x-axis as float if argument y is not None
• y – second float for Vec2(x, y)
Vec2 implements a subset of Vec3.
Plane
class ezdxf.math.Plane(normal: Vec3, distance: float)
Construction tool for 3D planes.
Represents a plane in 3D space as a normal vector and the perpendicular distance from the origin.
normal Normal vector of the plane.
distance_from_origin
The (perpendicular) distance of the plane from origin (0, 0, 0).
vector Returns the location vector.
classmethod from_3p(a: Vec3, b: Vec3, c: Vec3) -> Plane
Returns a new plane from 3 points in space.
classmethod from_vector(vector: UVec) -> Plane
Returns a new plane from the given location vector.
copy() -> Plane
Returns a copy of the plane.
signed_distance_to(v: Vec3) -> float
Returns signed distance of vertex v to plane, if distance is > 0, v is in ‘front’ of plane,
in direction of the normal vector, if distance is < 0, v is at the ‘back’ of the plane, in
the opposite direction of the normal vector.
distance_to(v: Vec3) -> float
Returns absolute (unsigned) distance of vertex v to plane.
is_coplanar_vertex(v: Vec3, abs_tol=1e-9) -> bool
Returns True if vertex v is coplanar, distance from plane to vertex v is 0.
is_coplanar_plane(p: Plane, abs_tol=1e-9) -> bool
Returns True if plane p is coplanar, normal vectors in same or opposite direction.
intersect_line(start: Vec3, end: Vec3, *, coplanar=True, abs_tol=PLANE_EPSILON) -> Vec3 | None
Returns the intersection point of the 3D line from start to end and this plane or None if
there is no intersection. If the argument coplanar is False the start- or end point of the
line are ignored as intersection points.
intersect_ray(origin: Vec3, direction: Vec3) -> Vec3 | None
Returns the intersection point of the infinite 3D ray defined by origin and the direction
vector and this plane or None if there is no intersection. A coplanar ray does not
intersect the plane!
BoundingBox
class ezdxf.math.BoundingBox(vertices: Iterable[TypeAliasForwardRef('UVec')] | None = None)
3D bounding box.
Parameters
vertices – iterable of (x, y, z) tuples or Vec3 objects
extmin “lower left” corner of bounding box
extmax “upper right” corner of bounding box
property is_empty: bool
Returns True if the bounding box is empty or the bounding box has a size of 0 in any or all
dimensions or is undefined.
property has_data: bool
Returns True if the bonding box has known limits.
property size: T
Returns size of bounding box.
property center: T
Returns center of bounding box.
inside(vertex: UVec) -> bool
Returns True if vertex is inside this bounding box.
Vertices at the box border are inside!
any_inside(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> bool
Returns True if any vertex is inside this bounding box.
Vertices at the box border are inside!
all_inside(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> bool
Returns True if all vertices are inside this bounding box.
Vertices at the box border are inside!
has_intersection(other: AbstractBoundingBox[T]) -> bool
Returns True if this bounding box intersects with other but does not include touching
bounding boxes, see also has_overlap():
bbox1 = BoundingBox([(0, 0, 0), (1, 1, 1)])
bbox2 = BoundingBox([(1, 1, 1), (2, 2, 2)])
assert bbox1.has_intersection(bbox2) is False
has_overlap(other: AbstractBoundingBox[T]) -> bool
Returns True if this bounding box intersects with other but in contrast to
has_intersection() includes touching bounding boxes too:
bbox1 = BoundingBox([(0, 0, 0), (1, 1, 1)])
bbox2 = BoundingBox([(1, 1, 1), (2, 2, 2)])
assert bbox1.has_overlap(bbox2) is True
contains(other: AbstractBoundingBox[T]) -> bool
Returns True if the other bounding box is completely inside this bounding box.
extend(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Extend bounds by vertices.
Parameters
vertices – iterable of vertices
union(other: AbstractBoundingBox[T]) -> AbstractBoundingBox[T]
Returns a new bounding box as union of this and other bounding box.
intersection(other: AbstractBoundingBox[T]) -> BoundingBox
Returns the bounding box of the intersection cube of both 3D bounding boxes. Returns an
empty bounding box if the intersection volume is 0.
rect_vertices() -> Sequence[Vec2]
Returns the corners of the bounding box in the xy-plane as Vec2 objects.
cube_vertices() -> Sequence[Vec3]
Returns the 3D corners of the bounding box as Vec3 objects.
grow(value: float) -> None
Grow or shrink the bounding box by an uniform value in x, y and z-axis. A negative value
shrinks the bounding box. Raises ValueError for shrinking the size of the bounding box to
zero or below in any dimension.
BoundingBox2d
class ezdxf.math.BoundingBox2d(vertices: Iterable[TypeAliasForwardRef('UVec')] | None = None)
2D bounding box.
Parameters
vertices – iterable of (x, y[, z]) tuples or Vec3 objects
extmin “lower left” corner of bounding box
extmax “upper right” corner of bounding box
property is_empty: bool
Returns True if the bounding box is empty. The bounding box has a size of 0 in any or all
dimensions or is undefined.
property has_data: bool
Returns True if the bonding box has known limits.
property size: T
Returns size of bounding box.
property center: T
Returns center of bounding box.
inside(vertex: UVec) -> bool
Returns True if vertex is inside this bounding box.
Vertices at the box border are inside!
any_inside(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> bool
Returns True if any vertex is inside this bounding box.
Vertices at the box border are inside!
all_inside(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> bool
Returns True if all vertices are inside this bounding box.
Vertices at the box border are inside!
has_intersection(other: AbstractBoundingBox[T]) -> bool
Returns True if this bounding box intersects with other but does not include touching
bounding boxes, see also has_overlap():
bbox1 = BoundingBox2d([(0, 0), (1, 1)])
bbox2 = BoundingBox2d([(1, 1), (2, 2)])
assert bbox1.has_intersection(bbox2) is False
has_overlap(other: AbstractBoundingBox[T]) -> bool
Returns True if this bounding box intersects with other but in contrast to
has_intersection() includes touching bounding boxes too:
bbox1 = BoundingBox2d([(0, 0), (1, 1)])
bbox2 = BoundingBox2d([(1, 1), (2, 2)])
assert bbox1.has_overlap(bbox2) is True
contains(other: AbstractBoundingBox[T]) -> bool
Returns True if the other bounding box is completely inside this bounding box.
extend(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Extend bounds by vertices.
Parameters
vertices – iterable of vertices
union(other: AbstractBoundingBox[T]) -> AbstractBoundingBox[T]
Returns a new bounding box as union of this and other bounding box.
intersection(other: AbstractBoundingBox[T]) -> BoundingBox2d
Returns the bounding box of the intersection rectangle of both 2D bounding boxes. Returns
an empty bounding box if the intersection area is 0.
rect_vertices() -> Sequence[Vec2]
Returns the corners of the bounding box in the xy-plane as Vec2 objects.
ConstructionRay
class ezdxf.math.ConstructionRay(p1: UVec, p2: TypeAliasForwardRef('UVec') | None = None, angle: float |
None = None)
Construction tool for infinite 2D rays.
Parameters
• p1 – definition point 1
• p2 – ray direction as 2nd point or None
• angle – ray direction as angle in radians or None
location
Location vector as Vec2.
direction
Direction vector as Vec2.
slope Slope of ray or None if vertical.
angle Angle between x-axis and ray in radians.
angle_deg
Angle between x-axis and ray in degrees.
is_vertical
True if ray is vertical (parallel to y-axis).
is_horizontal
True if ray is horizontal (parallel to x-axis).
__str__()
Return str(self).
is_parallel(other: ConstructionRay) -> bool
Returns True if rays are parallel.
intersect(other: ConstructionRay) -> Vec2
Returns the intersection point as (x, y) tuple of self and other.
Raises ParallelRaysError – if rays are parallel
orthogonal(location: UVec) -> ConstructionRay
Returns orthogonal ray at location.
bisectrix(other: ConstructionRay) -> ConstructionRay
Bisectrix between self and other.
yof(x: float) -> float
Returns y-value of ray for x location.
Raises ArithmeticError – for vertical rays
xof(y: float) -> float
Returns x-value of ray for y location.
Raises ArithmeticError – for horizontal rays
ConstructionLine
class ezdxf.math.ConstructionLine(start: UVec, end: UVec)
Construction tool for 2D lines.
The ConstructionLine class is similar to ConstructionRay, but has a start- and endpoint. The
direction of line goes from start- to endpoint, “left of line” is always in relation to this line
direction.
Parameters
• start – start point of line as Vec2 compatible object
• end – end point of line as Vec2 compatible object
start start point as Vec2
end end point as Vec2
bounding_box
bounding box of line as BoundingBox2d object.
ray collinear ConstructionRay.
is_vertical
True if line is vertical.
is_horizontal
True if line is horizontal.
__str__()
Return str(self).
translate(dx: float, dy: float) -> None
Move line about dx in x-axis and about dy in y-axis.
Parameters
• dx – translation in x-axis
• dy – translation in y-axis
length() -> float
Returns length of line.
midpoint() -> Vec2
Returns mid point of line.
inside_bounding_box(point: UVec) -> bool
Returns True if point is inside of line bounding box.
intersect(other: ConstructionLine, abs_tol: float = TOLERANCE) -> Vec2 | None
Returns the intersection point of to lines or None if they have no intersection point.
Parameters
• other – other ConstructionLine
• abs_tol – tolerance for distance check
has_intersection(other: ConstructionLine, abs_tol: float = TOLERANCE) -> bool
Returns True if has intersection with other line.
is_point_left_of_line(point: UVec, colinear=False) -> bool
Returns True if point is left of construction line in relation to the line direction from
start to end.
If colinear is True, a colinear point is also left of the line.
ConstructionCircle
class ezdxf.math.ConstructionCircle(center: UVec, radius: float = 1.0)
Construction tool for 2D circles.
Parameters
• center – center point as Vec2 compatible object
• radius – circle radius > 0
center center point as Vec2
radius radius as float
bounding_box
2D bounding box of circle as BoundingBox2d object.
static from_3p(p1: UVec, p2: UVec, p3: UVec) -> ConstructionCircle
Creates a circle from three points, all points have to be compatible to Vec2 class.
__str__() -> str
Returns string representation of circle “ConstructionCircle(center, radius)”.
translate(dx: float, dy: float) -> None
Move circle about dx in x-axis and about dy in y-axis.
Parameters
• dx – translation in x-axis
• dy – translation in y-axis
point_at(angle: float) -> Vec2
Returns point on circle at angle as Vec2 object.
Parameters
angle – angle in radians, angle goes counter clockwise around the z-axis, x-axis = 0
deg.
vertices(angles: Iterable[float]) -> Iterable[Vec2]
Yields vertices of the circle for iterable angles.
Parameters
angles – iterable of angles as radians, angle goes counter-clockwise around the
z-axis, x-axis = 0 deg.
flattening(sagitta: float) -> Iterator[Vec2]
Approximate the circle by vertices, argument sagitta is the max. distance from the center
of an arc segment to the center of its chord. Returns a closed polygon where the start
vertex is coincident with the end vertex!
inside(point: UVec) -> bool
Returns True if point is inside circle.
tangent(angle: float) -> ConstructionRay
Returns tangent to circle at angle as ConstructionRay object.
Parameters
angle – angle in radians
intersect_ray(ray: ConstructionRay, abs_tol: float = 1e-10) -> Sequence[Vec2]
Returns intersection points of circle and ray as sequence of Vec2 objects.
Parameters
• ray – intersection ray
• abs_tol – absolute tolerance for tests (e.g. test for tangents)
Returns
tuple of Vec2 objects
┌────────────┬────────────────────────────────┐
│ tuple size │ Description │
├────────────┼────────────────────────────────┤
│ 0 │ no intersection │
├────────────┼────────────────────────────────┤
│ 1 │ ray is a tangent to circle │
├────────────┼────────────────────────────────┤
│ 2 │ ray intersects with the circle │
└────────────┴────────────────────────────────┘
intersect_line(line: ConstructionLine, abs_tol: float = 1e-10) -> Sequence[Vec2]
Returns intersection points of circle and line as sequence of Vec2 objects.
Parameters
• line – intersection line
• abs_tol – absolute tolerance for tests (e.g. test for tangents)
Returns
tuple of Vec2 objects
┌────────────┬───────────────────────────────────────┐
│ tuple size │ Description │
├────────────┼───────────────────────────────────────┤
│ 0 │ no intersection │
├────────────┼───────────────────────────────────────┤
│ 1 │ line intersects or touches the circle │
│ │ at one point │
├────────────┼───────────────────────────────────────┤
│ 2 │ line intersects the circle at two │
│ │ points │
└────────────┴───────────────────────────────────────┘
intersect_circle(other: ConstructionCircle, abs_tol: float = 1e-10) -> Sequence[Vec2]
Returns intersection points of two circles as sequence of Vec2 objects.
Parameters
• other – intersection circle
• abs_tol – absolute tolerance for tests
Returns
tuple of Vec2 objects
┌────────────┬───────────────────────────────────────┐
│ tuple size │ Description │
├────────────┼───────────────────────────────────────┤
│ 0 │ no intersection │
├────────────┼───────────────────────────────────────┤
│ 1 │ circle touches the other circle at │
│ │ one point │
├────────────┼───────────────────────────────────────┤
│ 2 │ circle intersects with the other │
│ │ circle │
└────────────┴───────────────────────────────────────┘
ConstructionArc
class ezdxf.math.ConstructionArc(center: UVec = (0, 0), radius: float = 1.0, start_angle: float = 0.0,
end_angle: float = 360.0, is_counter_clockwise: bool | None = True)
Construction tool for 2D arcs.
ConstructionArc represents a 2D arc in the xy-plane, use an UCS to place a DXF Arc entity in 3D
space, see method add_to_layout().
Implements the 2D transformation tools: translate(), scale_uniform() and rotate_z()
Parameters
• center – center point as Vec2 compatible object
• radius – radius
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• is_counter_clockwise – swaps start- and end angle if False
center center point as Vec2
radius radius as float
start_angle
start angle in degrees
end_angle
end angle in degrees
angle_span
Returns angle span of arc from start- to end param.
start_angle_rad
Returns the start angle in radians.
end_angle_rad
Returns the end angle in radians.
start_point
start point of arc as Vec2.
end_point
end point of arc as Vec2.
bounding_box
bounding box of arc as BoundingBox2d.
angles(num: int) -> Iterable[float]
Returns num angles from start- to end angle in degrees in counter-clockwise order.
All angles are normalized in the range from [0, 360).
vertices(a: Iterable[float]) -> Iterable[Vec2]
Yields vertices on arc for angles in iterable a in WCS as location vectors.
Parameters
a – angles in the range from 0 to 360 in degrees, arc goes counter clockwise around
the z-axis, WCS x-axis = 0 deg.
tangents(a: Iterable[float]) -> Iterable[Vec2]
Yields tangents on arc for angles in iterable a in WCS as direction vectors.
Parameters
a – angles in the range from 0 to 360 in degrees, arc goes counter-clockwise around
the z-axis, WCS x-axis = 0 deg.
translate(dx: float, dy: float) -> ConstructionArc
Move arc about dx in x-axis and about dy in y-axis, returns self (floating interface).
Parameters
• dx – translation in x-axis
• dy – translation in y-axis
scale_uniform(s: float) -> ConstructionArc
Scale arc inplace uniform about s in x- and y-axis, returns self (floating interface).
rotate_z(angle: float) -> ConstructionArc
Rotate arc inplace about z-axis, returns self (floating interface).
Parameters
angle – rotation angle in degrees
classmethod from_2p_angle(start_point: UVec, end_point: UVec, angle: float, ccw: bool = True) ->
ConstructionArc
Create arc from two points and enclosing angle. Additional precondition: arc goes by
default in counter-clockwise orientation from start_point to end_point, can be changed by
ccw = False.
Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• angle – enclosing angle in degrees
• ccw – counter-clockwise direction if True
classmethod from_2p_radius(start_point: UVec, end_point: UVec, radius: float, ccw: bool = True,
center_is_left: bool = True) -> ConstructionArc
Create arc from two points and arc radius. Additional precondition: arc goes by default in
counter-clockwise orientation from start_point to end_point can be changed by ccw = False.
The parameter center_is_left defines if the center of the arc is left or right of the line
from start_point to end_point. Parameter ccw = False swaps start- and end point, which
also inverts the meaning of center_is_left.
Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• radius – arc radius
• ccw – counter-clockwise direction if True
• center_is_left – center point of arc is left of line from start- to end point if
True
classmethod from_3p(start_point: UVec, end_point: UVec, def_point: UVec, ccw: bool = True) ->
ConstructionArc
Create arc from three points. Additional precondition: arc goes in counter-clockwise
orientation from start_point to end_point.
Parameters
• start_point – start point as Vec2 compatible object
• end_point – end point as Vec2 compatible object
• def_point – additional definition point as Vec2 compatible object
• ccw – counter-clockwise direction if True
add_to_layout(layout: BaseLayout, ucs: UCS | None = None, dxfattribs=None) -> Arc
Add arc as DXF Arc entity to a layout.
Supports 3D arcs by using an UCS. An ConstructionArc is always defined in the xy-plane, but
by using an arbitrary UCS, the arc can be placed in 3D space, automatically OCS
transformation included.
Parameters
• layout – destination layout as BaseLayout object
• ucs – place arc in 3D space by UCS object
• dxfattribs – additional DXF attributes for the ARC entity
intersect_ray(ray: ConstructionRay, abs_tol: float = 1e-10) -> Sequence[Vec2]
Returns intersection points of arc and ray as sequence of Vec2 objects.
Parameters
• ray – intersection ray
• abs_tol – absolute tolerance for tests (e.g. test for tangents)
Returns
tuple of Vec2 objects
┌────────────┬───────────────────────────────────────┐
│ tuple size │ Description │
├────────────┼───────────────────────────────────────┤
│ 0 │ no intersection │
├────────────┼───────────────────────────────────────┤
│ 1 │ line intersects or touches the arc at │
│ │ one point │
├────────────┼───────────────────────────────────────┤
│ 2 │ line intersects the arc at two points │
└────────────┴───────────────────────────────────────┘
intersect_line(line: ConstructionLine, abs_tol: float = 1e-10) -> Sequence[Vec2]
Returns intersection points of arc and line as sequence of Vec2 objects.
Parameters
• line – intersection line
• abs_tol – absolute tolerance for tests (e.g. test for tangents)
Returns
tuple of Vec2 objects
┌────────────┬───────────────────────────────────────┐
│ tuple size │ Description │
├────────────┼───────────────────────────────────────┤
│ 0 │ no intersection │
├────────────┼───────────────────────────────────────┤
│ 1 │ line intersects or touches the arc at │
│ │ one point │
├────────────┼───────────────────────────────────────┤
│ 2 │ line intersects the arc at two points │
└────────────┴───────────────────────────────────────┘
intersect_circle(circle: ConstructionCircle, abs_tol: float = 1e-10) -> Sequence[Vec2]
Returns intersection points of arc and circle as sequence of Vec2 objects.
Parameters
• circle – intersection circle
• abs_tol – absolute tolerance for tests
Returns
tuple of Vec2 objects
┌────────────┬───────────────────────────────────────┐
│ tuple size │ Description │
├────────────┼───────────────────────────────────────┤
│ 0 │ no intersection │
├────────────┼───────────────────────────────────────┤
│ 1 │ circle intersects or touches the arc │
│ │ at one point │
├────────────┼───────────────────────────────────────┤
│ 2 │ circle intersects the arc at two │
│ │ points │
└────────────┴───────────────────────────────────────┘
intersect_arc(other: ConstructionArc, abs_tol: float = 1e-10) -> Sequence[Vec2]
Returns intersection points of two arcs as sequence of Vec2 objects.
Parameters
• other – other intersection arc
• abs_tol – absolute tolerance for tests
Returns
tuple of Vec2 objects
┌────────────┬───────────────────────────────────────┐
│ tuple size │ Description │
├────────────┼───────────────────────────────────────┤
│ 0 │ no intersection │
├────────────┼───────────────────────────────────────┤
│ 1 │ other arc intersects or touches the │
│ │ arc at one point │
├────────────┼───────────────────────────────────────┤
│ 2 │ other arc intersects the arc at two │
│ │ points │
└────────────┴───────────────────────────────────────┘
ConstructionEllipse
class ezdxf.math.ConstructionEllipse(center: UVec = NULLVEC, major_axis: UVec = X_AXIS, extrusion: UVec =
Z_AXIS, ratio: float = 1, start_param: float = 0, end_param: float = math.tau, ccw: bool = True)
Construction tool for 3D ellipsis.
Parameters
• center – 3D center point
• major_axis – major axis as 3D vector
• extrusion – normal vector of ellipse plane
• ratio – ratio of minor axis to major axis
• start_param – start param in radians
• end_param – end param in radians
• ccw – is counter-clockwise flag - swaps start- and end param if False
center center point as Vec3
major_axis
major axis as Vec3
minor_axis
minor axis as Vec3, automatically calculated from major_axis and extrusion.
extrusion
extrusion vector (normal of ellipse plane) as Vec3
ratio ratio of minor axis to major axis (float)
start start param in radians (float)
end end param in radians (float)
start_point
Returns start point of ellipse as Vec3.
end_point
Returns end point of ellipse as Vec3.
property param_span: float
Returns the counter-clockwise params span from start- to end param, see also
ezdxf.math.ellipse_param_span() for more information.
to_ocs() -> ConstructionEllipse
Returns ellipse parameters as OCS representation.
OCS elevation is stored in center.z.
params(num: int) -> Iterable[float]
Returns num params from start- to end param in counter-clockwise order.
All params are normalized in the range from [0, 2π).
vertices(params: Iterable[float]) -> Iterable[Vec3]
Yields vertices on ellipse for iterable params in WCS.
Parameters
params – param values in the range from [0, 2π) in radians, param goes
counter-clockwise around the extrusion vector, major_axis = local x-axis = 0 rad.
flattening(distance: float, segments: int = 4) -> Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation
segments, if the distance from the center of the approximation segment to the curve is
bigger than distance the segment will be subdivided. Returns a closed polygon for a full
ellipse: start vertex == end vertex.
Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count
params_from_vertices(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> Iterable[float]
Yields ellipse params for all given vertices.
The vertex don’t have to be exact on the ellipse curve or in the range from start- to end
param or even in the ellipse plane. Param is calculated from the intersection point of the
ray projected on the ellipse plane from the center of the ellipse through the vertex.
WARNING:
An input for start- and end vertex at param 0 and 2π return unpredictable results
because of floating point inaccuracy, sometimes 0 and sometimes 2π.
dxfattribs() -> dict[str, Any]
Returns required DXF attributes to build an ELLIPSE entity.
Entity ELLIPSE has always a ratio in range from 1e-6 to 1.
main_axis_points() -> Iterable[Vec3]
Yields main axis points of ellipse in the range from start- to end param.
classmethod from_arc(center: UVec = NULLVEC, radius: float = 1, extrusion: UVec = Z_AXIS,
start_angle: float = 0, end_angle: float = 360, ccw: bool = True) -> ConstructionEllipse
Returns ConstructionEllipse from arc or circle.
Arc and Circle parameters defined in OCS.
Parameters
• center – center in OCS
• radius – arc or circle radius
• extrusion – OCS extrusion vector
• start_angle – start angle in degrees
• end_angle – end angle in degrees
• ccw – arc curve goes counter clockwise from start to end if True
transform(m: Matrix44) -> None
Transform ellipse in place by transformation matrix m.
swap_axis() -> None
Swap axis and adjust start- and end parameter.
add_to_layout(layout: BaseLayout, dxfattribs=None) -> Ellipse
Add ellipse as DXF Ellipse entity to a layout.
Parameters
• layout – destination layout as BaseLayout object
• dxfattribs – additional DXF attributes for the ELLIPSE entity
ConstructionBox
class ezdxf.math.ConstructionBox(center: UVec = (0, 0), width: float = 1, height: float = 1, angle: float
= 0)
Construction tool for 2D rectangles.
Parameters
• center – center of rectangle
• width – width of rectangle
• height – height of rectangle
• angle – angle of rectangle in degrees
center box center
width box width
height box height
angle rotation angle in degrees
corners
box corners as sequence of Vec2 objects.
bounding_box
BoundingBox2d
incircle_radius
incircle radius
circumcircle_radius
circum circle radius
__iter__() -> Iterable[Vec2]
Iterable of box corners as Vec2 objects.
__getitem__(corner) -> Vec2
Get corner by index corner, list like slicing is supported.
__repr__() -> str
Returns string representation of box as ConstructionBox(center, width, height, angle)
classmethod from_points(p1: UVec, p2: UVec) -> ConstructionBox
Creates a box from two opposite corners, box sides are parallel to x- and y-axis.
Parameters
• p1 – first corner as Vec2 compatible object
• p2 – second corner as Vec2 compatible object
translate(dx: float, dy: float) -> None
Move box about dx in x-axis and about dy in y-axis.
Parameters
• dx – translation in x-axis
• dy – translation in y-axis
expand(dw: float, dh: float) -> None
Expand box: dw expand width, dh expand height.
scale(sw: float, sh: float) -> None
Scale box: sw scales width, sh scales height.
rotate(angle: float) -> None
Rotate box by angle in degrees.
is_inside(point: UVec) -> bool
Returns True if point is inside of box.
is_any_corner_inside(other: ConstructionBox) -> bool
Returns True if any corner of other box is inside this box.
is_overlapping(other: ConstructionBox) -> bool
Returns True if this box and other box do overlap.
border_lines() -> Sequence[ConstructionLine]
Returns borderlines of box as sequence of ConstructionLine.
intersect(line: ConstructionLine) -> list[Vec2]
Returns 0, 1 or 2 intersection points between line and box borderlines.
Parameters
line – line to intersect with borderlines
Returns
list of intersection points
┌───────────┬────────────────────────────────┐
│ list size │ Description │
├───────────┼────────────────────────────────┤
│ 0 │ no intersection │
├───────────┼────────────────────────────────┤
│ 1 │ line touches box at one corner │
├───────────┼────────────────────────────────┤
│ 2 │ line intersects with box │
└───────────┴────────────────────────────────┘
ConstructionPolyline
class ezdxf.math.ConstructionPolyline(vertices: Iterable[TypeAliasForwardRef('UVec')], close: bool =
False, rel_tol: float = REL_TOL)
Construction tool for 3D polylines.
A polyline construction tool to measure, interpolate and divide anything that can be approximated
or flattened into vertices. This is an immutable data structure which supports the Sequence
interface.
Parameters
• vertices – iterable of polyline vertices
• close – True to close the polyline (first vertex == last vertex)
• rel_tol – relative tolerance for floating point comparisons
Example to measure or divide a SPLINE entity:
import ezdxf
from ezdxf.math import ConstructionPolyline
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
spline = msp.query("SPLINE").first
if spline is not None:
polyline = ConstructionPolyline(spline.flattening(0.01))
print(f"Entity {spline} has an approximated length of {polyline.length}")
# get dividing points with a distance of 1.0 drawing unit to each other
points = list(polyline.divide_by_length(1.0))
property length: float
Returns the overall length of the polyline.
property is_closed: bool
Returns True if the polyline is closed (first vertex == last vertex).
data(index: int) -> tuple[float, float, Vec3]
Returns the tuple (distance from start, distance from previous vertex, vertex). All
distances measured along the polyline.
index_at(distance: float) -> int
Returns the data index of the exact or next data entry for the given distance. Returns the
index of last entry if distance > length.
vertex_at(distance: float) -> Vec3
Returns the interpolated vertex at the given distance from the start of the polyline.
divide(count: int) -> Iterator[Vec3]
Returns count interpolated vertices along the polyline. Argument count has to be greater
than 2 and the start- and end vertices are always included.
divide_by_length(length: float, force_last: bool = False) -> Iterator[Vec3]
Returns interpolated vertices along the polyline. Each vertex has a fix distance length
from its predecessor. Yields the last vertex if argument force_last is True even if the
last distance is not equal to length.
Shape2d
class ezdxf.math.Shape2d(vertices: Iterable[TypeAliasForwardRef('UVec')] | None = None)
Construction tools for 2D shapes.
A 2D geometry object as list of Vec2 objects, vertices can be moved, rotated and scaled.
Parameters
vertices – iterable of Vec2 compatible objects.
vertices
List of Vec2 objects
bounding_box
Returns the bounding box of the shape.
__len__() -> int
Returns count of vertices.
__getitem__(item: int) -> Vec2
__getitem__(item: slice) -> list[Vec2]
Get vertex by index item, supports list like slicing.
append(vertex: UVec) -> None
Append single vertex.
Parameters
vertex – vertex as Vec2 compatible object
extend(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Append multiple vertices.
Parameters
vertices – iterable of vertices as Vec2 compatible objects
translate(vector: UVec) -> None
Translate shape about vector.
scale(sx: float = 1.0, sy: float = 1.0) -> None
Scale shape about sx in x-axis and sy in y-axis.
scale_uniform(scale: float) -> None
Scale shape uniform about scale in x- and y-axis.
rotate(angle: float, center: TypeAliasForwardRef('UVec') | None = None) -> None
Rotate shape around rotation center about angle in degrees.
rotate_rad(angle: float, center: TypeAliasForwardRef('UVec') | None = None) -> None
Rotate shape around rotation center about angle in radians.
offset(offset: float, closed: bool = False) -> Shape2d
Returns a new offset shape, for more information see also ezdxf.math.offset_vertices_2d()
function.
Parameters
• offset – line offset perpendicular to direction of shape segments defined by
vertices order, offset > 0 is ‘left’ of line segment, offset < 0 is ‘right’ of
line segment
• closed – True to handle as closed shape
convex_hull() -> Shape2d
Returns convex hull as new shape.
Curves
┌──────────────┬───────────────────────────────────────┐
│ ApproxParamT │ Approximation tool for parametrized │
│ │ curves. │
├──────────────┼───────────────────────────────────────┤
│ BSpline │ B-spline construction tool. │
├──────────────┼───────────────────────────────────────┤
│ Bezier │ Generic Bézier curve of any degree. │
├──────────────┼───────────────────────────────────────┤
│ Bezier3P │ Implements an optimized quadratic ‐ │
│ │ Bézier curve for exact 3 control │
│ │ points. │
├──────────────┼───────────────────────────────────────┤
│ Bezier4P │ Implements an optimized cubic Bézier │
│ │ curve for exact 4 control points. │
├──────────────┼───────────────────────────────────────┤
│ EulerSpiral │ This class represents an euler spiral │
│ │ (clothoid) for curvature (Radius of │
│ │ curvature). │
└──────────────┴───────────────────────────────────────┘
BSpline
class ezdxf.math.BSpline(control_points: Iterable[TypeAliasForwardRef('UVec')], order: int = 4, knots:
Iterable[float] | None = None, weights: Iterable[float] | None = None)
B-spline construction tool.
Internal representation of a B-spline curve. The default configuration of the knot vector is a
uniform open knot vector (“clamped”).
Factory functions:
• fit_points_to_cad_cv()
• fit_points_to_cubic_bezier()
• open_uniform_bspline()
• closed_uniform_bspline()
• rational_bspline_from_arc()
• rational_bspline_from_ellipse()
• global_bspline_interpolation()
• local_cubic_bspline_interpolation()
Parameters
• control_points – iterable of control points as Vec3 compatible objects
• order – spline order (degree + 1)
• knots – iterable of knot values
• weights – iterable of weight values
property control_points: Sequence[Vec3]
Control points as tuple of Vec3
property count: int
Count of control points, (n + 1 in text book notation).
property order: int
Order (k) of B-spline = p + 1
property degree: int
Degree (p) of B-spline = order - 1
property max_t: float
Biggest knot value.
property is_rational
Returns True if curve is a rational B-spline. (has weights)
property is_clamped
Returns True if curve is a clamped (open) B-spline.
knots() -> Sequence[float]
Returns a tuple of knot values as floats, the knot vector always has order + count values
(n + p + 2 in text book notation).
weights() -> Sequence[float]
Returns a tuple of weights values as floats, one for each control point or an empty tuple.
params(segments: int) -> Iterable[float]
Yield evenly spaced parameters for given segment count.
reverse() -> BSpline
Returns a new BSpline object with reversed control point order.
transform(m: Matrix44) -> BSpline
Returns a new BSpline object transformed by a Matrix44 transformation matrix.
approximate(segments: int = 20) -> Iterable[Vec3]
Approximates curve by vertices as Vec3 objects, vertices count = segments + 1.
flattening(distance: float, segments: int = 4) -> Iterator[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation
segments between two knots, if the distance from the center of the approximation segment to
the curve is bigger than distance the segment will be subdivided.
Parameters
• distance – maximum distance from the projected curve point onto the segment chord.
• segments – minimum segment count between two knots
point(t: float) -> Vec3
Returns point for parameter t.
Parameters
t – parameter in range [0, max_t]
points(t: Iterable[float]) -> Iterable[Vec3]
Yields points for parameter vector t.
Parameters
t – parameters in range [0, max_t]
derivative(t: float, n: int = 2) -> list[Vec3]
Return point and derivatives up to n <= degree for parameter t.
e.g. n=1 returns point and 1st derivative.
Parameters
• t – parameter in range [0, max_t]
• n – compute all derivatives up to n <= degree
Returns
n+1 values as Vec3 objects
derivatives(t: Iterable[float], n: int = 2) -> Iterable[list[Vec3]]
Yields points and derivatives up to n <= degree for parameter vector t.
e.g. n=1 returns point and 1st derivative.
Parameters
• t – parameters in range [0, max_t]
• n – compute all derivatives up to n <= degree
Returns
List of n+1 values as Vec3 objects
insert_knot(t: float) -> BSpline
Insert an additional knot, without altering the shape of the curve. Returns a new BSpline
object.
Parameters
t – position of new knot 0 < t < max_t
knot_refinement(u: Iterable[float]) -> BSpline
Insert multiple knots, without altering the shape of the curve. Returns a new BSpline
object.
Parameters
u – vector of new knots t and for each t: 0 < t < max_t
static from_ellipse(ellipse: ConstructionEllipse) -> BSpline
Returns the ellipse as BSpline of 2nd degree with as few control points as possible.
static from_arc(arc: ConstructionArc) -> BSpline
Returns the arc as BSpline of 2nd degree with as few control points as possible.
static from_fit_points(points: Iterable[TypeAliasForwardRef('UVec')], degree=3, method='chord') ->
BSpline
Returns BSpline defined by fit points.
static arc_approximation(arc: ConstructionArc, num: int = 16) -> BSpline
Returns an arc approximation as BSpline with num control points.
static ellipse_approximation(ellipse: ConstructionEllipse, num: int = 16) -> BSpline
Returns an ellipse approximation as BSpline with num control points.
bezier_decomposition() -> Iterable[list[Vec3]]
Decompose a non-rational B-spline into multiple Bézier curves.
This is the preferred method to represent the most common non-rational B-splines of 3rd
degree by cubic Bézier curves, which are often supported by render backends.
Returns
Yields control points of Bézier curves, each Bézier segment has degree+1 control
points e.g. B-spline of 3rd degree yields cubic Bézier curves of 4 control points.
cubic_bezier_approximation(level: int = 3, segments: int | None = None) -> Iterable[Bezier4P]
Approximate arbitrary B-splines (degree != 3 and/or rational) by multiple segments of cubic
Bézier curves. The choice of cubic Bézier curves is based on the widely support of this
curves by many render backends. For cubic non-rational B-splines, which is maybe the most
common used B-spline, is bezier_decomposition() the better choice.
1. approximation by level: an educated guess, the first level of approximation segments is
based on the count of control points and their distribution along the B-spline, every
additional level is a subdivision of the previous level.
E.g. a B-Spline of 8 control points has 7 segments at the first level, 14 at the 2nd level
and 28 at the 3rd level, a level >= 3 is recommended.
2. approximation by a given count of evenly distributed approximation segments.
Parameters
• level – subdivision level of approximation segments (ignored if argument segments
is not None)
• segments – absolute count of approximation segments
Returns
Yields control points of cubic Bézier curves as Bezier4P objects
degree_elevation(t: int) -> BSpline
Returns a new BSpline with a t-times elevated degree.
Degree elevation increases the degree of a curve without changing the shape of the curve.
This method implements the algorithm A5.9 of the “The NURBS Book” by Piegl & Tiller.
Added in version 1.4.
point_inversion(point: UVec, *, epsilon=1e-8, max_iterations=100, init=8) -> float
Returns the parameter t for a point on the curve that is closest to the input point.
This is an iterative search using Newton’s method, so there is no guarantee of success,
especially for splines with many turns.
Parameters
• point (UVec) – point on the curve or near the curve
• epsilon (float) – desired precision (distance input point to point on curve)
• max_iterations (int) – max iterations for Newton’s method
• init (int) – number of points to calculate in the initialization phase
Added in version 1.4.
measure(segments: int = 100) -> Measurement
Returns a B-spline measurement tool.
All measurements are based on the approximated curve.
Parameters
segments – count of segments for B-spline approximation.
Added in version 1.4.
split(t: float) -> tuple[BSpline, BSpline]
Splits the B-spline at parameter t and returns two new B-splines.
Raises ValuerError – t out of range 0 < t < max_t
Added in version 1.4.
class ezdxf.math.bspline.Measurement(spline: BSpline, segments: int)
B-spline measurement tool.
All measurements are based on the approximated curve.
Added in version 1.4.
extmin minimum extents of the approximated curve as Vec3
extmax maximum extents of the approximated curve as Vec3
property length: float
Returns the approximated length of the B-spline.
distance(t: float) -> float
Returns the distance along the curve from the start point for then given parameter t.
param_at(distance: float) -> float
Returns the parameter t for a given distance along the curve from the start point.
divide(count: int) -> list[float]
Returns the interpolated B-spline parameters for dividing the curve into count segments of
equal length.
The method yields only the dividing parameters, the first (0.0) and last parameter (max_t)
are not included e.g. dividing a B-spline by 3 yields two parameters [t1, t2] that divides
the B-spline into 3 parts of equal length.
Bezier
class ezdxf.math.Bezier(defpoints: Iterable[TypeAliasForwardRef('UVec')])
Generic Bézier curve of any degree.
A Bézier curve is a parametric curve used in computer graphics and related fields. Bézier curves
are used to model smooth curves that can be scaled indefinitely. “Paths”, as they are commonly
referred to in image manipulation programs, are combinations of linked Bézier curves. Paths are
not bound by the limits of rasterized images and are intuitive to modify. (Source: Wikipedia)
This is a generic implementation which works with any count of definition points greater than 2,
but it is a simple and slow implementation. For more performance look at the specialized Bezier4P
and Bezier3P classes.
Objects are immutable.
Parameters
defpoints – iterable of definition points as Vec3 compatible objects.
control_points
Control points as tuple of Vec3 objects.
params(segments: int) -> Iterable[float]
Yield evenly spaced parameters from 0 to 1 for given segment count.
reverse() -> Bezier
Returns a new Bèzier-curve with reversed control point order.
transform(m: Matrix44) -> Bezier
General transformation interface, returns a new Bezier curve.
Parameters
m – 4x4 transformation matrix (ezdxf.math.Matrix44)
approximate(segments: int = 20) -> Iterable[Vec3]
Approximates curve by vertices as Vec3 objects, vertices count = segments + 1.
flattening(distance: float, segments: int = 4) -> Iterable[Vec3]
Adaptive recursive flattening. The argument segments is the minimum count of approximation
segments, if the distance from the center of the approximation segment to the curve is
bigger than distance the segment will be subdivided.
Parameters
• distance – maximum distance from the center of the curve (Cn) to the center of the
linear (C1) curve between two approximation points to determine if a segment
should be subdivided.
• segments – minimum segment count
point(t: float) -> Vec3
Returns a point for parameter t in range [0, 1] as Vec3 object.
points(t: Iterable[float]) -> Iterable[Vec3]
Yields multiple points for parameters in vector t as Vec3 objects. Parameters have to be in
range [0, 1].
derivative(t: float) -> tuple[Vec3, Vec3, Vec3]
Returns (point, 1st derivative, 2nd derivative) tuple for parameter t in range [0, 1] as
Vec3 objects.
derivatives(t: Iterable[float]) -> Iterable[tuple[Vec3, Vec3, Vec3]]
Returns multiple (point, 1st derivative, 2nd derivative) tuples for parameter vector t as
Vec3 objects. Parameters in range [0, 1]
Bezier4P
class ezdxf.math.Bezier4P(defpoints: Sequence[T])
Implements an optimized cubic Bézier curve for exact 4 control points.
A Bézier curve is a parametric curve, parameter t goes from 0 to 1, where 0 is the first control
point and 1 is the fourth control point.
The class supports points of type Vec2 and Vec3 as input, the class instances are immutable.
Parameters
defpoints – sequence of definition points as Vec2 or Vec3 compatible objects.
control_points
Control points as tuple of Vec3 or Vec2 objects.
reverse() -> Bezier4P[T]
Returns a new Bèzier-curve with reversed control point order.
transform(m: Matrix44) -> Bezier4P[Vec3]
General transformation interface, returns a new Bezier4p curve as a 3D curve.
Parameters
m – 4x4 transformation Matrix44
approximate(segments: int) -> Iterator[T]
Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y[, z]) tuples.
Parameters
segments – count of segments for approximation
flattening(distance: float, segments: int = 4) -> Iterator[T]
Adaptive recursive flattening. The argument segments is the minimum count of approximation
segments, if the distance from the center of the approximation segment to the curve is
bigger than distance the segment will be subdivided.
Parameters
• distance – maximum distance from the center of the cubic (C3) curve to the center
of the linear (C1) curve between two approximation points to determine if a
segment should be subdivided.
• segments – minimum segment count
approximated_length(segments: int = 128) -> float
Returns estimated length of Bèzier-curve as approximation by line segments.
point(t: float) -> T
Returns point for location t at the Bèzier-curve.
Parameters
t – curve position in the range [0, 1]
tangent(t: float) -> T
Returns direction vector of tangent for location t at the Bèzier-curve.
Parameters
t – curve position in the range [0, 1]
Bezier3P
class ezdxf.math.Bezier3P(defpoints: Sequence[T])
Implements an optimized quadratic Bézier curve for exact 3 control points.
The class supports points of type Vec2 and Vec3 as input, the class instances are immutable.
Parameters
defpoints – sequence of definition points as Vec2 or Vec3 compatible objects.
control_points
Control points as tuple of Vec3 or Vec2 objects.
reverse() -> Bezier3P[T]
Returns a new Bèzier-curve with reversed control point order.
transform(m: Matrix44) -> Bezier3P[Vec3]
General transformation interface, returns a new Bezier3P curve and it is always a 3D curve.
Parameters
m – 4x4 transformation Matrix44
approximate(segments: int) -> Iterator[T]
Approximate Bézier curve by vertices, yields segments + 1 vertices as (x, y[, z]) tuples.
Parameters
segments – count of segments for approximation
flattening(distance: float, segments: int = 4) -> Iterator[T]
Adaptive recursive flattening. The argument segments is the minimum count of approximation
segments, if the distance from the center of the approximation segment to the curve is
bigger than distance the segment will be subdivided.
Parameters
• distance – maximum distance from the center of the quadratic (C2) curve to the
center of the linear (C1) curve between two approximation points to determine if a
segment should be subdivided.
• segments – minimum segment count
approximated_length(segments: int = 128) -> float
Returns estimated length of Bèzier-curve as approximation by line segments.
point(t: float) -> T
Returns point for location t at the Bèzier-curve.
Parameters
t – curve position in the range [0, 1]
tangent(t: float) -> T
Returns direction vector of tangent for location t at the Bèzier-curve.
Parameters
t – curve position in the range [0, 1]
ApproxParamT
class ezdxf.math.ApproxParamT(curve, *, max_t: float = 1.0, segments: int = 100)
Approximation tool for parametrized curves.
• approximate parameter t for a given distance from the start of the curve
• approximate the distance for a given parameter t from the start of the curve
These approximations can be applied to all parametrized curves which provide a point() method,
like Bezier4P, Bezier3P and BSpline.
The approximation is based on equally spaced parameters from 0 to max_t for a given segment count.
The flattening() method can not be used for the curve approximation, because the required
parameter t is not logged by the flattening process.
Parameters
• curve – curve object, requires a method point()
• max_t – the max. parameter value
• segments – count of approximation segments
property max_t: float
property polyline: ConstructionPolyline
param_t(distance: float)
Approximate parameter t for the given distance from the start of the curve.
distance(t: float) -> float
Approximate the distance from the start of the curve to the point t on the curve.
EulerSpiral
class ezdxf.math.EulerSpiral(curvature: float = 1.0)
This class represents an euler spiral (clothoid) for curvature (Radius of curvature).
This is a parametric curve, which always starts at the origin = (0, 0).
Parameters
curvature – radius of curvature
radius(t: float) -> float
Get radius of circle at distance t.
tangent(t: float) -> Vec3
Get tangent at distance t as Vec3 object.
distance(radius: float) -> float
Get distance L from origin for radius.
point(t: float) -> Vec3
Get point at distance t as Vec3.
circle_center(t: float) -> Vec3
Get circle center at distance t.
approximate(length: float, segments: int) -> Iterable[Vec3]
Approximate curve of length with line segments. Generates segments+1 vertices as Vec3
objects.
bspline(length: float, segments: int = 10, degree: int = 3, method: str = 'uniform') -> BSpline
Approximate euler spiral as B-spline.
Parameters
• length – length of euler spiral
• segments – count of fit points for B-spline calculation
• degree – degree of BSpline
• method – calculation method for parameter vector t
Returns
BSpline
Clipping
Clipping module: ezdxf.math.clipping
ezdxf.math.clipping.greiner_hormann_union(p1: Iterable[TypeAliasForwardRef('UVec')], p2:
Iterable[TypeAliasForwardRef('UVec')]) -> list[list[Vec2]]
Returns the UNION of polygon p1 | polygon p2. This algorithm works only for polygons with real
intersection points and line end points on face edges are not considered as such intersection
points!
ezdxf.math.clipping.greiner_hormann_difference(p1: Iterable[TypeAliasForwardRef('UVec')], p2:
Iterable[TypeAliasForwardRef('UVec')]) -> list[list[Vec2]]
Returns the DIFFERENCE of polygon p1 - polygon p2. This algorithm works only for polygons with
real intersection points and line end points on face edges are not considered as such intersection
points!
ezdxf.math.clipping.greiner_hormann_intersection(p1: Iterable[TypeAliasForwardRef('UVec')], p2:
Iterable[TypeAliasForwardRef('UVec')]) -> list[list[Vec2]]
Returns the INTERSECTION of polygon p1 & polygon p2. This algorithm works only for polygons with
real intersection points and line end points on face edges are not considered as such intersection
points!
class ezdxf.math.clipping.ConvexClippingPolygon2d(vertices: Iterable[Vec2], ccw_check=True,
abs_tol=TOLERANCE)
The clipping path is an arbitrary convex 2D polygon.
clip_polygon(polygon: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polygon. A polygon is a closed polyline.
clip_polyline(polyline: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polyline.
clip_line(start: Vec2, end: Vec2) -> Sequence[tuple[Vec2, Vec2]]
Returns the parts of the clipped line.
is_inside(point: Vec2) -> bool
Returns True if point is inside the clipping polygon.
class ezdxf.math.clipping.ClippingRect2d(bottom_left: Vec2, top_right: Vec2, abs_tol=TOLERANCE)
The clipping path is an axis-aligned rectangle, where all sides are parallel to the x- and y-axis.
clip_polygon(polygon: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polygon. A polygon is a closed polyline.
clip_polyline(polyline: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polyline.
clip_line(start: Vec2, end: Vec2) -> Sequence[tuple[Vec2, Vec2]]
Returns the clipped line.
is_inside(point: Vec2) -> bool
Returns True if point is inside the clipping rectangle.
class ezdxf.math.clipping.ConcaveClippingPolygon2d(vertices: Iterable[Vec2], abs_tol=TOLERANCE)
The clipping path is an arbitrary concave 2D polygon.
clip_polygon(polygon: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polygon. A polygon is a closed polyline.
clip_polyline(polyline: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polyline.
clip_line(start: Vec2, end: Vec2) -> Sequence[tuple[Vec2, Vec2]]
Returns the clipped line.
is_inside(point: Vec2) -> bool
Returns True if point is inside the clipping polygon.
class ezdxf.math.clipping.InvertedClippingPolygon2d(inner_polygon: Iterable[Vec2], outer_bounds:
BoundingBox2d, abs_tol=TOLERANCE)
This class represents an inverted clipping path. Everything between the inner polygon and the
outer extents is considered as inside. The inner clipping path is an arbitrary 2D polygon.
IMPORTANT:
The outer_bounds must be larger than the content to clip to work correctly.
clip_polygon(polygon: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polygon. A polygon is a closed polyline.
clip_polyline(polyline: Sequence[Vec2]) -> Sequence[Sequence[Vec2]]
Returns the parts of the clipped polyline.
clip_line(start: Vec2, end: Vec2) -> Sequence[tuple[Vec2, Vec2]]
Returns the clipped line.
is_inside(point: Vec2) -> bool
Returns True if point is inside the clipping polygon.
Clustering
Clustering module: ezdxf.math.clustering
ezdxf.math.clustering.average_cluster_radius(clusters: list[list[Vec2 | Vec3]]) -> float
Returns the average cluster radius.
ezdxf.math.clustering.average_intra_cluster_distance(clusters: list[list[Vec2 | Vec3]]) -> float
Returns the average point-to-point intra cluster distance.
ezdxf.math.clustering.dbscan(points: list[Vec2 | Vec3], *, radius: float, min_points: int = 4, rtree:
RTree | None = None, max_node_size: int = 5) -> list[list[Vec2 | Vec3]]
DBSCAN clustering.
https://en.wikipedia.org/wiki/DBSCAN
Parameters
• points – list of points to cluster
• radius – radius of the dense regions
• min_points – minimum number of points that needs to be within the radius for a point to
be a core point (must be >= 2)
• rtree – optional RTree
• max_node_size – max node size for internally created RTree
Returns
list of clusters, each cluster is a list of points
ezdxf.math.clustering.k_means(points: list[Vec2 | Vec3], k: int, max_iter: int = 10) -> list[list[Vec2 |
Vec3]]
K-means clustering.
https://en.wikipedia.org/wiki/K-means_clustering
Parameters
• points – list of points to cluster
• k – number of clusters
• max_iter – max iterations
Returns
list of clusters, each cluster is a list of points
Linear Algebra
Linear algebra module for internal usage: ezdxf.math.linalg
Functions
ezdxf.math.linalg.tridiagonal_vector_solver(A: List[List[float]], B: Iterable[float]) -> list[float]
Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side
quantities as vector B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1
(c)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.
If an ZeroDivisionError exception occurs, the equation system can possibly be solved by
BandedMatrixLU(A, 1, 1).solve_vector(B)
Parameters
• A –
diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]
[[b0, c0, 0, 0, ...],
[a1, b1, c1, 0, ...],
[0, a2, b2, c2, ...],
... ]
• B – iterable of floats [[b1, b1, …, bn]
Returns
list of floats
Raises ZeroDivisionError – singular matrix
ezdxf.math.linalg.tridiagonal_matrix_solver(A: List[List[float]] | ndarray[tuple[int, ...],
dtype[float64]], B: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]]) -> Matrix
Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side
quantities as nxm Matrix B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1
(c)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.
If an ZeroDivisionError exception occurs, the equation system can possibly be solved by
BandedMatrixLU(A, 1, 1).solve_vector(B)
Parameters
• A –
diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]
[[b0, c0, 0, 0, ...],
[a1, b1, c1, 0, ...],
[0, a2, b2, c2, ...],
... ]
• B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]
Returns
matrix as Matrix object
Raises ZeroDivisionError – singular matrix
ezdxf.math.linalg.banded_matrix(A: Matrix, check_all=True) -> tuple[Matrix, int, int]
Transform matrix A into a compact banded matrix representation. Returns compact representation as
Matrix object and lower- and upper band count m1 and m2.
Parameters
• A – input Matrix
• check_all – check all diagonals if True or abort testing after first all zero diagonal if
False.
ezdxf.math.linalg.detect_banded_matrix(A: Matrix, check_all=True) -> tuple[int, int]
Returns lower- and upper band count m1 and m2.
Parameters
• A – input Matrix
• check_all – check all diagonals if True or abort testing after first all zero diagonal if
False.
ezdxf.math.linalg.compact_banded_matrix(A: Matrix, m1: int, m2: int) -> Matrix
Returns compact banded matrix representation as Matrix object.
Parameters
• A – matrix to transform
• m1 – lower band count, excluding main matrix diagonal
• m2 – upper band count, excluding main matrix diagonal
Matrix Class
class ezdxf.math.linalg.Matrix(items: Any = None, shape: Tuple[int, int] | None = None, matrix:
List[List[float]] | ndarray[tuple[int, ...], dtype[float64]] | None = None)
Basic matrix implementation based numpy.ndarray. Matrix data is stored in row major order, this
means in a list of rows, where each row is a list of floats.
Initialization:
• Matrix(shape=(rows, cols)) … new matrix filled with zeros
• Matrix(matrix[, shape=(rows, cols)]) … from copy of matrix and optional reshape
• Matrix([[row_0], [row_1], …, [row_n]]) … from Iterable[Iterable[float]]
• Matrix([a1, a2, …, an], shape=(rows, cols)) … from Iterable[float] and shape
Changed in version 1.2: Implementation based on numpy.ndarray.
matrix matrix data as numpy.ndarray
nrows Count of matrix rows.
ncols Count of matrix columns.
shape Shape of matrix as (n, m) tuple for n rows and m columns.
append_col(items: Sequence[float]) -> None
Append a column to the matrix.
append_row(items: Sequence[float]) -> None
Append a row to the matrix.
col(index: int) -> list[float]
Return column index as list of floats.
cols() -> list[list[float]]
Return a list of all columns.
determinant() -> float
Returns determinant of matrix, raises ZeroDivisionError if matrix is singular.
diag(index: int) -> list[float]
Returns diagonal index as list of floats.
An index of 0 specifies the main diagonal, negative values specifies diagonals below the
main diagonal and positive values specifies diagonals above the main diagonal.
e.g. given a 4x4 matrix:
• index 0 is [00, 11, 22, 33],
• index -1 is [10, 21, 32] and
• index +1 is [01, 12, 23]
freeze() -> Matrix
Returns a frozen matrix, all data is stored in immutable tuples.
classmethod identity(shape: Tuple[int, int]) -> Matrix
Returns the identity matrix for configuration shape.
inverse() -> Matrix
Returns inverse of matrix as new object.
isclose(other: object) -> bool
Returns True if matrices are close to equal, tolerance value for comparison is adjustable
by the attribute Matrix.abs_tol.
static reshape(items: Iterable[float], shape: Tuple[int, int]) -> Matrix
Returns a new matrix for iterable items in the configuration of shape.
row(index: int) -> list[float]
Returns row index as list of floats.
rows() -> list[list[float]]
Return a list of all rows.
set_col(index: int, items: float | Iterable[float] = 1.0) -> None
Set column values to a fixed value or from an iterable of floats.
set_diag(index: int = 0, items: float | Iterable[float] = 1.0) -> None
Set diagonal values to a fixed value or from an iterable of floats.
An index of 0 specifies the main diagonal, negative values specifies diagonals below the
main diagonal and positive values specifies diagonals above the main diagonal.
e.g. given a 4x4 matrix: index 0 is [00, 11, 22, 33], index -1 is [10, 21, 32] and index +1
is [01, 12, 23]
set_row(index: int, items: float | Iterable[float] = 1.0) -> None
Set row values to a fixed value or from an iterable of floats.
transpose() -> Matrix
Returns a new transposed matrix.
__getitem__(item: tuple[int, int]) -> float
Get value by (row, col) index tuple, fancy slicing as known from numpy is not supported.
__setitem__(item: tuple[int, int], value: float)
Set value by (row, col) index tuple, fancy slicing as known from numpy is not supported.
__eq__(other: object) -> bool
Returns True if matrices are equal.
__add__(other: Matrix | float) -> Matrix
Matrix addition by another matrix or a float, returns a new matrix.
__sub__(other: Matrix | float) -> Matrix
Matrix subtraction by another matrix or a float, returns a new matrix.
__mul__(other: Matrix | float) -> Matrix
Matrix multiplication by another matrix or a float, returns a new matrix.
NumpySolver
class ezdxf.math.linalg.NumpySolver(A: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]])
Replaces in v1.2 the LUDecomposition solver.
solve_vector(B: Iterable[float]) -> list[float]
Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side
quantities as vector B with n elements.
Parameters
B – vector [b1, b2, …, bn]
Raises numpy.linalg.LinAlgError – singular matrix
solve_matrix(B: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]]) -> Matrix
Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side
quantities as nxm Matrix B.
Parameters
B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]
Raises numpy.linalg.LinAlgError – singular matrix
BandedMatrixLU Class
class ezdxf.math.linalg.BandedMatrixLU(A: Matrix, m1: int, m2: int)
Represents a LU decomposition of a compact banded matrix.
upper Upper triangle
lower Lower triangle
m1 Lower band count, excluding main matrix diagonal
m2 Upper band count, excluding main matrix diagonal
index Swapped indices
nrows Count of matrix rows.
solve_vector(B: Iterable[float]) -> list[float]
Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side
quantities as vector B with n elements.
Parameters
B – vector [b1, b2, …, bn]
Returns
vector as list of floats
solve_matrix(B: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]]) -> Matrix
Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side
quantities as nxm Matrix B.
Parameters
B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]
Returns
matrix as Matrix object
RTree
RTree module: ezdxf.math.rtree
class ezdxf.math.rtree.RTree(points: Iterable[T], max_node_size: int = 5)
Immutable spatial search tree loosely based on R-trees.
The search tree is buildup once at initialization and immutable afterwards, because rebuilding the
tree after inserting or deleting nodes is very costly and makes the implementation very complex.
Without the ability to alter the content the restrictions which forces the tree balance at growing
and shrinking of the original R-trees, are ignored, like the fixed minimum and maximum node size.
This class uses internally only 3D bounding boxes, but also supports Vec2 as well as Vec3 objects
as input data, but point types should not be mixed in a search tree.
The point objects keep their type and identity and the returned points of queries can be compared
by the is operator for identity to the input points.
The implementation requires a maximum node size of at least 2 and does not support empty trees!
Raises ValueError – max. node size too small or no data given
__len__()
Returns the count of points in the search tree.
__iter__() -> Iterator[T]
Yields all points in the search tree.
contains(point: T) -> bool
Returns True if point exists, the comparison is done by the isclose() method and not by the
identity operator is.
nearest_neighbor(target: T) -> tuple[T, float]
Returns the closest point to the target point and the distance between these points.
points_in_sphere(center: T, radius: float) -> Iterator[T]
Returns all points in the range of the given sphere including the points at the boundary.
points_in_bbox(bbox: BoundingBox) -> Iterator[T]
Returns all points in the range of the given bounding box including the points at the
boundary.
avg_leaf_size(spread: float = 1.0) -> float
Returns the average size of the leaf bounding boxes. The size of a leaf bounding box is
the maximum size in all dimensions. Excludes outliers of sizes beyond mean + standard
deviation * spread. Returns 0.0 if less than two points in tree.
avg_spherical_envelope_radius(spread: float = 1.0) -> float
Returns the average radius of spherical envelopes of the leaf nodes. Excludes outliers
with radius beyond mean + standard deviation * spread. Returns 0.0 if less than two points
in tree.
avg_nn_distance(spread: float = 1.0) -> float
Returns the average of the nearest neighbor distances inside (!) leaf nodes. Excludes
outliers with a distance beyond the overall mean + standard deviation * spread. Returns 0.0
if less than two points in tree.
WARNING:
This is a brute force check with O(n!) for each leaf node, where n is the point count of
the leaf node.
Triangulation
Triangulation module: ezdxf.math.triangulation
ezdxf.math.triangulation.mapbox_earcut_2d(exterior: Iterable[TypeAliasForwardRef('UVec')], holes:
Iterable[Iterable[TypeAliasForwardRef('UVec')]] | None = None) -> list[Sequence[Vec2]]
Mapbox triangulation algorithm with hole support for 2D polygons.
Implements a modified ear slicing algorithm, optimized by z-order curve hashing and extended to
handle holes, twisted polygons, degeneracies and self-intersections in a way that doesn’t
guarantee correctness of triangulation, but attempts to always produce acceptable results for
practical data.
Source: https://github.com/mapbox/earcut
Parameters
• exterior – exterior polygon as iterable of Vec2 objects
• holes – iterable of holes as iterable of Vec2 objects, a hole with single point
represents a Steiner point.
Returns
yields the result as 3-tuples of Vec2 objects
ezdxf.math.triangulation.mapbox_earcut_3d(exterior: Iterable[TypeAliasForwardRef('UVec')], holes:
Iterable[Iterable[TypeAliasForwardRef('UVec')]] | None = None) -> Iterator[Sequence[Vec3]]
Mapbox triangulation algorithm with hole support for flat 3D polygons.
Implements a modified ear slicing algorithm, optimized by z-order curve hashing and extended to
handle holes, twisted polygons, degeneracies and self-intersections in a way that doesn’t
guarantee correctness of triangulation, but attempts to always produce acceptable results for
practical data.
Source: https://github.com/mapbox/earcut
Parameters
• exterior – exterior polygon as iterable of Vec3 objects
• holes – iterable of holes as iterable of Vec3 objects, a hole with single point
represents a Steiner point.
Returns
yields the result as 3-tuples of Vec3 objects
Raises
• TypeError – invalid input data type
• ZeroDivisionError – normal vector calculation failed
Construction
ACIS Tools
The ezdxf.acis sub-package provides some ACIS data management tools. The main goals of this tools are:
1. load and parse simple and known ACIS data structures
2. create and export simple and known ACIS data structures
It is NOT a goal to load and edit arbitrary existing ACIS structures.
Don’t even try it!
These tools cannot replace the official ACIS SDK due to the complexity of the data structures and the
absence of an ACIS kernel. Without access to the full documentation it is very cumbersome to
reverse-engineer entities and their properties, therefore the analysis of the ACIS data structures is
limited to the use as embedded data in DXF and DWG files.
The ezdxf library does not provide an ACIS kernel and there are no plans for implementing one because
this is far beyond my capabilities, but it is possible to extract geometries made up only by flat
polygonal faces (polyhedron) from ACIS data. Exporting polyhedrons as ACIS data and loading this DXF
file by Autodesk products or BricsCAD works for SAT data for DXF R2000-R2010 and for SAB data for DXF
R2013-R2018.
IMPORTANT:
Always import from the public interface module ezdxf.acis.api, the internal package and module
structure may change in the future and imports from other modules than api will break.
Functions
ezdxf.acis.api.load_dxf(entity: DXFEntity) -> list[Body]
Load the ACIS bodies from the given DXF entity. This is the recommended way to load ACIS data.
The DXF entity has to be an ACIS based entity and inherit from ezdxf.entities.Body. The entity has
to be bound to a valid DXF document and the DXF version of the document has to be DXF R2000 or
newer.
Raises
• DXFTypeError – invalid DXF entity type
• DXFValueError – invalid DXF document
• DXFVersionError – invalid DXF version
WARNING:
Only a limited count of ACIS entities is supported, all unsupported entities are loaded as
NONE_ENTITY and their data is lost. Exporting such NONE_ENTITIES will raise an ExportError
exception.
To emphasize that again: It is not possible to load and re-export arbitrary ACIS data!
Example:
import ezdxf
from ezdxf.acis import api as acis
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
for e in msp.query("3DSOLID"):
bodies = acis.load_dxf(e)
...
ezdxf.acis.api.export_dxf(entity: DXFEntity, bodies: Sequence[Body])
Store the ACIS bodies in the given DXF entity. This is the recommended way to set ACIS data of DXF
entities.
The DXF entity has to be an ACIS based entity and inherit from ezdxf.entities.Body. The entity has
to be bound to a valid DXF document and the DXF version of the document has to be DXF R2000 or
newer.
Raises
• DXFTypeError – invalid DXF entity type
• DXFValueError – invalid DXF document
• DXFVersionError – invalid DXF version
Example:
import ezdxf
from ezdxf.render import forms
from ezdxf.acis import api as acis
doc = ezdxf.new("R2000")
msp = doc.modelspace()
# create an ACIS body from a simple cube-mesh
body = acis.body_from_mesh(forms.cube())
solid3d = msp.add_3dsolid()
acis.export_dxf(solid3d, [body])
doc.saveas("cube.dxf")
ezdxf.acis.api.load(data: str | Sequence[str] | bytes | bytearray) -> list[Body]
Returns a list of Body entities from SAT or SAB data. Accepts SAT data as a single string or a
sequence of strings and SAB data as bytes or bytearray.
ezdxf.acis.api.export_sat(bodies: Sequence[Body], version: int = const.DEFAULT_SAT_VERSION) -> list[str]
Export one or more Body entities as text based SAT data.
ACIS version 700 is sufficient for DXF versions R2000, R2004, R2007 and R2010, later DXF versions
require SAB data.
Raises
• ExportError – ACIS structures contain unsupported entities
• InvalidLinkStructure – corrupt link structure
ezdxf.acis.api.export_sab(bodies: Sequence[Body], version: int = const.DEFAULT_SAB_VERSION) -> bytes
Export one or more Body entities as binary encoded SAB data.
ACIS version 21800 is sufficient for DXF versions R2013 and R2018, earlier DXF versions require
SAT data.
Raises
• ExportError – ACIS structures contain unsupported entities
• InvalidLinkStructure – corrupt link structure
ezdxf.acis.api.mesh_from_body(body: Body, merge_lumps=True) -> list[MeshTransformer]
Returns a list of MeshTransformer instances from the given ACIS Body entity. The list contains
multiple meshes if merge_lumps is False or just a single mesh if merge_lumps is True.
The ACIS format stores the faces in counter-clockwise orientation where the face-normal points
outwards (away) from the solid body (material).
NOTE:
This function returns meshes build up only from flat polygonal Face entities, for a
tessellation of more complex ACIS entities (spline surfaces, tori, cones, …) is an ACIS kernel
required which ezdxf does not provide.
Parameters
• body – ACIS entity of type Body
• merge_lumps – returns all Lump entities from a body as a single mesh if True otherwise
each Lump entity is a separated mesh
Raises TypeError – given body entity has invalid type
The following images show the limitations of the mesh_from_body() function. The first image shows the
source 3DSOLID entities with subtraction of entities with flat and curved faces:
[image]
Example script to extracts all flat polygonal faces as meshes:
import ezdxf
from ezdxf.acis import api as acis
doc = ezdxf.readfile("3dsolids.dxf")
msp = doc.modelspace()
doc_out = ezdxf.new()
msp_out = doc_out.modelspace()
for e in msp.query("3DSOLID"):
for body in acis.load_dxf(data):
for mesh in acis.mesh_from_body(body):
mesh.render_mesh(msp_out)
doc_out.saveas("meshes.dxf")
The second image shows the flat faces extracted from the 3DSOLID entities and exported as Mesh entities:
[image]
As you can see all faces which do not have straight lines as boundaries are lost.
ezdxf.acis.api.body_from_mesh(mesh: MeshBuilder, precision: int = 6) -> Body
Returns a ACIS Body entity from a MeshBuilder instance.
This entity can be assigned to a Solid3d DXF entity as SAT or SAB data according to the version
your DXF document uses (SAT for DXF R2000 to R2010 and SAB for DXF R2013 and later).
If the mesh contains multiple separated meshes, each mesh will be a separated Lump node. If each
mesh should get its own Body entity, separate the meshes beforehand by the method
separate_meshes().
A closed mesh creates a solid body and an open mesh creates an open (hollow) shell. The detection
if the mesh is open or closed is based on the edges of the mesh: if all edges of mesh have two
adjacent faces the mesh is closed.
The current implementation applies automatically a vertex optimization, which merges coincident
vertices into a single vertex.
ezdxf.acis.api.vertices_from_body(body: Body) -> list[Vec3]
Returns all stored vertices in the given Body entity. The result is not optimized, meaning the
vertices are in no particular order and there are duplicates.
This function can be useful to determining the approximate bounding box of an ACIS entity. The
result is exact for polyhedra with flat faces with straight edges, but not for bodies with curved
edges and faces.
Parameters
body – ACIS entity of type Body
Raises TypeError – given body entity has invalid type
Exceptions
class ezdxf.acis.api.AcisException
Base exception of the ezdxf.acis package.
class ezdxf.acis.api.ParsingError
Exception raised when loading invalid or unknown ACIS structures.
class ezdxf.acis.api.ExportError
Exception raised when exporting invalid or unknown ACIS structures.
class ezdxf.acis.api.InvalidLinkStructure
Exception raised when the internal link structure is damaged.
Entities
A document (sat.pdf) about the basic ACIS 7.0 file format is floating in the internet.
This section contains the additional information about the entities, I got from analyzing the SAT data
extracted from DXF files exported by BricsCAD.
This documentation ignores the differences to the ACIS format prior to version 7.0 and all this
differences are handled internally.
Writing support for ACIS version < 7.0 is not required because all CAD applications should be able to
process version 7.0, even if embedded in a very old DXF R2000 format (tested with Autodesk TrueView,
BricsCAD and Nemetschek Allplan).
The first goal is to document the entities which are required to represent a geometry as flat polygonal
faces (polyhedron), which can be converted into a MeshBuilder object.
Topology Entities:
• Body
• Lump
• Shell
• Face
• Loop
• Coedge
• Edge
• Vertex
Geometry Entities:
• Transform
• Surface
• Plane
• Curve
• StraightCurve
• Point
ezdxf.acis.entities.NONE_REF
Special sentinel entity which supports the type attribute and the is_none property. Represents all
unset entities. Use this idiom on any entity type to check if an entity is unset:
if entity.is_none:
...
AcisEntity
class ezdxf.acis.entities.AcisEntity
Base class for all ACIS entities.
type Name of the type as str.
id Unique id as int or -1 if not set.
attributes
Reference to the first Attribute entity (not supported).
is_none
True for unset entities represented by the NONE_REF instance.
Transform
class ezdxf.acis.entities.Transform(AcisEntity)
Represents an affine transformation operation which transform the body to the final location, size
and rotation.
matrix Transformation matrix of type ezdxf.math.Matrix44.
Body
class ezdxf.acis.entities.Body(AcisEntity)
Represents a solid geometry, which can consist of multiple Lump entities.
pattern
Reference to the Pattern entity.
lump Reference to the first Lump entity
wire Reference to the first Wire entity
transform
Reference to the Transform entity (optional)
lumps() -> list[Lump]
Returns all linked Lump entities as a list.
append_lump(lump: Lump) -> None
Append a Lump entity as last lump.
Pattern
class ezdxf.acis.entities.Pattern(AcisEntity)
Not implemented.
Lump
class ezdxf.acis.entities.Lump(AcisEntity)
The lump represents a connected entity and there can be multiple lumps in a Body. Multiple lumps
are linked together by the next_lump attribute which points to the next lump entity the last lump
has a NONE_REF as next lump. The body attribute references to the parent Body entity.
next_lump
Reference to the next Lump entity, the last lump references NONE_REF.
shell Reference to the Shell entity.
body Reference to the parent Body entity.
shells() -> list[Shell]
Returns all linked Shell entities as a list.
append_shell(shell: Shell) -> None
Append a Shell entity as last shell.
Wire
class ezdxf.acis.entities.Wire(AcisEntity)
Not implemented.
Shell
class ezdxf.acis.entities.Shell(AcisEntity)
A shell defines the boundary of a solid object or a void (subtraction object). A shell references
a list of Face and Wire entities. All linked Shell entities are disconnected.
next_shell
Reference to the next Shell entity, the last shell references NONE_REF.
subshell
Reference to the first Subshell entity.
face Reference to the first Face entity.
wire Reference to the first Wire entity.
lump Reference to the parent Lump entity.
faces() -> list[Face]
Returns all linked Face entities as a list.
append_face(face: Face) -> None
Append a Face entity as last face.
Subshell
class ezdxf.acis.entities.Subshell(AcisEntity)
Not implemented.
Face
class ezdxf.acis.entities.Face(AcisEntity)
A face is the building block for Shell entities. The boundary of a face is represented by one or
more Loop entities. The spatial geometry of the face is defined by the surface object, which is a
bounded or unbounded parametric 3d surface (plane, ellipsoid, spline-surface, …).
next_face
Reference to the next Face entity, the last face references NONE_REF.
loop Reference to the first Loop entity.
shell Reference to the parent Shell entity.
subshell
Reference to the parent Subshell entity.
surface
Reference to the parametric Surface geometry.
sense Boolean value of direction of the face normal with respect to the Surface entity:
• True: “reversed” direction of the face normal
• False: “forward” for same direction of the face normal
double_sided
Boolean value which indicates the sides of the face:
• True: the face is part of a hollow object and has two sides.
• False: the face is part of a solid object and has only one side which points away from
the “material”.
containment
Unknown meaning.
If double_sided is True:
• True is “in”
• False is “out”
loops() -> list[Loop]
Returns all linked Loop entities as a list.
append_loop(loop: Loop) -> None
Append a Loop entity as last loop.
Loop
class ezdxf.acis.entities.Loop(AcisEntity)
A loop represents connected coedges which are building the boundaries of a Face, there can be
multiple loops for a single face e.g. faces can contain holes. The coedge attribute references
the first Coedge of the loop, the additional coedges are linked to this first Coedge. In closed
loops the coedges are organized as a circular list, in open loops the last coedge references the
NONE_REF entity as next_coedge and the first coedge references the NONE_REF as prev_coedge.
next_loop
Reference to the next Loop entity, the last loop references NONE_REF.
coedge Reference to the first Coedge entity.
face Reference to the parent Face entity.
coedges() -> list[Coedge]
Returns all linked Coedge entities as a list.
set_coedges(coedges: list[Coedge], close=True) -> None
Set all coedges of a loop at once.
Coedge
class ezdxf.acis.entities.Coedge(AcisEntity)
The coedges are a double linked list where next_coedge points to the next Coedge and prev_coedge
to the previous Coedge.
The partner_coedge attribute references the first partner Coedge of an adjacent Face, the partner
edges are organized as a circular list. In a manifold closed surface each Face is connected to one
partner face by an Coedge. In a non-manifold surface a face can have more than one partner face.
next_coedge
References the next Coedge, reference the NONE_REF if it is the last coedge in an open
Loop.
prev_coedge
References the previous Coedge, reference the NONE_REF if it is the first coedge in an open
Loop.
partner_coedge
References the partner Coedge of an adjacent Face entity. The partner coedges are organized
in a circular list.
edge References the Edge entity.
loop References the parent Loop entity.
pcurve References the PCurve entity.
Edge
class ezdxf.acis.entities.Edge(AcisEntity)
The Edge entity represents the physical edge of an object. Its geometry is defined by the bounded
portion of a parametric space curve. This bounds are stored as object-space Vertex entities.
start_vertex
The start Vertex of the space-curve in object coordinates, if NONE_REF the curve is
unbounded in this direction.
start_param
The parametric starting bound for the parametric curve. Evaluating the curve for this
parameter should return the coordinates of the start_vertex.
end_vertex
The end Vertex of the space-curve in object coordinates, if NONE_REF the curve is unbounded
in this direction.
end_param
The parametric end bound for the parametric curve.
coedge Parent Coedge of this edge.
curve The parametric space-curve which defines this edge. The curve can be the NULL_REF while
both Vertex entities are the same vertex. In this case the Edge represents an single point
like the apex of a cone.
sense Boolean value which indicates the direction of the edge:
• True: the edge has the “reversed” direction as the underlying curve
• False: the edge has the same direction as the underlying curve (“forward”)
convexity
Unknown meaning, always the string “unknown”.
Vertex
class ezdxf.acis.entities.Vertex(AcisEntity)
Represents a vertex of an Edge entity and references a Point entity.
point The spatial location in object-space as Point entity.
edge Parent Edge of this vertex. The vertex can be referenced by multiple edges, anyone of them
can be the parent of the vertex.
Surface
class ezdxf.acis.entities.Surface(AcisEntity)
Abstract base class for all parametric surfaces.
The parameterization of any Surface maps a 2D rectangle (u, v parameters) into the spatial
object-space (x, y, z).
u_bounds
Tuple of (start bound, end bound) parameters as two floats which define the bounds of the
parametric surface in the u-direction, one or both values can be math.inf which indicates
an unbounded state of the surface in that direction.
v_bounds
Tuple of (start bound, end bound) parameters as two floats which define the bounds of the
parametric surface in the v-direction, one or both values can be math.inf which indicates
an unbounded state of the surface in that direction.
abstractmethod evaluate(u: float, v: float) -> Vec3
Returns the spatial location at the parametric surface for the given parameters u and v.
Plane
class ezdxf.acis.entities.Plane(Surface)
Defines a flat plan as parametric surface.
origin Location vector of the origin of the flat plane as Vec3.
normal Normal vector of the plane as Vec3. Has to be an unit-vector!
u_dir Direction vector of the plane in u-direction as Vec3. Has to be an unit-vector!
v_dir Direction vector of the plane in v-direction as Vec3. Has to be an unit-vector!
reverse_v
Boolean value which indicates the orientation of the coordinate system:
• True: left-handed system, the v-direction is reversed and the normal vector is v_dir
cross u_dir.
• False: right-handed system and the normal vector is u_dir cross v_dir.
Curve
class ezdxf.acis.entities.Curve(AcisEntity)
Abstract base class for all parametric curves.
The parameterization of any Curve maps a 1D line (the parameter) into the spatial object-space (x,
y, z).
bounds Tuple of (start bound, end bound) parameters as two floats which define the bounds of the
parametric curve, one or both values can be math.inf which indicates an unbounded state of
the curve in that direction.
abstractmethod evaluate(param: float) -> Vec3
Returns the spatial location at the parametric curve for the given parameter.
StraightCurve
class ezdxf.acis.entities.StraightCurve(Curve)
Defines a straight line as parametric curve.
origin Location vector of the origin of the straight line as Vec3.
direction
Direction vector the straight line as Vec3. Has to be an unit-vector!
PCurve
class ezdxf.acis.entities.PCurve(AcisEntity)
Not implemented.
Point
class ezdxf.acis.entities.Point(AcisEntity)
Represents a point in the 3D object-space.
location
Cartesian coordinates as Vec3.
Bounding Box
The ezdxf.bbox module provide tools to calculate bounding boxes for many DXF entities, but not for all.
The bounding box calculation is based on the ezdxf.disassemble module and therefore has the same
limitation.
WARNING:
If accurate boundary boxes for text entities are important for you, read this first: Text Boundary
Calculation. TL;DR: Boundary boxes for text entities are not accurate!
Unsupported DXF entities:
• All ACIS based types like BODY, 3DSOLID or REGION
• External references (XREF) and UNDERLAY object
• RAY and XRAY, extend into infinite
• ACAD_TABLE, no basic support - only preserved by ezdxf
Unsupported entities are silently ignored, filtering of these DXF types is not necessary.
The base type for bounding boxes is the BoundingBox class from the module ezdxf.math.
The entities iterable as input can be the whole modelspace, an entity query or any iterable container of
DXF entities.
The Calculation of bounding boxes of curves is done by flattening the curve by a default flattening
distance of 0.01. Set argument flatten to 0 to speedup the bounding box calculation by accepting less
precision for curved objects by using only the control vertices.
The optional caching object Cache has to be instantiated by the user, this is only useful if the same
entities will be processed multiple times.
Example usage with caching:
from ezdxf import bbox
msp = doc.modelspace()
cache = bbox.Cache()
# get overall bounding box
first_bbox = bbox.extents(msp, cache=cache)
# bounding box of all LINE entities
second_bbox = bbox.extend(msp.query("LINE"), cache=cache)
Functions
ezdxf.bbox.extents(entities: Iterable[DXFEntity], *, fast=False, cache: Cache | None = None) ->
BoundingBox
Returns a single bounding box for all given entities.
If argument fast is True the calculation of Bézier curves is based on their control points, this
may return a slightly larger bounding box.
ezdxf.bbox.multi_flat(entities: Iterable[DXFEntity], *, fast=False, cache: Cache | None = None) ->
Iterable[BoundingBox]
Yields a bounding box for each of the given entities.
If argument fast is True the calculation of Bézier curves is based on their control points, this
may return a slightly larger bounding box.
ezdxf.bbox.multi_recursive(entities: Iterable[DXFEntity], *, fast=False, cache: Cache | None = None) ->
Iterable[BoundingBox]
Yields all bounding boxes for the given entities or all bounding boxes for their sub entities. If
an entity (INSERT) has sub entities, only the bounding boxes of these sub entities will be
yielded, not the bounding box of the entity (INSERT) itself.
If argument fast is True the calculation of Bézier curves is based on their control points, this
may return a slightly larger bounding box.
Caching Strategies
Because ezdxf is not a CAD application, ezdxf does not manage data structures which are optimized for a
usage by a CAD kernel. This means that the content of complex entities like block references or leaders
has to be created on demand by DXF primitives on the fly. These temporarily created entities are called
virtual entities and have no handle and are not stored in the entity database.
All this is required to calculate the bounding box of complex entities, and it is therefore a very time
consuming task. By using a Cache object it is possible to speedup this calculations, but this is not a
magically feature, it requires an understanding of what is happening under the hood to achieve any
performance gains.
For a single bounding box calculation, without any reuse of entities it makes no sense of using a Cache
object, e.g. calculation of the modelspace extents:
from pathlib import Path
import ezdxf
from ezdxf import bbox
CADKitSamples = Path(ezdxf.EZDXF_TEST_FILES) / 'CADKitSamples'
doc = ezdxf.readfile(CADKitSamples / 'A_000217.dxf')
cache = bbox.Cache()
ext = bbox.extents(doc.modelspace(), cache)
print(cache)
1226 cached objects and not a single cache hit:
Cache(n=1226, hits=0, misses=3273)
The result for using UUIDs to cache virtual entities is not better:
Cache(n=2206, hits=0, misses=3273)
Same count of hits and misses, but now the cache also references ~1000 virtual entities, which block your
memory until the cache is deleted, luckily this is a small DXF file (~838 kB).
Bounding box calculations for multiple entity queries, which have overlapping entity results, using a
Cache object may speedup the calculation:
doc = ezdxf.readfile(CADKitSamples / 'A_000217.dxf.dxf')
msp = doc.modelspace()
cache = bbox.Cache(uuid=False)
ext = bbox.extents(msp, cache)
print(cache)
# process modelspace again
ext = bbox.extents(msp, cache)
print(cache)
Processing the same data again leads some hits:
1st run: Cache(n=1226, hits=0, misses=3273)
2nd run: Cache(n=1226, hits=1224, misses=3309)
Using uuid=True leads not to more hits, but more cache entries:
1st run: Cache(n=2206, hits=0, misses=3273)
2nd run: Cache(n=2206, hits=1224, misses=3309)
Creating stable virtual entities by disassembling the entities at first leads to more hits:
from ezdxf import disassemble
entities = list(disassemble.recursive_decompose(msp))
cache = bbox.Cache(uuid=False)
bbox.extents(entities, cache)
print(cache)
bbox.extents(entities, cache)
print(cache)
First without UUID for stable virtual entities:
1st run: Cache(n=1037, hits=0, misses=4074)
2nd run: Cache(n=1037, hits=1037, misses=6078)
Using UUID for stable virtual entities leads to more hits:
1st run: Cache(n=2019, hits=0, misses=4074)
2nd run: Cache(n=2019, hits=2018, misses=4116)
But caching virtual entities needs also more memory.
In conclusion: Using a cache is only useful, if you often process nearly the same data; only then can an
increase in performance be expected.
Cache Class
class ezdxf.bbox.Cache(uuid=False)
Caching object for ezdxf.math.BoundingBox objects.
Parameters
uuid – use UUIDs for virtual entities
has_data
True if the cache contains any bounding boxes
hits
misses
invalidate(entities: Iterable[DXFEntity]) -> None
Invalidate cache entries for the given DXF entities.
If entities are changed by the user, it is possible to invalidate individual entities. Use
with care - discarding the whole cache is the safer workflow.
Ignores entities which are not stored in cache.
Disassemble
This module provide tools for the recursive decomposition of nested block reference structures into a
flat stream of DXF entities and converting DXF entities into geometric primitives of Path and MeshBuilder
objects encapsulated into intermediate Primitive classes.
WARNING:
Do not expect advanced vectorization capabilities: Text entities like TEXT, ATTRIB, ATTDEF and MTEXT
get only a rough border box representation. The text2path add-on can convert text into paths.
VIEWPORT, IMAGE and WIPEOUT are represented by their clipping path. Unsupported entities: all ACIS
based entities, XREF, UNDERLAY, ACAD_TABLE, RAY, XLINE. Unsupported entities will be ignored.
Text Boundary Calculation
Text boundary calculations are based on monospaced (fixed-pitch, fixed-width, non-proportional) font
metrics, which do not provide a good accuracy for text height calculation and much less accuracy for text
width calculation. It is possible to improve this results by using the font support from the optional
Matplotlib package.
Install Matplotlib from command line:
C:\> pip3 install matplotlib
The Matplotlib font support will improve the results for TEXT, ATTRIB and ATTDEF. The MTEXT entity has
many advanced features which would require a full “Rich Text Format” rendering and that is far beyond the
goals and capabilities of this library, therefore the boundary box for MTEXT will never be as accurate as
in a dedicated CAD application.
Using the Matplotlib font support adds runtime overhead, therefore it is possible to deactivate the
Matplotlib font support by setting the global option:
options.use_matplotlib_font_support = False
Flatten Complex DXF Entities
ezdxf.disassemble.recursive_decompose(entities: Iterable[DXFEntity]) -> Iterable[DXFEntity]
Recursive decomposition of the given DXF entity collection into a flat stream of DXF entities. All
block references (INSERT) and entities which provide a virtual_entities() method will be
disassembled into simple DXF sub-entities, therefore the returned entity stream does not contain
any INSERT entity.
Point entities will not be disassembled into DXF sub-entities, as defined by the current point
style $PDMODE.
These entity types include sub-entities and will be decomposed into simple DXF entities:
• INSERT
• DIMENSION
• LEADER
• MLEADER
• MLINE
Decomposition of XREF, UNDERLAY and ACAD_TABLE entities is not supported.
This function does not apply the clipping path created by the XCLIP command. The function returns
all entities and ignores the clipping path polygon and no entity is clipped.
Entity Deconstruction
These functions disassemble DXF entities into simple geometric objects like meshes, paths or vertices.
The Primitive is a simplified intermediate class to use a common interface on various DXF entities.
ezdxf.disassemble.make_primitive(entity: DXFEntity, max_flattening_distance=None) -> Primitive
Factory to create path/mesh primitives. The max_flattening_distance defines the max distance
between the approximation line and the original curve. Use max_flattening_distance to override the
default value.
Returns an empty primitive for unsupported entities. The empty state of a primitive can be checked
by the property is_empty. The path and the mesh attributes of an empty primitive are None and the
vertices() method yields no vertices.
ezdxf.disassemble.to_primitives(entities: Iterable[DXFEntity], max_flattening_distance: float | None =
None) -> Iterable[Primitive]
Yields all DXF entities as path or mesh primitives. Yields unsupported entities as empty
primitives, see make_primitive().
Parameters
• entities – iterable of DXF entities
• max_flattening_distance – override the default value
ezdxf.disassemble.to_meshes(primitives: Iterable[Primitive]) -> Iterable[MeshBuilder]
Yields all MeshBuilder objects from the given primitives. Ignores primitives without a defined
mesh.
ezdxf.disassemble.to_paths(primitives: Iterable[Primitive]) -> Iterable[Path]
Yields all Path objects from the given primitives. Ignores primitives without a defined path.
ezdxf.disassemble.to_vertices(primitives: Iterable[Primitive]) -> Iterable[Vec3]
Yields all vertices from the given primitives. Paths will be flattened to create the associated
vertices. See also to_control_vertices() to collect only the control vertices from the paths
without flattening.
ezdxf.disassemble.to_control_vertices(primitives: Iterable[Primitive]) -> Iterable[Vec3]
Yields all path control vertices and all mesh vertices from the given primitives. Like
to_vertices(), but without flattening.
class ezdxf.disassemble.Primitive
Interface class for path/mesh primitives.
entity
Reference to the source DXF entity of this primitive.
max_flattening_distance
The max_flattening_distance attribute defines the max distance in drawing units between the
approximation line and the original curve. Set the value by direct attribute access. (float)
default = 0.01
property path: Path | None
Path representation or None, idiom to check if is a path representation (could be empty):
if primitive.path is not None:
process(primitive.path)
property mesh: MeshBuilder | None
MeshBuilder representation or None, idiom to check if is a mesh representation (could be
empty):
if primitive.mesh is not None:
process(primitive.mesh)
property is_empty: bool
Returns True if represents an empty primitive which do not yield any vertices.
abstractmethod vertices() -> Iterable[Vec3]
Yields all vertices of the path/mesh representation as Vec3 objects.
bbox(fast=False) -> BoundingBox
Returns the BoundingBox of the path/mesh representation. Returns the precise bounding box
for the path representation if fast is False, otherwise the bounding box for Bézier curves
is based on their control points.
EdgeMiner
Added in version 1.4.
Purpose of this Module
This is a helper tool to:
• build polylines from DXF primitives like LINE, ARC, ELLIPSE, SPLINE
• build hatch boundary paths from DXF primitives
• find open chains or closed loops in an unordered heap of DXF primitives (edges)
• in general: find connections between edges
What are Edges?
An edge is a linear structure with an start- and end point and an optional length.
This module is not limited to DXF primitives. Anything that can be represented by an start- and end point
can be processed. This makes this module to a versatile tool with the disadvantage that intersections
between edges are not known and cannot be calculated.
e.g. When each arc is represented by an edge, the HATCH boundary path on the left can be found because
the arcs are connected by their end points. Finding the HATCH boundary path on the right is not possible
because the intersections points of the arcs (edges) are not known: [image]
How to Create Edges?
The process of creating edges is separated from this module and is done in the companion module
ezdxf.edgesmith. The edgeminer module doesn’t really know what an edge represents or what it looks like.
Terminology
I try to use the terminology of Graph Theory but there are differences where I think a different term is
better suited for this module like loop for cycle.
Edge A linear connection between two points. The shape of an edge is not known. Intersection points
between edges are not known and cannot be calculated.
[image]
Vertex A connection point of two or more edges.
Degree The degree of a vertex is the number of connected edges.
[image]
Leaf A leaf is a vertex of degree 1. A leaf is a loose end of an edge, which is not connected to other
edges.
Junction
A junction is a vertex of degree greater 2. A junction has more than two adjacent edges. A
junction is an ambiguity when searching for open chains or closed loops. Graph Theory: multiple
adjacency
Chain A chain has sequential connected edges. The end point of an edge is connected to the start point
of the following edge. A chain has unique edges, each edge appears only once in the chain. A
chain can contain vertices of degree greater 2. A solitary edge is also a chain. Graph Theory:
Trail - no edge is repeated, vertex is repeated
[image]
Simple Chain (special to this module)
A simple chain contains only vertices of degree 2, except the start- and end vertex. The start-
and end vertices are leafs (degree of 1) or junctions (degree greater 2). The following image
shows 3 simple chains: [1-2-3], [4-5-6] and [7-8-9]. Simple chains are easy to detect and can be
replaced by a single edge and reduces so the search space.
[image]
Open Chain
An open chain is a chain which starts and ends with a leaf. A solitary edge is also an open
chain. Graph Theory: Path - no edge is repeated, no vertex is repeated, endings not connected
Loop A loop is a simple chain with connected start- and end vertices. A loop has two or more edges. A
loop contains only vertices of degree 2. Graph Theory: Cycle - no edge is repeated, no vertex is
repeated, endings connected; a loop in Graph Theory is something different!
Network
A network has two or more edges that are directly and indirectly connected. The edges in a
network have no order. A network can contain vertices of degree greater 2 (junctions). A
solitary edge is not a network. A chain with two or more edges is a network. Graph Theory:
multigraph; a network in Graph Theory is something different!
Gap Tolerance
Maximum vertex distance to consider two edges as connected
Forward Connection
An edge is forward connected when the end point of the edge is connected to the start point of the
following edge.
SEE ALSO:
• Tutorial for Finding Chains and Loops
• ezdxf.edgesmith module
IMPORTANT:
This is the reference documentation and not a tutorial how to use this module.
High Level Functions
ezdxf.edgeminer.find_sequential_chain(edges: Sequence[Edge], *, gap_tol=GAP_TOL) -> Sequence[Edge]
Returns a simple chain beginning at the first edge.
The search stops at the first edge without a forward connection from the previous edge. Edges
will be reversed if required to create connection.
Parameters
• edges – edges to be examined
• gap_tol – maximum vertex distance to consider two edges as connected
Raises TypeError – invalid data in sequence edges
ezdxf.edgeminer.find_all_sequential_chains(edges: Sequence[Edge], *, gap_tol=GAP_TOL) ->
Iterator[Sequence[Edge]]
Yields all simple chains from sequence edges.
The search progresses strictly in order of the input sequence. The search starts a new chain at
every edge without a forward connection from the previous edge. Edges will be reversed if
required to create connection. Each chain has one or more edges.
Parameters
• edges – sequence of edges
• gap_tol – maximum vertex distance to consider two edges as connected
Raises TypeError – invalid data in sequence edges
ezdxf.edgeminer.find_simple_chain(deposit: Deposit, start: Edge) -> Sequence[Edge]
Returns a simple chain containing start edge.
A simple chain start and ends at a leaf or a junction.
All connected edges have vertices of degree 2, except the first and last vertex. The first and
the last vertex have a degree of 1 (leaf) or greater 2 (junction).
ezdxf.edgeminer.find_all_simple_chains(deposit: Deposit) -> Sequence[Sequence[Edge]]
Returns all simple chains from deposit.
Each chains starts and ends at a leaf (degree of 1) or a junction (degree greater 2). All
vertices between the start- and end vertex have a degree of 2. The result doesn’t include
reversed solutions.
ezdxf.edgeminer.find_all_open_chains(deposit: Deposit, timeout: float = TIMEOUT) -> Sequence[Sequence[‐
Edge]]
Returns all open chains from deposit.
Returns only simple chains ending on both sides with a leaf. A leaf is a vertex of degree 1
without further connections. All vertices have a degree of 2 except for the leafs at the start
and end. The result does not include reversed solutions or closed loops.
NOTE:
This is a recursive backtracking algorithm with time complexity of O(n!).
Parameters
• deposit (Deposit) – edge deposit
• timeout (float) – timeout in seconds
Raises TimeoutError – search process has timed out
ezdxf.edgeminer.find_loop(deposit: Deposit, *, timeout: float = TIMEOUT) -> Sequence[Edge]
Returns the first closed loop in deposit.
Returns only simple loops, where all vertices have a degree of 2 (only two adjacent edges).
NOTE:
This is a recursive backtracking algorithm with time complexity of O(n!).
Parameters
• deposit (Deposit) – edge deposit
• timeout (float) – timeout in seconds
Raises TimeoutError – search process has timed out
ezdxf.edgeminer.find_loop_by_edge(deposit: Deposit, start: Edge, clockwise=True) -> Sequence[Edge]
Returns the first loop found including the given start edge.
Returns an empty sequence if no loop was found.
Parameters
• deposit (Deposit) – edge deposit
• start (Edge) – starting edge of the search
• clockwise (bool) – search orientation, counter-clockwise when False
ezdxf.edgeminer.find_all_loops(deposit: Deposit, *, timeout: float = TIMEOUT) -> Sequence[Sequence[Edge]]
Returns all closed loops from deposit.
Returns only simple loops, where all vertices have a degree of 2 (only two adjacent edges). The
result does not include reversed solutions.
NOTE:
This is a recursive backtracking algorithm with time complexity of O(n!).
Parameters
• deposit (Deposit) – edge deposit
• timeout (float) – timeout in seconds
Raises TimeoutError – search process has timed out
Low Level Functions
ezdxf.edgeminer.filter_coincident_edges(deposit: Deposit, eq_fn: Callable[[Edge, Edge], bool] =
line_checker()) -> Sequence[Edge]
Returns all edges from deposit that are not coincident to any other edge in the deposit.
Coincident edges are detected by the given eq_fn function.
ezdxf.edgeminer.flatten(edges: Edge | Iterable[Edge]) -> Iterator[Edge]
Yields all edges from any nested structure of edges as a flat stream of edges.
ezdxf.edgeminer.is_chain(edges: Sequence[Edge], *, gap_tol=GAP_TOL) -> bool
Returns True if all edges in the sequence have a forward connection.
Parameters
• edges – sequence of edges
• gap_tol – maximum vertex distance to consider two edges as connected
ezdxf.edgeminer.is_forward_connected(a: Edge, b: Edge, *, gap_tol=GAP_TOL) -> bool
Returns True if the edges have a forward connection.
Forward connection: distance from a.end to b.start <= gap_tol
Parameters
• a – first edge
• b – second edge
• gap_tol – maximum vertex distance to consider two edges as connected
ezdxf.edgeminer.is_loop(edges: Sequence[Edge], *, gap_tol=GAP_TOL) -> bool
Return True if the sequence of edges is a closed loop.
Parameters
• edges – sequence of edges
• gap_tol – maximum vertex distance to consider two edges as connected
ezdxf.edgeminer.is_wrapped_chain(edge: Edge) -> bool
Returns True if edge is a wrapper for linked edges.
ezdxf.edgeminer.isclose(a: Vec3, b: Vec3, *, gap_tol=GAP_TOL) -> bool
This function should be used to test whether two vertices are close to each other to get
consistent results.
ezdxf.edgeminer.length(edges: Sequence[Edge]) -> float
Returns the length of a sequence of edges.
ezdxf.edgeminer.longest_chain(chains: Iterable[Sequence[Edge]]) -> Sequence[Edge]
Returns the longest chain of connected edges.
NOTE:
This function does not verify if the input sequences are connected edges!
ezdxf.edgeminer.make_edge(start: UVec, end: UVec, length: float = -1.0, *, payload: Any = None) -> Edge
Creates a new Edge with a unique id.
Parameters
• start – start point
• end – end point
• length – default is the distance between start and end
• payload – arbitrary data attached to the edge
ezdxf.edgeminer.reverse_chain(chain: Sequence[Edge]) -> list[Edge]
Returns the reversed chain.
The sequence order of the edges will be reversed as well as the start- and end points of the
edges.
ezdxf.edgeminer.shortest_chain(chains: Iterable[Sequence[Edge]]) -> Sequence[Edge]
Returns the shortest chain of connected edges.
NOTE:
This function does not verify if the input sequences are connected edges!
ezdxf.edgeminer.subtract_edges(base: Iterable[Edge], edges: Iterable[Edge]) -> list[Edge]
Returns all edges from the iterable base that do not exist in the iterable edges e.g. remove
solutions from the search space.
ezdxf.edgeminer.unwrap_simple_chain(edge: Edge) -> Sequence[Edge]
Unwraps a simple chain which is wrapped into a single edge.
ezdxf.edgeminer.wrap_simple_chain(chain: Sequence[Edge], *, gap_tol=GAP_TOL) -> Edge
Wraps a sequence of linked edges (simple chain) into a single edge.
Two or more linked edges required. Closed loops cannot be wrapped into a single edge.
Raises ValueError – less than two edges; not a chain; chain is a closed loop
Classes
class ezdxf.edgeminer.Edge(id: int, start: Vec3, end: Vec3, is_reverse: bool = False, length: float =
1.0, payload: Any = None)
Represents an immutable edge.
An edge can represent any linear curve (line, elliptical arc, spline, …), but it does not know
this shape; only the start and end vertices are stored, not the shape itself. Therefore, the
length of the edge must be specified if the length calculation for a sequence of edges should be
possible. Intersection points between edges are not known and cannot be calculated.
IMPORTANT:
Use only the make_edge() function to create new edges to get unique ids!
id unique id
Type int
start start vertex
Type Vec3
end end vertex
Type Vec3
is_reverse
flag to indicate that the edge is reversed compared to its initial state
Type bool
length length of the edge, default is 1.0
Type float
payload
arbitrary data attached to the edge, default is None
Type Any
__eq__(other) -> bool
Return True if the ids of the edges are equal.
IMPORTANT:
An edge is equal to its reversed copy!
__hash__() -> int
The edge id is used as hash value.
An Edge and its reversed edge have the same hash value and cannot both exist in the same
set.
reversed() -> Self
Returns a reversed copy.
The reversed edge has the same id as the source edge, because they represent the same edge.
class ezdxf.edgeminer.Deposit(edges: Sequence[Edge], *, gap_tol=GAP_TOL)
The edge deposit stores all available edges for further searches.
The edges and the search index are immutable after instantiation. The gap_tol attribute is
mutable.
Parameters
• edges – sequence of Edge
• gap_tol – maximum vertex distance to consider two edges as connected
gap_tol
maximum vertex distance to consider two edges as connected (mutable)
property edges: Sequence[Edge]
Sequence of edges stored in this deposit.
property max_degree: int
Returns the maximum degree of all vertices in this deposit.
degree_counter() -> Counter[int]
Returns a Counter for the degree of all vertices.
• Counter[degree] returns the count of vertices of this degree.
• Counter.keys() returns all existing degrees in this deposit
A new counter will be created for every method call! The gap_tol attribute is mutable and
different gap tolerances may yield different results.
degree(vertex: UVec) -> int
Returns the degree of the given vertex.
• degree of 0: not in this deposit
• degree of 1: one edge is connected to this vertex
• degree of 2: two edges are connected to this vertex
• degree of 3: three edges … and so on
Check if a vertex exist in a deposit:
if deposit.degree(vertex): ...
degrees(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> Sequence[int]
Returns the degree of the given vertices.
edges_linked_to(vertex: UVec, radius: float = -1) -> Sequence[Edge]
Returns all edges linked to vertex in range of radius.
Parameters
• vertex – 3D search location
• radius – search range, default radius is Deposit.gap_tol
find_all_networks() -> Sequence[set[Edge]]
Returns all separated networks in this deposit in ascending order of edge count.
find_leafs() -> Iterator[Edge]
Yields all edges that have at least one end point without connection to other edges.
find_nearest_edge(vertex: UVec) -> Edge | None
Return the nearest edge to the given vertex.
The distance is measured to the connection line from start to end of the edge. This is not
correct for edges that represent arcs or splines.
find_network(edge: Edge) -> set[Edge]
Returns the network of all edges that are directly and indirectly linked to edge. A
network has two or more edges, a solitary edge is not a network.
unique_vertices() -> set[Vec3]
Returns all unique vertices from this deposit.
Ignores vertices that are close to another vertex (within the range of gap_tol). It is not
determined which of the close vertices is returned.
e.g. if the vertices a, b are close together, you don’t know if you get a or b, but it’s
guaranteed that you only get one of them
class ezdxf.edgeminer.TimeoutError(msg: str, solutions: Sequence[Sequence[Edge]] = tuple())
solutions
solutions found until time out occur
Global Constants
GAP_TOL = 1e-9
ABS_TOL = 1e-9
TIMEOUT = 60.0 # in seconds
EdgeSmith
Added in version 1.4.
Purpose of this Module
This is a companion module to the ezdxf.edgeminer module:
• create Edge instances from DXF primitives for processing by the edgeminer module:
• Line
• Arc
• Ellipse
• Spline
• LWPolyline
• Polyline
• create LWPolyline and Polyline entities from a sequence of Edge objects.
• create Hatch boundary paths from a sequence of Edge objects.
• create ezdxf.path.Path objects from a sequence of Edge objects.
SEE ALSO:
• Tutorial for Finding Chains and Loops
• ezdxf.edgeminer module
IMPORTANT:
This is the reference documentation and not a tutorial how to use this module.
Make Edges
This functions convert open shapes into 2D edges, closed shapes as circles, closed arcs, closed ellipses,
closed splines and closed polylines are ignored or return None.
ezdxf.edgesmith.make_edge_2d(entity: DXFEntity, *, gap_tol=GAP_TOL) -> ezdxf.edgeminer.Edge | None
Makes an Edge instance from the following DXF entity types:
• Line (length accurate)
• Arc (length accurate)
• Ellipse (length approximated)
• Spline (length approximated as straight lines between control points)
• LWPolyline (length of bulges as straight line from start- to end point)
• Polyline (length of bulges as straight line from start- to end point)
The start- and end points of the edge is projected onto the xy-plane. Returns None if the entity
has a closed shape or cannot be represented as an edge.
ezdxf.edgesmith.edges_from_entities_2d(entities: Iterable[DXFEntity], *, gap_tol=GAP_TOL) -> Iterator[‐
Edge]
Yields all DXF entities as 2D edges in the xy-plane of the WCS.
Skips all entities that have a closed shape or can not be represented as edge.
Build From Edges
ARC, LWPOLYLINE, POLYLINE and ELLIPSE entities must have an extrusion vector of (0, 0, 1) (WCS Z-Axis).
Entities with an inverted extrusion vector (0, 0, -1) will be treated as a 3D curve and approximated by a
polyline projected onto the xy-plane. The ezdxf.upright module can convert such inverted extrusion
vectors to (0, 0, 1).
Curve Approximation
For some target entities curves have to be approximated by polylines. This process is also called
flattening and is controlled by the parameter max_sagitta. (Wikipedia)
The max_sagitta argument defines the maximum distance from the center of the curve segment to the center
of the line segment between two approximation points to determine if a segment should be subdivided. The
default value is -1 and uses a 1/100 of the approximated length of the curve as max_sagitta. [image]
The good choice for a max_sagitta depends on the output resolution and is maybe not known at the time of
processing the data. E.g. for a printer/plotter a max_sagitta of around 1/300 inch (300 dpi) is maybe a
good choice. The convertion from output units to drawing units depends on the scale and is the task of
the package user.
All flattened curves will be projected onto the xy-plane of the WCS.
ezdxf.edgesmith.lwpolyline_from_chain(edges: Sequence[Edge], *, dxfattribs: Any = None, max_sagitta:
float = -1) -> LWPolyline
Returns a new virtual LWPolyline entity.
This function assumes the building blocks as simple DXF entities attached as payload to the edges.
The edges are processed in order of the input sequence and the start- and end points of the edges
should be connected. The output polyline is projected onto the xy-plane of the WCS.
• Line as line segment
• Arc as bulge
• Ellipse as bulge or as flattened line segments
• Spline as flattened line segments
• LWPolyline and Polyline will be merged
• Everything else will be added as line segment from Edge.start to Edge.end
• Gaps between edges are connected by line segments.
ezdxf.edgesmith.polyline2d_from_chain(edges: Sequence[Edge], *, dxfattribs: Any = None, max_sagitta:
float = -1) -> Polyline
Returns a new virtual Polyline entity.
This function assumes the building blocks as simple DXF entities attached as payload to the edges.
The edges are processed in order of the input sequence and the start- and end points of the edges
should be connected. The output polyline is projected onto the xy-plane of the WCS.
• Line as line segment
• Arc as bulge
• Ellipse as bulge or as flattened line segments
• Spline as flattened line segments
• LWPolyline and Polyline will be merged
• Everything else will be added as line segment from Edge.start to Edge.end
• Gaps between edges are connected by line segments.
ezdxf.edgesmith.edge_path_from_chain(edges: Sequence[Edge], *, max_sagitta: float = -1, flags: int = 1)
-> EdgePath
Returns a new EdgePath for Hatch entities.
This function assumes the building blocks as simple DXF entities attached as payload to the edges.
The edges are processed in order of the input sequence and the start- and end points of the edges
should be connected. The output path is projected onto the xy-plane of the WCS.
• Line as LineEdge
• Arc as ArcEdge
• Ellipse as EllipseEdge
• Spline as SplineEdge
• LWPolyline and Polyline will be exploded and added as LineEdge and ArcEdge
• Everything else will be added as line segment from Edge.start to Edge.end
• Gaps between edges are connected by line segments.
Parameters
• edges – Sequence of Edge instances with DXF primitives attached as payload
• max_sagitta (float) – curve flattening parameter
• flags (int) – default(0), external(1), derived(4), textbox(8) or outermost(16)
ezdxf.edgesmith.polyline_path_from_chain(edges: Sequence[Edge], *, max_sagitta: float = -1,
is_closed=True, flags: int = 1) -> PolylinePath
Returns a new PolylinePath for Hatch entities.
This function assumes the building blocks as simple DXF entities attached as payload to the edges.
The edges are processed in order of the input sequence and the start- and end points of the edges
should be connected. The output path is projected onto the xy-plane of the WCS.
• Line as line segment
• Arc as bulge
• Ellipse as bulge or flattened line segments
• Spline as flattened line segments
• LWPolyline and Polyline are merged
• Everything else will be added as line segment from Edge.start to Edge.end
• Gaps between edges are connected by line segments.
Parameters
• edges – Sequence of Edge instances with DXF primitives attached as payload
• max_sagitta (float) – curve flattening parameter
• is_closed (bool) – True if path is implicit closed
• flags (int) – default(0), external(1), derived(4), textbox(8) or outermost(16)
ezdxf.edgesmith.path2d_from_chain(edges: Sequence[Edge]) -> Path
Returns a new ezdxf.path.Path entity.
This function assumes the building blocks as simple DXF entities attached as payload to the edges.
The edges are processed in order of the input sequence and the start- and end points of the edges
should be connected. The output is a 2D path projected onto the xy-plane of the WCS.
• Line as line segment
• Arc as cubic Bézier curves
• Ellipse as cubic Bézier curves
• Spine cubic Bézier curves
• LWPolyline and Polyline as line segments and cubic Bézier curves
• Everything else will be added as line segment from Edge.start to Edge.end
• Gaps between edges are connected by line segments.
Helper Functions
ezdxf.edgesmith.is_closed_entity(entity: DXFEntity) -> bool
Returns True if the given entity represents a closed loop.
Tests the following DXF entities:
• CIRCLE
• ARC
• ELLIPSE
• SPLINE
• LWPOLYLINE
• POLYLINE
• HATCH
• SOLID
• TRACE
Returns False for all other DXF entities.
ezdxf.edgesmith.is_pure_2d_entity(entity: DXFEntity) -> bool
Returns True if the given entity represents a pure 2D entity in the xy-plane of the WCS.
• All vertices must be in the xy-plane of the WCS.
• Thickness must be 0.
• The extrusion vector must be (0, 0, 1).
• Entities with inverted extrusions vectors (0, 0, -1) are not pure 2D entities. The
ezdxf.upright module can be used to revert inverted extrusion vectors back to (0, 0, 1).
Tests the following DXF entities:
• LINE
• CIRCLE
• ARC
• ELLIPSE
• SPLINE
• LWPOLYLINE
• POLYLINE
• HATCH
• SOLID
• TRACE
Returns False for all other DXF entities.
ezdxf.edgesmith.filter_edge_entities(entities: Iterable[DXFEntity]) -> Iterator[DXFEntity]
Returns all entities that can be used to build edges in the context of ezdxf.edgeminer.
Returns the following DXF entities:
• LINE
• ARC
• ELLIPSE
• SPLINE
• LWPOLYLINE
• POLYLINE
NOTE:
• CIRCLE, TRACE and SOLID are closed shapes by definition and cannot be used as edge in the
context of ezdxf.edgeminer or ezdxf.edgesmith.
• This filter is not limited to pure 2D entities!
• Does not test if the entity is a closed loop!
ezdxf.edgesmith.filter_2d_entities(entities: Iterable[DXFEntity]) -> Iterator[DXFEntity]
Returns all pure 2D entities, ignores all entities placed outside or extending beyond the xy-plane
of the WCS. See is_pure_2d_entity() for more information.
ezdxf.edgesmith.filter_open_edges(entities: Iterable[DXFEntity]) -> Iterator[DXFEntity]
Returns all open linear entities usable as edges in the context of ezdxf.edgeminer or
ezdxf.edgesmith.
Ignores all entities that represent closed loops like circles, closed arcs, closed ellipses,
closed splines and closed polylines.
NOTE:
This filter is not limited to pure 2D entities!
ezdxf.edgesmith.bounding_box_2d(edges: Sequence[Edge]) -> BoundingBox2d
Returns the BoundingBox2d of all start- and end vertices.
ezdxf.edgesmith.loop_area(edges: Sequence[Edge], *, gap_tol=GAP_TOL) -> float
Returns the area of a closed loop.
Raises ValueError – edges are not a closed loop
ezdxf.edgesmith.is_inside_polygon_2d(edges: Sequence[Edge], point: UVec, *, gap_tol=GAP_TOL) -> bool
Returns True when point is inside the polygon.
The edges must be a closed loop. The polygon is build from edges as straight lines from start- to
end vertex, independently whatever the edges really represent. A point at a boundary line is
inside the polygon.
Parameters
• edges – sequence of Edge representing a closed loop
• point – point to test
• gap_tol – maximum vertex distance to consider two edges as connected
Raises ValueError – edges are not a closed loop
ezdxf.edgesmith.intersecting_edges_2d(edges: Sequence[em.Edge], p1: UVec, p2: UVec | None = None) ->
list[IntersectingEdge]
Returns all edges that intersect a line from point p1 to point p2.
If p2 is None an arbitrary point outside the bounding box of all start- and end vertices beyond
extmax.x will be chosen. The edges are handled as straight lines from start- to end vertex,
projected onto the xy-plane of the WCS. The result is sorted by the distance from intersection
point to point p1.
class ezdxf.edgesmith.IntersectingEdge
NamedTuple as return type of intersecting_edges_2d().
edge Intersecting edge as Edge; alias for field 0.
distance
Distance from intersection point to point p1 as float; alias for field 1.
Global Constants
GAP_TOL = 1e-9
LEN_TOL = 1e-9 # length and distance
DEG_TOL = 1e-9 # angles in degree
RAD_TOL = 1e-7 # angles in radians
Math Construction Tools
These are links to tools in the ezdxf.math core module:
┌─────────────────────────────────┬───────────────────────────────────────┐
│ ezdxf.math.ConstructionRay │ Construction tool for infinite 2D │
│ │ rays. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.ConstructionLine │ Construction tool for 2D lines. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.ConstructionCircle │ Construction tool for 2D circles. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.ConstructionArc │ Construction tool for 2D arcs. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.ConstructionEllipse │ Construction tool for 3D ellipsis. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.ConstructionBox │ Construction tool for 2D rectangles. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.ConstructionPolyline │ Construction tool for 3D polylines. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.Shape2d │ Construction tools for 2D shapes. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.BSpline │ B-spline construction tool. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.Bezier4P │ Implements an optimized cubic Bézier │
│ │ curve for exact 4 control points. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.Bezier3P │ Implements an optimized quadratic ‐ │
│ │ Bézier curve for exact 3 control │
│ │ points. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.Bezier │ Generic Bézier curve of any degree. │
├─────────────────────────────────┼───────────────────────────────────────┤
│ ezdxf.math.EulerSpiral │ This class represents an euler spiral │
│ │ (clothoid) for curvature (Radius of │
│ │ curvature). │
└─────────────────────────────────┴───────────────────────────────────────┘
Path
This module implements a geometric Path, supported by several render backends, with the goal to create
such paths from DXF entities like LWPOLYLINE, POLYLINE or HATCH and send them to the render backend, see
ezdxf.addons.drawing.
Minimum common interface:
•
matplotlib: PathPatch
• matplotlib.path.Path() codes:
• MOVETO
• LINETO
• CURVE3 - quadratic Bèzier-curve
• CURVE4 - cubic Bèzier-curve
•
PyQt: QPainterPath
• moveTo()
• lineTo()
• quadTo() - quadratic Bèzier-curve (converted to a cubic Bèzier-curve)
• cubicTo() - cubic Bèzier-curve
•
PyCairo: Context
• move_to()
• line_to()
• no support for quadratic Bèzier-curve
• curve_to() - cubic Bèzier-curve
•
SVG: SVG-Path
• “M” - absolute move to
• “L” - absolute line to
• “Q” - absolute quadratic Bèzier-curve
• “C” - absolute cubic Bèzier-curve
ARC and ELLIPSE entities are approximated by multiple cubic Bézier-curves, which are close enough for
display rendering. Non-rational SPLINES of 3rd degree can be represented exact as multiple cubic
Bézier-curves, other B-splines will be approximated. The XLINE and the RAY entities are not supported,
because of their infinite nature.
This Path class is a full featured 3D object, although the backends only support 2D paths.
HINT:
A Path can not represent a point. A Path with only a start point yields no vertices!
The usability of the Path class expanded by the introduction of the reverse conversion from Path to DXF
entities (LWPOLYLINE, POLYLINE, LINE), and many other tools in ezdxf v0.16. To emphasize this new
usability, the Path class has got its own subpackage ezdxf.path.
Empty-Path
Contains only a start point, the length of the path is 0 and the methods Path.approximate(),
Path.flattening() and Path.control_vertices() do not yield any vertices.
Single-Path
The Path object contains only one path without gaps, the property Path.has_sub_paths is False and
the method Path.sub_paths() yields only this one path.
Multi-Path
The Path object contains more than one path, the property Path.has_sub_paths is True and the
method Path.sub_paths() yields all paths within this object as single-path objects. It is not
possible to detect the orientation of a multi-path object, therefore the methods
Path.has_clockwise_orientation(), Path.clockwise() and Path.counter_clockwise() raise a TypeError
exception.
WARNING:
Always import from the top level ezdxf.path, never from the sub-modules
Factory Functions
Functions to create Path objects from other objects.
ezdxf.path.make_path(entity: DXFEntity) -> Path
Factory function to create a single Path object from a DXF entity. Supported DXF types:
• LINE
• CIRCLE
• ARC
• ELLIPSE
• SPLINE and HELIX
• LWPOLYLINE
• 2D and 3D POLYLINE
• SOLID, TRACE, 3DFACE
• IMAGE, WIPEOUT clipping path
• VIEWPORT clipping path
• HATCH as Multi-Path object
Parameters
• entity – DXF entity
• segments – minimal count of cubic Bézier-curves for elliptical arcs like CIRCLE, ARC,
ELLIPSE, BULGE see Path.add_ellipse()
• level – subdivide level for SPLINE approximation, see Path.add_spline()
Raises TypeError – for unsupported DXF types
ezdxf.path.from_hatch(hatch: DXFPolygon, offset: Vec3 = NULLVEC) -> Iterator[Path]
Yield all HATCH/MPOLYGON boundary paths as separated Path objects in WCS coordinates.
ezdxf.path.from_vertices(vertices: Iterable[TypeAliasForwardRef('UVec')], close=False) -> Path
Returns a Path object from the given vertices.
Render Functions
Functions to create DXF entities from paths and add them to the modelspace, a paperspace layout or a
block definition.
ezdxf.path.render_hatches(layout: GenericLayoutType, paths: Iterable[Path], *, edge_path: bool = True,
distance: float = MAX_DISTANCE, segments: int = MIN_SEGMENTS, g1_tol: float = G1_TOL, extrusion: UVec =
Z_AXIS, dxfattribs=None) -> EntityQuery
Render the given paths into layout as Hatch entities. The extrusion vector is applied to all
paths, all vertices are projected onto the plane normal to this extrusion vector. The default
extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the
start point of the first path.
Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path or Path2d objects
• edge_path – True for edge paths build of LINE and SPLINE edges, False for only LWPOLYLINE
paths as boundary paths
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten polyline paths
• g1_tol – tolerance for G1 continuity check to separate SPLINE edges
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs
Returns
created entities in an EntityQuery object
ezdxf.path.render_lines(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, dxfattribs=None) -> EntityQuery
Render the given paths into layout as Line entities.
Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path`or :class:`Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs
Returns
created entities in an EntityQuery object
ezdxf.path.render_lwpolylines(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None) -> EntityQuery
Render the given paths into layout as LWPolyline entities. The extrusion vector is applied to all
paths, all vertices are projected onto the plane normal to this extrusion vector. The default
extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the
start point of the first path.
Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path or Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs
Returns
created entities in an EntityQuery object
ezdxf.path.render_mpolygons(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None) -> EntityQuery
Render the given paths into layout as MPolygon entities. The MPOLYGON entity supports only
polyline boundary paths. All curves will be approximated.
The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to
this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the
distance from the WCS origin to the start point of the first path.
Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path or Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten polyline paths
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs
Returns
created entities in an EntityQuery object
ezdxf.path.render_polylines2d(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
0.01, segments: int = 4, extrusion: UVec = Z_AXIS, dxfattribs=None) -> EntityQuery
Render the given paths into layout as 2D Polyline entities. The extrusion vector is applied to
all paths, all vertices are projected onto the plane normal to this extrusion vector.The default
extrusion vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the
start point of the first path.
Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path or Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs
Returns
created entities in an EntityQuery object
ezdxf.path.render_polylines3d(layout: GenericLayoutType, paths: Iterable[Path], *, distance: float =
MAX_DISTANCE, segments: int = MIN_SEGMENTS, dxfattribs=None) -> EntityQuery
Render the given paths into layout as 3D Polyline entities.
Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path`or :class:`Path2d objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs
Returns
created entities in an EntityQuery object
ezdxf.path.render_splines_and_polylines(layout: GenericLayoutType, paths: Iterable[Path], *, g1_tol:
float = G1_TOL, dxfattribs=None) -> EntityQuery
Render the given paths into layout as Spline and 3D Polyline entities.
Parameters
• layout – the modelspace, a paperspace layout or a block definition
• paths – iterable of Path`or :class:`Path2d objects
• g1_tol – tolerance for G1 continuity check
• dxfattribs – additional DXF attribs
Returns
created entities in an EntityQuery object
Entity Maker
Functions to create DXF entities from paths.
ezdxf.path.to_hatches(paths: Iterable[Path], *, edge_path: bool = True, distance: float = MAX_DISTANCE,
segments: int = MIN_SEGMENTS, g1_tol: float = G1_TOL, extrusion: UVec = Z_AXIS, dxfattribs=None) ->
Iterator[Hatch]
Convert the given paths into Hatch entities. Uses LWPOLYLINE paths for boundaries without curves
and edge paths, build of LINE and SPLINE edges, as boundary paths for boundaries including curves.
The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to
this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the
distance from the WCS origin to the start point of the first path.
Parameters
• paths – iterable of Path objects
• edge_path – True for edge paths build of LINE and SPLINE edges, False for only LWPOLYLINE
paths as boundary paths
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten LWPOLYLINE paths
• g1_tol – tolerance for G1 continuity check to separate SPLINE edges
• extrusion – extrusion vector to all paths
• dxfattribs – additional DXF attribs
Returns
iterable of Hatch objects
ezdxf.path.to_lines(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, dxfattribs=None) -> Iterator[Line]
Convert the given paths into Line entities.
Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs
Returns
iterable of Line objects
ezdxf.path.to_lwpolylines(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None) -> Iterator[LWPolyline]
Convert the given paths into LWPolyline entities. The extrusion vector is applied to all paths,
all vertices are projected onto the plane normal to this extrusion vector. The default extrusion
vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start
point of the first path.
Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs
Returns
iterable of LWPolyline objects
ezdxf.path.to_mpolygons(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None) -> Iterator[MPolygon]
Convert the given paths into MPolygon entities. In contrast to HATCH, MPOLYGON supports only
polyline boundary paths. All curves will be approximated.
The extrusion vector is applied to all paths, all vertices are projected onto the plane normal to
this extrusion vector. The default extrusion vector is the WCS z-axis. The plane elevation is the
distance from the WCS origin to the start point of the first path.
Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve to flatten LWPOLYLINE paths
• extrusion – extrusion vector to all paths
• dxfattribs – additional DXF attribs
Returns
iterable of MPolygon objects
ezdxf.path.to_polylines2d(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, extrusion: UVec = Z_AXIS, dxfattribs=None) -> Iterator[Polyline]
Convert the given paths into 2D Polyline entities. The extrusion vector is applied to all paths,
all vertices are projected onto the plane normal to this extrusion vector. The default extrusion
vector is the WCS z-axis. The plane elevation is the distance from the WCS origin to the start
point of the first path.
Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• extrusion – extrusion vector for all paths
• dxfattribs – additional DXF attribs
Returns
iterable of 2D Polyline objects
ezdxf.path.to_polylines3d(paths: Iterable[Path], *, distance: float = MAX_DISTANCE, segments: int =
MIN_SEGMENTS, dxfattribs=None) -> Iterator[Polyline]
Convert the given paths into 3D Polyline entities.
Parameters
• paths – iterable of Path objects
• distance – maximum distance, see Path.flattening()
• segments – minimum segment count per Bézier curve
• dxfattribs – additional DXF attribs
Returns
iterable of 3D Polyline objects
ezdxf.path.to_splines_and_polylines(paths: Iterable[Path], *, g1_tol: float = G1_TOL, dxfattribs=None) ->
Iterator[Spline | Polyline]
Convert the given paths into Spline and 3D Polyline entities.
Parameters
• paths – iterable of Path objects
• g1_tol – tolerance for G1 continuity check
• dxfattribs – additional DXF attribs
Returns
iterable of Line objects
Tool Maker
Functions to create construction tools.
ezdxf.path.to_bsplines_and_vertices(path: Path, g1_tol: float = G1_TOL) -> Iterator[BSpline | List[Vec3]]
Convert a Path object into multiple cubic B-splines and polylines as lists of vertices. Breaks
adjacent Bèzier without G1 continuity into separated B-splines.
Parameters
• path – Path objects
• g1_tol – tolerance for G1 continuity check
Returns
BSpline and lists of Vec3
Utility Functions
ezdxf.path.add_bezier3p(path: Path, curves: Iterable[Bezier3P]) -> None
Add multiple quadratic Bèzier-curves to the given path.
Auto-detect the connection point to the given path, if neither the start- nor the end point of the
curves is close to the path end point, a line from the path end point to the start point of the
first curve will be added automatically.
ezdxf.path.add_bezier4p(path: Path, curves: Iterable[Bezier4P]) -> None
Add multiple cubic Bèzier-curves to the given path.
Auto-detect the connection point to the given path, if neither the start- nor the end point of the
curves is close to the path end point, a line from the path end point to the start point of the
first curve will be added automatically.
ezdxf.path.add_ellipse(path: Path, ellipse: ConstructionEllipse, segments=1, reset=True) -> None
Add an elliptical arc as multiple cubic Bèzier-curves to the given path, use from_arc()
constructor of class ConstructionEllipse to add circular arcs.
Auto-detect the connection point to the given path, if neither the start- nor the end point of the
ellipse is close to the path end point, a line from the path end point to the ellipse start point
will be added automatically (see add_bezier4p()).
By default, the start of an empty path is set to the start point of the ellipse, setting argument
reset to False prevents this behavior.
Parameters
• path – Path object
• ellipse – ellipse parameters as ConstructionEllipse object
• segments – count of Bèzier-curve segments, at least one segment for each quarter (pi/2),
1 for as few as possible.
• reset – set start point to start of ellipse if path is empty
ezdxf.path.add_spline(path: Path, spline: BSpline, level=4, reset=True) -> None
Add a B-spline as multiple cubic Bèzier-curves.
Non-rational B-splines of 3rd degree gets a perfect conversion to cubic Bézier curves with a
minimal count of curve segments, all other B-spline require much more curve segments for
approximation.
Auto-detect the connection point to the given path, if neither the start- nor the end point of the
B-spline is close to the path end point, a line from the path end point to the start point of the
B-spline will be added automatically. (see add_bezier4p()).
By default, the start of an empty path is set to the start point of the spline, setting argument
reset to False prevents this behavior.
Parameters
• path – Path object
• spline – B-spline parameters as BSpline object
• level – subdivision level of approximation segments
• reset – set start point to start of spline if path is empty
ezdxf.path.bbox(paths: Iterable[Path], *, fast=False) -> BoundingBox
Returns the BoundingBox for the given paths.
Parameters
• paths – iterable of Path or Path2d objects
• fast – calculates the precise bounding box of Bèzier curves if False, otherwise uses the
control points of Bézier curves to determine their bounding box.
ezdxf.path.chamfer(points: Sequence[Vec3], length: float) -> Path
Returns a Path with chamfers of given length between straight line segments.
Parameters
• points – coordinates of the line segments
• length – chamfer length
ezdxf.path.chamfer2(points: Sequence[Vec3], a: float, b: float) -> Path
Returns a Path with chamfers at the given distances a and b from the segment points between
straight line segments.
Parameters
• points – coordinates of the line segments
• a – distance of the chamfer start point to the segment point
• b – distance of the chamfer end point to the segment point
ezdxf.path.fillet(points: Sequence[Vec3], radius: float) -> Path
Returns a Path with circular fillets of given radius between straight line segments.
Parameters
• points – coordinates of the line segments
• radius – fillet radius
ezdxf.path.fit_paths_into_box(paths: Iterable[Path], size: tuple[float, float, float], uniform: bool =
True, source_box: BoundingBox | None = None) -> list[Path]
Scale the given paths to fit into a box of the given size, so that all path vertices are inside
these borders. If source_box is None the default source bounding box is calculated from the
control points of the paths.
Note: if the target size has a z-size of 0, the paths are projected into the xy-plane, same is
true for the x-size, projects into the yz-plane and the y-size, projects into and xz-plane.
Parameters
• paths – iterable of Path objects
• size – target box size as tuple of x-, y- and z-size values
• uniform – True for uniform scaling
• source_box – pass precalculated source bounding box, or None to calculate the default
source bounding box from the control vertices
ezdxf.path.have_close_control_vertices(a: Path, b: Path, *, rel_tol=1e-9, abs_tol=1e-12) -> bool
Returns True if the control vertices of given paths are close.
ezdxf.path.lines_to_curve3(path: Path) -> Path
Replaces all lines by quadratic Bézier curves. Returns a new Path instance.
ezdxf.path.lines_to_curve4(path: Path) -> Path
Replaces all lines by cubic Bézier curves. Returns a new Path instance.
ezdxf.path.polygonal_fillet(points: Sequence[Vec3], radius: float, count: int = 32) -> Path
Returns a Path with polygonal fillets of given radius between straight line segments. The count
argument defines the vertex count of the fillet for a full circle.
Parameters
• points – coordinates of the line segments
• radius – fillet radius
• count – polygon vertex count for a full circle, minimum is 4
ezdxf.path.single_paths(paths: Iterable[Path]) -> Iterable[Path]
Yields all given paths and their sub-paths as single path objects.
ezdxf.path.to_multi_path(paths: Iterable[Path]) -> Path
Returns a multi-path object from all given paths and their sub-paths. Ignores paths without any
commands (empty paths).
ezdxf.path.transform_paths(paths: Iterable[Path], m: Matrix44) -> list[Path]
Transform multiple path objects at once by transformation matrix m. Returns a list of the
transformed path objects.
Parameters
• paths – iterable of Path or Path2d objects
• m – transformation matrix of type Matrix44
ezdxf.path.transform_paths_to_ocs(paths: Iterable[Path], ocs: OCS) -> list[Path]
Transform multiple Path objects at once from WCS to OCS. Returns a list of the transformed Path
objects.
Parameters
• paths – iterable of Path or Path2d objects
• ocs – OCS transformation of type OCS
ezdxf.path.triangulate(paths: Iterable[Path], max_sagitta: float = 0.01, min_segments: int = 16) ->
Iterator[Sequence[Vec2]]
Tessellate nested 2D paths into triangle-faces. For 3D paths the projection onto the xy-plane will
be triangulated.
Parameters
• paths – iterable of nested Path instances
• max_sagitta – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be subdivided.
• min_segments – minimum segment count per Bézier curve
Basic Shapes
ezdxf.path.elliptic_transformation(center: UVec = (0, 0, 0), radius: float = 1, ratio: float = 1,
rotation: float = 0) -> Matrix44
Returns the transformation matrix to transform a unit circle into an arbitrary circular- or
elliptic arc.
Example how to create an ellipse with a major axis length of 3, a minor axis length 1.5 and
rotated about 90°:
m = elliptic_transformation(radius=3, ratio=0.5, rotation=math.pi / 2)
ellipse = shapes.unit_circle(transform=m)
Parameters
• center – curve center in WCS
• radius – radius of the major axis in drawing units
• ratio – ratio of minor axis to major axis
• rotation – rotation angle about the z-axis in radians
ezdxf.path.gear(count: int, top_width: float, bottom_width: float, height: float, outside_radius: float,
transform: Matrix44 | None = None) -> Path
Returns a gear (cogwheel) shape as a Path object, with the center at (0, 0, 0). The base geometry
is created by function ezdxf.render.forms.gear().
WARNING:
This function does not create correct gears for mechanical engineering!
Parameters
• count – teeth count >= 3
• top_width – teeth width at outside radius
• bottom_width – teeth width at base radius
• height – teeth height; base radius = outside radius - height
• outside_radius – outside radius
• transform – transformation Matrix applied to the gear shape
ezdxf.path.helix(radius: float, pitch: float, turns: float, ccw=True, segments: int = 4) -> Path
Returns a helix as a Path object. The center of the helix is always (0, 0, 0), a positive pitch
value creates a helix along the +z-axis, a negative value along the -z-axis.
Parameters
• radius – helix radius
• pitch – the height of one complete helix turn
• turns – count of turns
• ccw – creates a counter-clockwise turning (right-handed) helix if True
• segments – cubic Bezier segments per turn
ezdxf.path.ngon(count: int, length: float | None = None, radius: float = 1.0, transform: Matrix44 | None
= None) -> Path
Returns a regular polygon a Path object, with the center at (0, 0, 0). The polygon size is
determined by the edge length or the circum radius argument. If both are given length has higher
priority. Default size is a radius of 1. The ngon starts with the first vertex is on the x-axis!
The base geometry is created by function ezdxf.render.forms.ngon().
Parameters
• count – count of polygon corners >= 3
• length – length of polygon side
• radius – circum radius, default is 1
• transform – transformation Matrix applied to the ngon
ezdxf.path.rect(width: float = 1, height: float = 1, transform: Matrix44 | None = None) -> Path
Returns a closed rectangle as a Path object, with the center at (0, 0, 0) and the given width and
height in drawing units.
Parameters
• width – width of the rectangle in drawing units, width > 0
• height – height of the rectangle in drawing units, height > 0
• transform – transformation Matrix applied to the rectangle
ezdxf.path.star(count: int, r1: float, r2: float, transform: Matrix44 | None = None) -> Path
Returns a star shape as a Path object, with the center at (0, 0, 0).
Argument count defines the count of star spikes, r1 defines the radius of the “outer” vertices and
r2 defines the radius of the “inner” vertices, but this does not mean that r1 has to be greater
than r2. The star shape starts with the first vertex is on the x-axis! The base geometry is
created by function ezdxf.render.forms.star().
Parameters
• count – spike count >= 3
• r1 – radius 1
• r2 – radius 2
• transform – transformation Matrix applied to the star
ezdxf.path.unit_circle(start_angle: float = 0, end_angle: float = math.tau, segments: int = 1, transform:
Matrix44 | None = None) -> Path
Returns a unit circle as a Path object, with the center at (0, 0, 0) and the radius of 1 drawing
unit.
The arc spans from the start- to the end angle in counter-clockwise orientation. The end angle has
to be greater than the start angle and the angle span has to be greater than 0.
Parameters
• start_angle – start angle in radians
• end_angle – end angle in radians (end_angle > start_angle!)
• segments – count of Bèzier-curve segments, default is one segment for each arc quarter
(π/2)
• transform – transformation Matrix applied to the unit circle
ezdxf.path.wedge(start_angle: float, end_angle: float, segments: int = 1, transform: Matrix44 | None =
None) -> Path
Returns a wedge as a Path object, with the center at (0, 0, 0) and the radius of 1 drawing unit.
The arc spans from the start- to the end angle in counter-clockwise orientation. The end angle has
to be greater than the start angle and the angle span has to be greater than 0.
Parameters
• start_angle – start angle in radians
• end_angle – end angle in radians (end_angle > start_angle!)
• segments – count of Bèzier-curve segments, default is one segment for each arc quarter
(π/2)
• transform – transformation Matrix applied to the wedge
The text2path add-on provides additional functions to create paths from text strings and DXF text
entities.
The Path Class
class ezdxf.path.Path
property end: Vec3
Path end point.
property has_curves: bool
Returns True if the path has any curve segments.
property has_lines: bool
Returns True if the path has any line segments.
property has_sub_paths: bool
Returns True if the path is a Multi-Path object that contains multiple sub-paths.
property is_closed: bool
Returns True if the start point is close to the end point.
property start: Vec3
Path start point, resetting the start point of an empty path is possible.
property user_data: Any
Attach arbitrary user data to a Path object. The user data is copied by reference, no deep
copy is applied therefore a mutable state is shared between copies.
append_path(path: Path) -> None
Append another path to this path. Adds a self.line_to(path.start) if the end of this path
!= the start of appended path.
approximate(segments: int = 20) -> Iterator[Vec3]
Approximate path by vertices, segments is the count of approximation segments for each
Bézier curve.
Does not yield any vertices for empty paths, where only a start point is present!
Approximation of Multi-Path objects is possible, but gaps are indistinguishable from line
segments.
bbox() -> BoundingBox
Returns the bounding box of all control vertices as BoundingBox instance.
clockwise() -> Self
Returns new Path in clockwise orientation.
Raises TypeError – can’t detect orientation of a Multi-Path object
clone() -> Self
Returns a new copy of Path with shared immutable data.
close() -> None
Close path by adding a line segment from the end point to the start point.
close_sub_path() -> None
Close last sub-path by adding a line segment from the end point to the start point of the
last sub-path. Behaves like close() for Single-Path instances.
control_vertices() -> list[Vec3]
Yields all path control vertices in consecutive order.
counter_clockwise() -> Self
Returns new Path in counter-clockwise orientation.
Raises TypeError – can’t detect orientation of a Multi-Path object
curve3_to(location: UVec, ctrl: UVec) -> None
Add a quadratic Bèzier-curve from actual path end point to location, ctrl is the control
point for the quadratic Bèzier-curve.
curve4_to(location: UVec, ctrl1: UVec, ctrl2: UVec) -> None
Add a cubic Bèzier-curve from actual path end point to location, ctrl1 and ctrl2 are the
control points for the cubic Bèzier-curve.
extend_multi_path(path: Path) -> None
Extend the path by another path. The source path is automatically a Multi-Path object, even
if the previous end point matches the start point of the appended path. Ignores paths
without any commands (empty paths).
flattening(distance: float, segments: int = 4) -> Iterator[Vec3]
Approximate path by vertices and use adaptive recursive flattening to approximate Bèzier
curves. The argument segments is the minimum count of approximation segments for each
curve, if the distance from the center of the approximation segment to the curve is bigger
than distance the segment will be subdivided.
Does not yield any vertices for empty paths, where only a start point is present!
Flattening of Multi-Path objects is possible, but gaps are indistinguishable from line
segments.
Parameters
• distance – maximum distance from the center of the curve to the center of the line
segment between two approximation points to determine if a segment should be
subdivided.
• segments – minimum segment count per Bézier curve
has_clockwise_orientation() -> bool
Returns True if 2D path has clockwise orientation, ignores z-axis of all control vertices.
Raises TypeError – can’t detect orientation of a Multi-Path object
line_to(location: UVec) -> None
Add a line from actual path end point to location.
move_to(location: UVec) -> None
Start a new sub-path at location. This creates a gap between the current end-point and the
start-point of the new sub-path. This converts the instance into a Multi-Path object.
If the move_to() command is the first command, the start point of the path will be reset to
location.
reversed() -> Self
Returns a new Path with reversed commands and control vertices.
sub_paths() -> Iterator[Self]
Yield all sub-paths as Single-Path objects.
It’s safe to call sub_paths() on any path-type: Single-Path, Multi-Path and Empty-Path.
transform(m: Matrix44) -> Self
Returns a new transformed path.
Parameters
m – transformation matrix of type Matrix44
Reorder
Tools to reorder DXF entities by handle or a special sort handle mapping.
Such reorder mappings are stored only in layouts as Modelspace, Paperspace or BlockLayout, and can be
retrieved by the method get_redraw_order().
Each entry in the handle mapping replaces the actual entity handle, where the “0” handle has a special
meaning, this handle always shows up at last in ascending ordering.
ezdxf.reorder.ascending(entities: Iterable[DXFGraphic], mapping: dict | Iterable[tuple[str, str]] | None
= None) -> Iterable[DXFGraphic]
Yields entities in ascending handle order.
The sort-handle doesn’t have to be the entity handle, every entity handle in mapping will be
replaced by the given sort-handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle)
or a dict (entity_handle, sort_handle). Entities with equal sort-handles show up in source
entities order.
Parameters
• entities – iterable of DXFGraphic objects
• mapping – iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict.
ezdxf.reorder.descending(entities: Iterable[DXFGraphic], mapping: dict | Iterable[tuple[str, str]] | None
= None) -> Iterable[DXFGraphic]
Yields entities in descending handle order.
The sort-handle doesn’t have to be the entity handle, every entity handle in mapping will be
replaced by the given sort-handle, mapping is an iterable of 2-tuples (entity_handle, sort_handle)
or a dict (entity_handle, sort_handle). Entities with equal sort-handles show up in reversed
source entities order.
Parameters
• entities – iterable of DXFGraphic objects
• mapping – iterable of 2-tuples (entity_handle, sort_handle) or a handle mapping as dict.
Transform
Added in version 1.1.
This module provides functions to apply transformations to multiple DXF entities inplace or to virtual
copies of that entities in a convenient and safe way:
import math
import ezdxf
from ezdxf import transform
doc = ezdxf.readfile("my.dxf")
msp = doc.modelspace()
log = transform.inplace(msp, m=transform.Matrix44.rotate_z(math.pi/2))
# or more simple
log = transform.z_rotate(msp, math.pi/2)
All functions handle errors by collecting them in an logging object without raising an error. The input
entities are an iterable of DXFEntity, which can be any layout, EntityQuery or just a list/sequence of
entities and virtual entities are supported as well.
┌───────────────┬───────────────────────────────────────┐
│ inplace │ Transforms the given entities inplace │
│ │ by the transformation matrix m, │
│ │ non-uniform scaling is supported. │
├───────────────┼───────────────────────────────────────┤
│ copies │ Copy entities and transform them by │
│ │ matrix m. │
├───────────────┼───────────────────────────────────────┤
│ translate │ Translates (moves) entities inplace │
│ │ by the offset vector. │
├───────────────┼───────────────────────────────────────┤
│ scale_uniform │ Scales entities inplace by a factor │
│ │ in all axis. │
├───────────────┼───────────────────────────────────────┤
│ scale │ Scales entities inplace by the │
│ │ factors sx in x-axis, sy in y-axis │
│ │ and sz in z-axis. │
├───────────────┼───────────────────────────────────────┤
│ x_rotate │ Rotates entities inplace by angle in │
│ │ radians about the x-axis. │
├───────────────┼───────────────────────────────────────┤
│ y_rotate │ Rotates entities inplace by angle in │
│ │ radians about the y-axis. │
├───────────────┼───────────────────────────────────────┤
│ z_rotate │ Rotates entities inplace by angle in │
│ │ radians about the x-axis. │
├───────────────┼───────────────────────────────────────┤
│ axis_rotate │ Rotates entities inplace by angle in │
│ │ radians about the rotation axis │
│ │ starting at the origin pointing in │
│ │ axis direction. │
└───────────────┴───────────────────────────────────────┘
ezdxf.transform.inplace(entities: Iterable[DXFEntity], m: Matrix44) -> Logger
Transforms the given entities inplace by the transformation matrix m, non-uniform scaling is
supported. The function converts circular arcs into ellipses to perform non-uniform scaling. The
function logs errors and does not raise errors for unsupported entities or transformation errors,
see enum Error.
IMPORTANT:
The inplace() function does not support type conversion for virtual entities e.g. non-uniform
scaling for CIRCLE, ARC or POLYLINE with bulges, see also function copies().
ezdxf.transform.copies(entities: Iterable[DXFEntity], m: Matrix44 | None = None) -> Tuple[Logger,
List[DXFEntity]]
Copy entities and transform them by matrix m. Does not raise any exception and ignores all
entities that cannot be copied or transformed. Just copies the input entities if matrix m is None.
Returns a tuple of Logger and a list of transformed virtual copies. The function supports virtual
entities as input and converts circular arcs into ellipses to perform non-uniform scaling.
ezdxf.transform.translate(entities: Iterable[DXFEntity], offset: UVec) -> Logger
Translates (moves) entities inplace by the offset vector.
ezdxf.transform.scale_uniform(entities: Iterable[DXFEntity], factor: float) -> Logger
Scales entities inplace by a factor in all axis. Scaling factors smaller than MIN_SCALING_FACTOR
are ignored.
ezdxf.transform.scale(entities: Iterable[DXFEntity], sx: float, sy: float, sz: float) -> Logger
Scales entities inplace by the factors sx in x-axis, sy in y-axis and sz in z-axis. Scaling
factors smaller than MIN_SCALING_FACTOR are ignored.
IMPORTANT:
same limitations for virtual entities as the inplace() function
ezdxf.transform.x_rotate(entities: Iterable[DXFEntity], angle: float) -> Logger
Rotates entities inplace by angle in radians about the x-axis.
ezdxf.transform.y_rotate(entities: Iterable[DXFEntity], angle: float) -> Logger
Rotates entities inplace by angle in radians about the y-axis.
ezdxf.transform.z_rotate(entities: Iterable[DXFEntity], angle: float) -> Logger
Rotates entities inplace by angle in radians about the x-axis.
ezdxf.transform.axis_rotate(entities: Iterable[DXFEntity], axis: UVec, angle: float) -> Logger
Rotates entities inplace by angle in radians about the rotation axis starting at the origin
pointing in axis direction.
ezdxf.transform.MIN_SCALING_FACTOR
Minimal scaling factor: 1e-12
class ezdxf.transform.Error
NONE No error, same as a boolean False, this allows check if error: ...
COPY_NOT_SUPPORTED
Entity without copy support.
TRANSFORMATION_NOT_SUPPORTED
Entity without transformation support.
NON_UNIFORM_SCALING_ERROR
Circular arcs (CIRCLE, ARC, bulges in POLYLINE and LWPOLYLINE entities) cannot be scaled
non-uniformly.
INSERT_TRANSFORMATION_ERROR
INSERT entities cannot represent a non-orthogonal target coordinate system. Maybe
exploding the INSERT entities (recursively) beforehand can solve this issue, see function
ezdxf.disassemble.recursive_decompose().
VIRTUAL_ENTITY_NOT_SUPPORTED
Transformation not supported for virtual entities e.g. non-uniform scaling for CIRCLE, ARC
or POLYLINE with bulges
class ezdxf.transform.Logger
A Sequence of errors as Logger.Entry instances.
class Entry
Named tuple representing a logger entry.
error Error enum
msg error message as string
entity DXF entity which causes the error
__len__() -> int
Returns the count of error entries.
__getitem__(index: int) -> Entry
Returns the error entry at index.
__iter__() -> Iterator[Entry]
Iterates over all error entries.
messages() -> list[str]
Returns all error messages as list of strings.
Upright
The functions in this module can help to convert an inverted OCS defined by an extrusion vector (0, 0,
-1) into a WCS aligned OCS defined by an extrusion vector (0, 0, 1).
This simplifies 2D entity processing for ezdxf users and creates DXF output for 3rd party DXF libraries
which ignore the existence of the OCS.
Supported DXF entities:
• CIRCLE
• ARC
• ELLIPSE (WCS entity, flips only the extrusion vector)
• SOLID
• TRACE
• LWPOLYLINE
• POLYLINE (only 2D entities)
• HATCH
• MPOLYGON
• INSERT (block references)
WARNING:
The WCS representation of OCS entities with flipped extrusion vector is not 100% identical to the
source entity, curve orientation and vertex order may change, see additional explanation below. A
mirrored text represented by an extrusion vector (0, 0, -1) cannot represented by an extrusion vector
(0, 0, 1), therefore this CANNOT work for text entities or entities including text: TEXT, ATTRIB,
ATTDEF, MTEXT, DIMENSION, LEADER, MLEADER
Usage
The functions can be applied to any DXF entity without expecting errors or exceptions if the DXF entity
is not supported or the extrusion vector differs from (0, 0, -1). This also means you can apply the
functions multiple times to the same entities without any problems. A common case would be to upright all
entities of the model space:
import ezdxf
from ezdxf.upright import upright_all
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
upright_all(msp)
# doing it again is no problem but also has no further effects
upright_all(msp)
Another use case is exploding block references (INSERT) which may include reflections (= scaling by
negative factors) that can lead to inverted extrusion vectors.
for block_ref in msp.query("INSERT"):
entities = block_ref.explode() # -> EntityQuery object
upright_all(entities)
Functions
ezdxf.upright.upright(entity: DXFGraphic) -> None
Flips an inverted OCS defined by extrusion vector (0, 0, -1) into a WCS aligned OCS defined by
extrusion vector (0, 0, 1). DXF entities with other extrusion vectors and unsupported DXF
entities will be silently ignored. For more information about the limitations read the
documentation of the ezdxf.upright module.
ezdxf.upright.upright_all(entities: Iterable[DXFGraphic]) -> None
Call function upright() for all DXF entities in iterable entities:
upright_all(doc.modelspace())
Additional Explanation
This example shows why the entities with an inverted OCS, extrusion vector is (0, 0, -1), are not exact
the same as with an WCS aligned OCS, extrusion vector is (0, 0, 1).
NOTE:
The ARC entity represents the curve always in counter-clockwise orientation around the extrusion
vector.
import ezdxf
from ezdxf.upright import upright
from ezdxf.math import Matrix44
doc = ezdxf.new()
msp = doc.modelspace()
arc = msp.add_arc(
(5, 0),
radius=5,
start_angle=-90,
end_angle=90,
dxfattribs={"color": ezdxf.const.RED},
)
# draw lines to the start- and end point of the ARC
msp.add_line((0, 0), arc.start_point, dxfattribs={"color": ezdxf.const.GREEN})
msp.add_line((0, 0), arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})
# copy arc
mirrored_arc = arc.copy()
msp.add_entity(mirrored_arc)
# mirror copy
mirrored_arc.transform(Matrix44.scale(-1, 1, 1))
# This creates an inverted extrusion vector:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1))
# draw lines to the start- and end point of the mirrored ARC
msp.add_line((0, 0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN})
msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})
Result without applying the upright() function - true mirroring: [image]
...
# This creates an inverted extrusion vector:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, -1))
start_point_inv = mirrored_arc.start_point
end_point_inv = mirrored_arc.end_point
upright(mirrored_arc)
# OCS is aligned with WCS:
assert mirrored_arc.dxf.extrusion.isclose((0, 0, 1))
# start- and end points are swapped after applying upright()
assert mirrored_arc.start_point.isclose(end_point_inv)
assert mirrored_arc.end_point.isclose(start_point_inv)
# draw lines to the start- and end point of the mirrored ARC
msp.add_line((0, 0), mirrored_arc.start_point, dxfattribs={"color": ezdxf.const.GREEN})
msp.add_line((0, 0), mirrored_arc.end_point, dxfattribs={"color": ezdxf.const.BLUE})
Result after applying the upright() function - false mirroring: [image]
To avoid this issue the ARC entity would have to represent the curve in clockwise orientation around the
extrusion vector (0, 0, 1), which is not possible!
NOTE:
The shape of the mirrored arcs is the same for both extrusion vectors, but the start- and the end
points are swapped (reversed vertex order)!
Custom Data
Custom XDATA
The classes XDataUserList and XDataUserDict manage custom user data stored in the XDATA section of a DXF
entity. For more information about XDATA see reference section: Extended Data (XDATA)
These classes store only a limited set of data types with fixed group codes and the types are checked by
isinstance() so a Vec3 object can not be replaced by a (x, y, z)-tuple:
┌────────────┬───────────────────────────────────────┐
│ Group Code │ Data Type │
├────────────┼───────────────────────────────────────┤
│ 1000 │ str, limited to 255 characters, line │
│ │ breaks "\n" and "\r" are not allowed │
├────────────┼───────────────────────────────────────┤
│ 1010 │ Vec3 │
├────────────┼───────────────────────────────────────┤
│ 1040 │ float │
├────────────┼───────────────────────────────────────┤
│ 1071 │ 32-bit int, restricted by the DXF │
│ │ standard not by Python! │
└────────────┴───────────────────────────────────────┘
Strings are limited to 255 characters, line breaks "\n" and "\r" are not allowed.
This classes assume a certain XDATA structure and therefore can not manage arbitrary XDATA!
This classes do not create the required AppID table entry, only the default AppID “EZDXF” exist by
default. Setup a new AppID in the AppID table: doc.appids.add("MYAPP").
For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files.
SEE ALSO:
• Tutorial: Storing Custom Data in DXF Files
• Example at github
• XDATA reference: Extended Data (XDATA)
• XDATA management class: XData
XDataUserList
class ezdxf.entities.xdata.XDataUserList
Manage user data as a named list-like object in XDATA. Multiple user lists with different names
can be stored in a single XData instance for a single AppID.
Recommended usage by context manager entity():
with XDataUserList.entity(entity, name="MyList", appid="MYAPP") as ul:
ul.append("The value of PI") # str "\n" and "\r" are not allowed
ul.append(3.141592) # float
ul.append(1) # int
ul.append(Vec3(1, 2, 3)) # Vec3
# invalid data type raises DXFTypeError
ul.append((1, 2, 3)) # tuple instead of Vec3
# retrieve a single value
s = ul[0]
# store whole content into a Python list
data = list(ul)
Implements the MutableSequence interface.
xdata The underlying XData instance.
__init__(xdata: XData | None = None, name='DefaultList', appid='EZDXF')
Setup a XDATA user list name for the given appid.
The data is stored in the given xdata object, or in a new created XData instance if None.
Changes of the content has to be committed at the end to be stored in the underlying xdata
object.
Parameters
• xdata (XData) – underlying XData instance, if None a new one will be created
• name (str) – name of the user list
• appid (str) – application specific AppID
__str__()
Return str(self).
__len__() -> int
Returns len(self).
__getitem__(item)
Get self[item].
__setitem__(item, value)
Set self[item] to value.
__delitem__(item)
Delete self[item].
classmethod entity(entity: DXFEntity, name='DefaultList', appid='EZDXF') -> Iterator[‐
XDataUserList]
Context manager to manage a XDATA list name for a given DXF entity. Appends the user list
to the existing XData instance or creates new XData instance.
Parameters
• entity (DXFEntity) – target DXF entity for the XDATA
• name (str) – name of the user list
• appid (str) – application specific AppID
commit() -> None
Store all changes to the underlying XData instance. This call is not required if using the
entity() context manager.
Raises
• DXFValueError – invalid chars "\n" or "\r" in a string
• DXFTypeError – invalid data type
XDataUserDict
class ezdxf.entities.xdata.XDataUserDict
Manage user data as a named dict-like object in XDATA. Multiple user dicts with different names
can be stored in a single XData instance for a single AppID. The keys have to be strings.
Recommended usage by context manager entity():
with XDataUserDict.entity(entity, name="MyDict", appid="MYAPP") as ud:
ud["comment"] = "The value of PI" # str "\n" and "\r" are not allowed
ud["pi"] = 3.141592 # float
ud["number"] = 1 # int
ud["vertex"] = Vec3(1, 2, 3) # Vec3
# invalid data type raises DXFTypeError
ud["vertex"] = (1, 2, 3) # tuple instead of Vec3
# retrieve single values
s = ud["comment"]
pi = ud.get("pi", 3.141592)
# store whole content into a Python dict
data = dict(ud)
Implements the MutableMapping interface.
The data is stored in XDATA like a XDataUserList by (key, value) pairs, therefore a XDataUserDict
can also be loaded as XDataUserList. It is not possible to distinguish a XDataUserDict from a
XDataUserList except by the name of the data structure.
xdata The underlying XData instance.
__init__(xdata: XData | None = None, name='DefaultDict', appid='EZDXF')
Setup a XDATA user dict name for the given appid.
The data is stored in the given xdata object, or in a new created XData instance if None.
Changes of the content has to be committed at the end to be stored in the underlying xdata
object.
Parameters
• xdata (XData) – underlying XData instance, if None a new one will be created
• name (str) – name of the user list
• appid (str) – application specific AppID
__str__()
Return str(self).
__len__()
Returns len(self).
__getitem__(key)
Get self[key].
__setitem__(key, item)
Set self[key] to value, key has to be a string.
Raises DXFTypeError – key is not a string
__delitem__(key)
Delete self[key].
discard(key)
Delete self[key], without raising a KeyError if key does not exist.
__iter__()
Implement iter(self).
classmethod entity(entity: DXFEntity, name='DefaultDict', appid='EZDXF') -> Iterator[‐
XDataUserDict]
Context manager to manage a XDATA dict name for a given DXF entity. Appends the user dict
to the existing XData instance or creates new XData instance.
Parameters
• entity (DXFEntity) – target DXF entity for the XDATA
• name (str) – name of the user list
• appid (str) – application specific AppID
commit() -> None
Store all changes to the underlying XData instance. This call is not required if using the
entity() context manager.
Raises
• DXFValueError – invalid chars "\n" or "\r" in a string
• DXFTypeError – invalid data type
Custom XRecord
The UserRecord and BinaryRecord classes help to store custom data in DXF files in XRecord objects a
simple and safe way. This way requires DXF version R2000 or later, for DXF version R12 the only way to
store custom data is Extended Data (XDATA).
The UserRecord stores Python types and nested container types: int, float, str, Vec2, Vec3, list and
dict.
Requirements for Python structures:
• The top level structure has to be a list.
• Strings has to have max. 2049 characters and can not contain line breaks "\\n" or "\\r".
• Dict keys have to be simple Python types: int, float, str.
DXF Tag layout for Python types and structures stored in the XRecord object:
Only for the UserRecord the first tag is (2, user record name).
┌───────┬───────────────────────────────────────┐
│ Type │ DXF Tag(s) │
├───────┼───────────────────────────────────────┤
│ str │ (1, value) string with less than 2050 │
│ │ chars and including no line breaks │
├───────┼───────────────────────────────────────┤
│ int │ (90, value) int 32-bit, restricted by │
│ │ the DXF standard not by Python! │
├───────┼───────────────────────────────────────┤
│ float │ (40, value) “C” double │
├───────┼───────────────────────────────────────┤
│ Vec2 │ (10, x), (20, y) │
├───────┼───────────────────────────────────────┤
│ Vec3 │ (10, x) (20, y) (30, z) │
├───────┼───────────────────────────────────────┤
│ list │ starts with (2, “[”) and ends with │
│ │ (2, “]”) │
├───────┼───────────────────────────────────────┤
│ dict │ starts with (2, “{”) and ends with │
│ │ (2, “}”) │
└───────┴───────────────────────────────────────┘
The BinaryRecord stores arbitrary binary data as BLOB.
Storage size limits of XRECORD according the DXF reference:
“This object is similar in concept to XDATA but is not limited by size or order.”
For usage look at this example at github or go to the tutorial: Storing Custom Data in DXF Files.
SEE ALSO:
• Tutorial: Storing Custom Data in DXF Files
• Example at github
• ezdxf.entities.XRecord
UserRecord
class ezdxf.urecord.UserRecord
xrecord
The underlying XRecord instance
name The name of the UserRecord, an arbitrary string with less than 2050 chars and including no
line breaks.
data The Python data. The top level structure has to be a list (MutableSequence). Inside this
container the following Python types are supported: str, int, float, Vec2, Vec3, list, dict
Nested data structures are supported list or/and dict in list or dict. Dict keys have to
be simple Python types: int, float, str.
property handle: str | None
DXF handle of the underlying XRecord instance.
__init__(xrecord: XRecord | None = None, *, name: str = DEFAULT_NAME, doc: Drawing | None = None)
Setup a UserRecord with the given name.
The data is stored in the given xrecord object, or in a new created XRecord instance if
None. If doc is not None the new xrecord is added to the OBJECTS section of the DXF
document.
Changes of the content has to be committed at the end to be stored in the underlying
xrecord object.
Parameters
• xrecord (XRecord) – underlying XRecord instance, if None a new one will be created
• name (str) – name of the user list
• doc (Drawing) – DXF document or None
__str__()
Return str(self).
commit() -> XRecord
Store data in the underlying XRecord instance. This call is not required if using the class
by the with statement.
Raises
• DXFValueError – invalid chars "\n" or "\r" in a string
• DXFTypeError – invalid data type
BinaryRecord
class ezdxf.urecord.BinaryRecord
xrecord
The underlying XRecord instance
data The binary data as bytes, bytearray or memoryview.
property handle: str | None
DXF handle of the underlying XRecord instance.
__init__(xrecord: XRecord | None = None, *, doc: Drawing | None = None)
Setup a BinaryRecord.
The data is stored in the given xrecord object, or in a new created XRecord instance if
None. If doc is not None the new xrecord is added to the OBJECTS section of the DXF
document.
Changes of the content has to be committed at the end to be stored in the underlying
xrecord object.
Parameters
• xrecord (XRecord) – underlying XRecord instance, if None a new one will be created
• doc (Drawing) – DXF document or None
__str__() -> str
Return str(self).
commit() -> XRecord
Store binary data in the underlying XRecord instance. This call is not required if using
the class by the with statement.
Fonts
Fonts
The module ezdxf.fonts.fonts manages the internal usage of fonts and has no relation how the DXF formats
manages text styles.
SEE ALSO:
The Textstyle entity, the DXF way to define fonts.
Added in version 1.1.
Since ezdxf v1.1 text rendering is done by the fontTools package. Support for stroke fonts, these are
the basic vector fonts included in CAD applications, like .shx, .shp or .lff fonts was also added.
None of the required font files (.ttf, .ttc, .otf, .shx, .shp or .lff) are included in ezdxf as they are
copyrighted or, in the case of the LibreCAD font format (.lff), licensed under the “GPL v2 and later”.
Font Locations
TrueType Fonts
The font manager searches the following directories recursively for .ttf, .ttc and .otf font files.
•
Windows:
• ~/AppData/Local/Microsoft/Windows/Fonts
• <SystemRoot>/Fonts
•
Linux and other *nix like systems:
• /usr/share/fonts
• /usr/local/share/fonts
• ~/.fonts
• ~/.local/share/fonts
• ~/.local/share/texmf/fonts
•
macOS:
• /Library/Fonts
• /System/Library/Fonts
The fc-list command on Linux shows all available fonts and their location.
The default font is selected in the following order, if none of them is available on your system -
install one of them, the open source fonts can be found in the github repository in the folder ‐
ezdxf/fonts.
• Arial.ttf
• DejaVuSansCondensed.ttf
• DejaVuSans.ttf
• LiberationSans-Regular.ttf
• OpenSans-Regular.ttf
Basic Stroke Fonts
There is no universal way to find the basic stroke fonts of CAD applications on a system, beside scanning
all drives. Set the paths to the stroke fonts in your config file manually to tell ezdxf where to search
for them, all paths are search recursively, see also option ezdxf.options.support_dirs:
[core]
support_dirs =
"C:\Program Files\Bricsys\BricsCAD V23 en_US\Fonts",
~/shx_fonts,
~/shp_fonts,
~/lff_fonts,
The .shx fonts can be found on the internet but be aware that they are not free as all websites claim.
The LibreCAD font files (.llf) can be downloaded from their github repository: ‐
https://github.com/LibreCAD/LibreCAD/tree/master/librecad/support/fonts
IMPORTANT:
When you add new font directories to support_dirs or new fonts to one of the support directories, you
have to rebuild the font cache to use these fonts, see section Rebuilding the Font Cache for more
information.
Font Caching
The fonts available on a system are cached automatically, the cache has to be rebuild by the
build_system_font_cache() function to recognize new installed fonts or when you add new font directories
to the config file.
The cache is stored in the users home directory “~/.cache/ezdxf” or the directory specified by the
environment variable “XDG_CACHE_HOME”.
Rebuilding the Font Cache
When you add new fonts to your system or add a font directory to the support directories in the config
file you have to rebuild the font-cache of ezdxf to recognize these new fonts:
import ezdxf
from ezdxf.fonts import fonts
fonts.build_system_font_cache()
or call the ezdxf launcher to do that:
ezdxf --fonts
Functions
ezdxf.fonts.fonts.make_font(font_name: str, cap_height: float, width_factor: float = 1.0) -> AbstractFont
Returns a font abstraction based on class AbstractFont.
Supported font types:
• .ttf, .ttc and .otf - TrueType fonts
• .shx, .shp - Autodesk® shapefile fonts
• .lff - LibreCAD font format
The special name “*monospace” returns the fallback font MonospaceFont for testing and basic
measurements.
NOTE:
The font definition files are not included in ezdxf.
Parameters
• font_name – font file name as stored in the Textstyle entity e.g. “OpenSans-Regular.ttf”
• cap_height – desired cap height in drawing units.
• width_factor – horizontal text stretch factor
ezdxf.fonts.fonts.get_font_face(font_name: str, map_shx=True) -> FontFace
Returns the FontFace definition for the given font filename e.g. “LiberationSans-Regular.ttf”.
This function translates a DXF font definition by the TTF font file name into a FontFace object.
Returns the FontFace of the default font when a font is not available on the current system.
Parameters
• font_name – raw font file name as stored in the Textstyle entity
• map_shx – maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt_____.ttf”
ezdxf.fonts.fonts.find_font_face(font_name: str) -> FontFace
Returns the FontFace definition for the given font filename e.g. “LiberationSans-Regular.ttf”.
ezdxf.fonts.fonts.find_font_file_name(font_face: FontFace) -> str
Returns the true type font file name without parent directories e.g. “Arial.ttf”.
ezdxf.fonts.fonts.find_best_match(*, family: str = 'sans-serif', style: str = 'Regular', weight: int =
400, width: int = 5, italic: bool | None = False) -> FontFace | None
Returns a FontFace that matches the given properties best. The search is based the descriptive
properties and not on comparing glyph shapes. Returns None if no font was found.
Parameters
• family – font family name e.g. “sans-serif”, “Liberation Sans”
• style – font style e.g. “Regular”, “Italic”, “Bold”
• weight – weight in the range from 1-1000 (usWeightClass)
• width – width in the range from 1-9 (usWidthClass)
• italic – True, False or None to ignore this flag
ezdxf.fonts.fonts.get_entity_font_face(entity: DXFEntity, doc: Drawing | None = None) -> FontFace
Returns the FontFace defined by the associated text style. Returns the default font face if the
entity does not have or support the DXF attribute “style”. Supports the extended font information
stored in Textstyle table entries.
Pass a DXF document as argument doc to resolve text styles for virtual entities which are not
assigned to a DXF document. The argument doc always overrides the DXF document to which the entity
is assigned to.
ezdxf.fonts.fonts.get_font_measurements(font_name: str, map_shx=True) -> FontMeasurements
Get FontMeasurements for the given font filename e.g. “LiberationSans-Regular.ttf”.
Parameters
• font_name – raw font file name as stored in the Textstyle entity
• map_shx – maps SHX font names to TTF replacement fonts, e.g. “TXT” -> “txt_____.ttf”
ezdxf.fonts.fonts.build_system_font_cache()
Builds or rebuilds the font manager cache. The font manager cache has a fixed location in the
cache directory of the users home directory “~/.cache/ezdxf” or the directory specified by the
environment variable “XDG_CACHE_HOME”.
ezdxf.fonts.fonts.load()
Reload all cache files. The cache files are loaded automatically at the import of ezdxf.
ezdxf.fonts.fonts.sideload_ttf(font_path: str | PathLike, cap_height) -> AbstractFont
This function bypasses the FontManager and loads the TrueType font straight from the file system,
requires the absolute font file path e.g. “C:/Windows/Fonts/Arial.ttf”.
WARNING:
Expert feature, use with care: no fallback font and no error handling.
Classes
class ezdxf.fonts.fonts.AbstractFont(measurements: FontMeasurements)
The ezdxf font abstraction for text measurement and text path rendering.
name The font filename e.g. “LiberationSans-Regular.ttf”
font_render_type
The font type, see enum FontRenderType
measurement
The FontMeasurements data.
abstractmethod text_width(text: str) -> float
Returns the text width in drawing units for the given text string.
abstractmethod text_width_ex(text: str, cap_height: float, width_factor: float = 1.0) -> float
Returns the text width in drawing units, bypasses the stored cap_height and width_factor.
abstractmethod text_path(text: str) -> NumpyPath2d
Returns the 2D text path for the given text.
abstractmethod text_path_ex(text: str, cap_height: float, width_factor: float = 1.0) ->
NumpyPath2d
Returns the 2D text path for the given text, bypasses the stored cap_height and
width_factor.
abstractmethod space_width() -> float
Returns the width of a “space” character a.k.a. word spacing.
class ezdxf.fonts.fonts.MonospaceFont(cap_height: float, width_factor: float = 1.0, baseline: float = 0,
descender_factor: float = DESCENDER_FACTOR, x_height_factor: float = X_HEIGHT_FACTOR)
Represents a monospaced font where each letter has the same cap- and descender height and the same
width. The given cap height and width factor are the default values for measurements and
rendering. The extended methods can override these default values.
This font exists only for generic text measurement in tests and does not render any glyphs!
class ezdxf.fonts.fonts.TrueTypeFont(font_name: str, cap_height: float, width_factor: float = 1.0)
Represents a TrueType font. Font measurement and glyph rendering is done by the fontTools package.
The given cap height and width factor are the default values for measurements and glyph rendering.
The extended methods can override these default values.
class ezdxf.fonts.fonts.ShapeFileFont(font_name: str, cap_height: float, width_factor: float = 1.0)
Represents a shapefile font (.shx, .shp). Font measurement and glyph rendering is done by the
ezdxf.fonts.shapefile module. The given cap height and width factor are the default values for
measurements and glyph rendering. The extended methods can override these default values.
class ezdxf.fonts.fonts.LibreCadFont(font_name: str, cap_height: float, width_factor: float = 1.0)
Represents a LibreCAD font (.shx, .shp). Font measurement and glyph rendering is done by the
ezdxf.fonts.lff module. The given cap height and width factor are the default values for
measurements and glyph rendering. The extended methods can override these default values.
Font Anatomy
• A Visual Guide to the Anatomy of Typography: https://visme.co/blog/type-anatomy/
• Anatomy of a Character: https://www.fonts.com/content/learning/fontology/level-1/type-anatomy/anatomy
Font Properties
DXF to store fonts in the Textstyle entity as TTF file name e.g. “LiberationSans-Regular.ttf”.
The FontFace class can be used to specify a font in a more generic way:
family font name e.g. “Liberation Sans” or “Arial”, may a generic font family name, either “serif”,
“sans-serif” or “monospace”
style “Regular”, “Italic”, “Oblique”, “Bold”, “BoldOblique”, …
width (usWidthClass) A numeric value in the range 0-9
┌───┬──────────────────┐
│ 1 │ UltraCondensed │
├───┼──────────────────┤
│ 2 │ ExtraCondensed │
├───┼──────────────────┤
│ 3 │ Condensed │
├───┼──────────────────┤
│ 4 │ SemiCondensed │
├───┼──────────────────┤
│ 5 │ Normal or Medium │
├───┼──────────────────┤
│ 6 │ SemiExpanded │
├───┼──────────────────┤
│ 7 │ Expanded │
├───┼──────────────────┤
│ 8 │ ExtraExpanded │
├───┼──────────────────┤
│ 9 │ UltraExpanded │
└───┴──────────────────┘
weight (usWeightClass) A numeric value in the range 0-1000
┌─────┬────────────┐
│ 100 │ Thin │
├─────┼────────────┤
│ 200 │ ExtraLight │
├─────┼────────────┤
│ 300 │ Light │
├─────┼────────────┤
│ 400 │ Normal │
├─────┼────────────┤
│ 500 │ Medium │
├─────┼────────────┤
│ 600 │ SemiBold │
├─────┼────────────┤
│ 700 │ Bold │
├─────┼────────────┤
│ 800 │ ExtraBold │
├─────┼────────────┤
│ 900 │ Black │
└─────┴────────────┘
SEE ALSO:
• W3C: https://www.w3.org/TR/2018/REC-css-fonts-3-20180920/
class ezdxf.fonts.fonts.FontRenderType
Enumeration of font render type.
STROKE Basic stroke font, can only be rendered as linear paths.
OUTLINE
TrueType or similar font, can be rendered as filled paths or as outline strokes.
class ezdxf.fonts.fonts.FontFace(filename, family, style, weight, width)
filename
font file name without parent directories as string, e.g. “arial.ttf”
family Family name as string, the default value is “sans-serif”
style Font style as string, the default value is “Regular”
weight Font weight as int in the renge from 0-1000, the default value is 400 (Normal)
property weight_str: str
Returns the weight as string e.g. “Thin”, “Normal”, “Bold”, …
width Font width (stretch) as int in the range from 1-9, the default value is 5 (Normal)
property width_str: str
Returns the width as string e.g. “Condensed”, “Expanded”, …
property is_italic: bool
Returns True if font face is italic.
property is_oblique: bool
Returns True if font face is oblique.
property is_bold: bool
Returns True if font face weight > 400.
class ezdxf.fonts.fonts.FontMeasurements
See Font Anatomy for more information.
baseline
cap_height
x_height
descender_height
scale(factor: float = 1.0) -> FontMeasurements
scale_from_baseline(desired_cap_height: float) -> FontMeasurements
shift(distance: float = 0.0) -> FontMeasurements
property cap_top: float
property x_top: float
property bottom: float
property total_height: float
Tools
Application Settings
This is a high-level module for working with CAD application settings and behaviors. None of these
settings have any influence on the behavior of ezdxf, since ezdxf only takes care of the content of the
DXF file and not of the way it is presented to the user.
IMPORTANT:
You need to understand that these settings work at the application level, ezdxf cannot force an
application to do something in a certain way! The functionality of this module has been tested with
Autodesk TrueView and BricsCAD, other applications may show different results or ignore the settings.
Set Current Properties
The current properties are used by the CAD application to create new entities, these settings do not
affect how ezdxf creates new entities.
The module ezdxf.gfxattribs provides the class GfxAttribs(), which can load the current graphical entity
settings from the HEADER section for creating new entities by ezdxf: load_from_header()
ezdxf.appsettings.set_current_layer(doc: Drawing, name: str)
Set current layer.
ezdxf.appsettings.set_current_color(doc: Drawing, color: int)
Set current AutoCAD Color Index (ACI).
ezdxf.appsettings.set_current_linetype(doc: Drawing, name: str)
Set current linetype.
ezdxf.appsettings.set_current_lineweight(doc: Drawing, lineweight: int)
Set current lineweight, see Lineweights reference for valid values.
ezdxf.appsettings.set_current_linetype_scale(doc: Drawing, scale: float)
Set current linetype scale.
ezdxf.appsettings.set_current_textstyle(doc: Drawing, name: str)
Set current text style.
ezdxf.appsettings.set_current_dimstyle(doc: Drawing, name: str)
Set current dimstyle.
ezdxf.appsettings.set_current_dimstyle_attribs(doc: Drawing, name: str)
Set current dimstyle and copy all dimstyle attributes to the HEADER section.
ezdxf.appsettings.set_lineweight_display_style(doc: Drawing, end_caps: EndCaps, join_style: JoinStyle) ->
None
Set the style of end caps and joints for linear entities when displaying line weights. These
settings only affect objects created afterwards.
Restore the WCS
ezdxf.appsettings.restore_wcs(doc: Drawing)
Restore the UCS settings in the HEADER section to the WCS and reset all active viewports to the
WCS.
Update Extents
ezdxf.appsettings.update_extents(doc: Drawing) -> BoundingBox
Calculate the extents of the model space, update the HEADER variables $EXTMIN and $EXTMAX and
returns the result as ezdxf.math.BoundingBox. Note that this function uses the ezdxf.bbox module
to calculate the extent of the model space. This module is not very fast and not very accurate for
text and ignores all ACIS based entities.
The function updates only the values in the HEADER section, to zoom the active viewport to this
extents, use this recipe:
import ezdxf
from ezdxf import zoom, appsettings
doc = ezdxf.readfile("your.dxf")
extents = appsettings.update_extents(doc)
zoom.center(doc.modelspace(), extents.center, extents.size)
SEE ALSO:
• the ezdxf.bbox module to understand the limitations of the extent calculation
• the ezdxf.zoom module
Show Lineweight
ezdxf.appsettings.show_lineweight(doc: Drawing, state=True) -> None
The CAD application or DXF viewer should show lines and curves with “thickness” (lineweight) if
state is True.
Load DXF Comments
ezdxf.comments.from_stream(stream: TextIO, codes: set[int] | None = None) -> Iterable[DXFTag]
Yields comment tags from text stream as DXFTag objects.
Parameters
• stream – input text stream
• codes – set of group codes to yield additional DXF tags e.g. {5, 0} to also yield handle
and structure tags
ezdxf.comments.from_file(filename: str, codes: set[int] | None = None) -> Iterable[DXFTag]
Yields comment tags from file filename as DXFTag objects.
Parameters
• filename – filename as string
• codes – yields also additional tags with specified group codes e.g. {5, 0} to also yield
handle and structure tags
GfxAttribs
The ezdxf.gfxattribs module provides the GfxAttribs class to create valid attribute dictionaries for the
most often used DXF attributes supported by all graphical DXF entities. The advantage of using this class
is auto-completion support by IDEs and an instant validation of the attribute values.
import ezdxf
from ezdxf.gfxattribs import GfxAttribs
doc = ezdxf.new()
msp = doc.modelspace()
attribs = GfxAttribs(layer="MyLayer", color=ezdxf.colors.RED)
line = msp.add_line((0, 0), (1, 0), dxfattribs=attribs)
circle = msp.add_circle((0, 0), radius=1.0, dxfattribs=attribs)
# Update DXF attributes of existing entities:
attribs = GfxAttribs(layer="MyLayer2", color=ezdxf.colors.BLUE)
# Convert GfxAttribs() to dict(), but this method cannot reset
# attributes to the default values like setting layer to "0".
line.update_dxf_attribs(dict(attribs))
# Using GfxAttribs.asdict(default_values=True), can reset attributes to the
# default values like setting layer to "0", except for true_color and
# transparency, which do not have default values, their absence is the
# default value.
circle.update_dxf_attribs(attribs.asdict(default_values=True))
# Remove true_color and transparency by assigning None
attribs.transparency = None # reset to transparency by layer!
attribs.rgb = None
Validation features:
• layer - string which can not contain certain characters: <>/\":;?*=`
• color - AutoCAD Color Index (ACI) value as integer in the range from 0 to 257
• rgb - true color value as (red, green, blue) tuple, all channel values as integer values in the range
from 0 to 255
• linetype - string which can not contain certain characters: <>/\":;?*=`, does not check if the linetype
exists
• lineweight - integer value in the range from 0 to 211, see Lineweights for valid values
• transparency - float value in the range from 0.0 to 1.0 and -1.0 for transparency by block
• ltscale - float value > 0.0
class ezdxf.gfxattribs.GfxAttribs(*, layer: str = DEFAULT_LAYER, color: int = DEFAULT_ACI_COLOR, rgb: RGB
| None = None, linetype: str = DEFAULT_LINETYPE, lineweight: int = DEFAULT_LINEWEIGHT, transparency:
float | None = None, ltscale: float = DEFAULT_LTSCALE)
Represents often used DXF attributes of graphical entities.
Parameters
• layer (str) – layer name as string
• color (int) – AutoCAD Color Index (ACI) color value as integer
• rgb – RGB true color (red, green, blue) tuple, each channel value in the range from 0 to
255, None for not set
• linetype (str) – linetype name, does not check if the linetype exist!
• lineweight (int) – see Lineweights documentation for valid values
• transparency (float) – transparency value in the range from 0.0 to 1.0, where 0.0 is
opaque and 1.0 if fully transparent, -1.0 for transparency by block, None for
transparency by layer
• ltscale (float) – linetype scaling factor > 0.0, default factor is 1.0
Raises DXFValueError – invalid attribute value
property layer: str
layer name
property color: int
AutoCAD Color Index (ACI) color value
property rgb: RGB | None
true color value as (red, green, blue) tuple, None for not set
property linetype: str
linetype name
property lineweight: int
property transparency: float | None
transparency value from 0.0 for opaque to 1.0 is fully transparent, -1.0 is for
transparency by block and None if for transparency by layer
property ltscale: float
linetype scaling factor
__str__() -> str
Return str(self).
__repr__() -> str
Return repr(self).
__iter__() -> Iterator[tuple[str, Any]]
Returns iter(self).
asdict(default_values=False) -> dict[str, Any]
Returns the DXF attributes as dict, returns also the default values if argument
default_values is True. The true_color and transparency attributes do not have default
values, the absence of these attributes is the default value.
items(default_values=False) -> list[tuple[str, Any]]
Returns the DXF attributes as list of name, value pairs, returns also the default values if
argument default_values is True. The true_color and transparency attributes do not have
default values, the absence of these attributes is the default value.
classmethod load_from_header(doc: Drawing) -> GfxAttribs
Load default DXF attributes from the HEADER section.
There is no default true color value and the default transparency is not stored in the
HEADER section.
Loads following header variables:
• $CLAYER - current layer name
• $CECOLOR - current ACI color
• $CELTYPE - current linetype name
• $CELWEIGHT - current lineweight
• $CELTSCALE - current linetype scaling factor
write_to_header(doc: Drawing) -> None
Write DXF attributes as default values to the HEADER section.
Writes following header variables:
• $CLAYER - current layer name, if a layer table entry exist in doc
• $CECOLOR - current ACI color
• $CELTYPE - current linetype name, if a linetype table entry exist in doc
• $CELWEIGHT - current lineweight
• $CELTSCALE - current linetype scaling factor
classmethod from_entity(entity: DXFEntity) -> GfxAttribs
Get the graphical attributes of an entity as GfxAttribs object.
classmethod from_dict(d: dict[str, Any]) -> GfxAttribs
Construct GfxAttribs from a dictionary of raw DXF values.
Supported attributes are:
• layer: layer name as string
• color: AutoCAD Color Index (ACI) value as int
• true_color: raw DXF integer value for RGB colors
• rgb: RGB tuple of int or None
• linetype: linetype name as string
• lineweight: lineweight as int, see basic concept of Lineweights
• transparency: raw DXF integer value of transparency or a float in the range from 0.0
to 1.0
• ltscale: linetype scaling factor as float
Query Module
SEE ALSO:
• Tutorial for Getting Data from DXF Files
• Usage of extended query features: Query Entities
The new() Function
ezdxf.query.new(entities: Iterable[DXFEntity] | None = None, query: str = '*') -> EntityQuery
Start a new query based on sequence entities. The entities argument has to be an iterable of
DXFEntity or inherited objects and returns an EntityQuery object.
Entity Query String
QueryString := EntityQuery ("[" AttribQuery "]" "i"?)*
The query string is the combination of two queries, first the required entity query and second the
optional attribute query, enclosed in square brackets, append 'i' after the closing square bracket to
ignore case for strings.
Entity Query
The entity query is a whitespace separated list of DXF entity names or the special name '*'. Where '*'
means all DXF entities, exclude some entity types by appending their names with a preceding ! (e.g. all
entities except LINE = '* !LINE'). All DXF names have to be uppercase.
Attribute Query
The optional attribute query is a boolean expression, supported operators are:
• not (!): !term is true, if term is false
• and (&): term & term is true, if both terms are true
• or (|): term | term is true, if one term is true
• and arbitrary nested round brackets
• append (i) after the closing square bracket to ignore case for strings
Attribute selection is a term: “name comparator value”, where name is a DXF entity attribute in
lowercase, value is a integer, float or double quoted string, valid comparators are:
• == equal “value”
• != not equal “value”
• < lower than “value”
• <= lower or equal than “value”
• > greater than “value”
• >= greater or equal than “value”
• ? match regular expression “value”
• !? does not match regular expression “value”
EntityQuery Class
class ezdxf.query.EntityQuery
The EntityQuery class is a result container, which is filled with DXF entities matching the query
string. It is possible to add entities to the container (extend), remove entities from the
container and to filter the container. Supports the standard Python Sequence methods and
protocols. Does not remove automatically destroyed entities (entities deleted by calling method
destroy()), the method purge() has to be called explicitly to remove the destroyed entities.
first First entity or None.
last Last entity or None.
__len__() -> int
Returns count of DXF entities.
__getitem__(item)
Returns DXFEntity at index item, supports negative indices and slicing. Returns all
entities which support a specific DXF attribute, if item is a DXF attribute name as string.
__setitem__(key, value)
Set the DXF attribute key for all supported DXF entities to value.
__delitem__(key)
Discard the DXF attribute key from all supported DXF entities.
__eq__(other)
Equal selector (self == other). Returns all entities where the selected DXF attribute is
equal to other.
__ne__(other)
Not equal selector (self != other). Returns all entities where the selected DXF attribute
is not equal to other.
__lt__(other)
Less than selector (self < other). Returns all entities where the selected DXF attribute is
less than other.
Raises TypeError – for vector based attributes like center or insert
__le__(other)
Less equal selector (self <= other). Returns all entities where the selected DXF attribute
is less or equal other.
Raises TypeError – for vector based attributes like center or insert
__gt__(other)
Greater than selector (self > other). Returns all entities where the selected DXF attribute
is greater than other.
Raises TypeError – for vector based attributes like center or insert
__ge__(other)
Greater equal selector (self >= other). Returns all entities where the selected DXF
attribute is greater or equal other.
Raises TypeError – for vector based attributes like center or insert
match(pattern: str) -> EntityQuery
Returns all entities where the selected DXF attribute matches the regular expression
pattern.
Raises TypeError – for non-string based attributes
__or__(other)
Union operator, see union().
__and__(other)
Intersection operator, see intersection().
__sub__(other)
Difference operator, see difference().
__xor__(other)
Symmetric difference operator, see symmetric_difference().
__iter__() -> Iterator[DXFEntity]
Returns iterable of DXFEntity objects.
purge() -> EntityQuery
Remove destroyed entities.
extend(entities: Iterable[DXFEntity], query: str = '*') -> EntityQuery
Extent the EntityQuery container by entities matching an additional query.
remove(query: str = '*') -> EntityQuery
Remove all entities from EntityQuery container matching this additional query.
query(query: str = '*') -> EntityQuery
Returns a new EntityQuery container with all entities matching this additional query.
Raises pyparsing.ParseException – query string parsing error
groupby(dxfattrib: str = '', key: Callable[[DXFEntity], Hashable] | None = None) -> dict[Hashable,
list[DXFEntity]]
Returns a dict of entity lists, where entities are grouped by a DXF attribute or a key
function.
Parameters
• dxfattrib – grouping DXF attribute as string like 'layer'
• key – key function, which accepts a DXFEntity as argument, returns grouping key of
this entity or None for ignore this object. Reason for ignoring: a queried DXF
attribute is not supported by this entity
filter(func: Callable[[DXFEntity], bool]) -> EntityQuery
Returns a new EntityQuery with all entities from this container for which the callable func
returns True.
Build your own operator to filter by attributes which are not DXF attributes or to build
complex queries:
result = msp.query().filter(
lambda e: hasattr(e, "rgb") and e.rbg == (0, 0, 0)
)
union(other: EntityQuery) -> EntityQuery
Returns a new EntityQuery with entities from self and other. All entities are unique - no
duplicates.
intersection(other: EntityQuery) -> EntityQuery
Returns a new EntityQuery with entities common to self and other.
difference(other: EntityQuery) -> EntityQuery
Returns a new EntityQuery with all entities from self that are not in other.
symmetric_difference(other: EntityQuery) -> EntityQuery
Returns a new EntityQuery with entities in either self or other but not both.
Revision Cloud
The module ezdxf.revcloud provides functions to render revision clouds similar to the REVCLOUD command in
CAD applications.
Added in version 1.3.0.
ezdxf.revcloud.points(vertices: Iterable[TypeAliasForwardRef('UVec')], segment_length: float, *, bulge:
float = REQUIRED_BULGE, start_width: float = 0.0, end_width: float = 0.0) -> list[Sequence[float]]
Returns the points for a LWPolyline entity to render a revision cloud, similar to the REVCLOUD
command in CAD applications.
Parameters
• vertices – corner points of a polygon
• segment_length – approximate segment length
• bulge – LWPOLYLINE bulge value
• start_width – start width of the segment arc
• end_width – end width of the segment arc, CAD applications use 0.1 * segment_length for a
calligraphy effect
ezdxf.revcloud.add_entity(layout: BaseLayout, vertices: Iterable[UVec], segment_length: float, *,
calligraphy=True, dxfattribs: Any = None) -> LWPolyline
Adds a revision cloud as LWPolyline entity to layout, similar to the REVCLOUD command in CAD
applications.
Parameters
• layout – target layout
• vertices – corner points of a polygon
• segment_length – approximate segment length
• calligraphy – True for a calligraphy effect
• dxfattribs – additional DXF attributes
ezdxf.revcloud.is_revcloud(entity: DXFEntity) -> bool
Returns True when the given entity represents a revision cloud.
Usage:
import ezdxf
from ezdxf.render import revcloud
doc = ezdxf.new()
msp = doc.modelspace()
revcloud.add_entity(msp, [(0, 0), (1, 0), (1, 1), (0, 1)], segment_length=0.1)
doc.saveas("revcloud.dxf")
[image]
Text Tools
MTextEditor
class ezdxf.tools.text.MTextEditor(text: str = '')
The MTextEditor is a helper class to build MTEXT content strings with support for inline codes to
change color, font or paragraph properties. The result is always accessible by the text attribute
or the magic __str__() function as str(MTextEditor("text")).
All text building methods return self to implement a floating interface:
e = MTextEditor("This example ").color("red").append("switches color to red.")
mtext = msp.add_mtext(str(e))
The initial text height, color, text style and so on is determined by the DXF attributes of the
MText entity.
WARNING:
The MTextEditor assembles just the inline code, which has to be parsed and rendered by the
target CAD application, ezdxf has no influence to that result.
Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this
will not work across different CAD applications and keep the formatting in a logic manner like,
do not change paragraph properties in the middle of a paragraph.
There is no official documentation for the inline codes!
Parameters
text – init value of the MTEXT content string.
text The MTEXT content as a simple string.
append(text: str) -> MTextEditor
Append text.
__iadd__(text: str) -> MTextEditor
Append text:
e = MTextEditor("First paragraph.\P")
e += "Second paragraph.\P")
__str__() -> str
Returns the MTEXT content attribute text.
clear()
Reset the content to an empty string.
font(name: str, bold: bool = False, italic: bool = False) -> MTextEditor
Set the text font by the font family name. Changing the font height should be done by the
height() or the scale_height() method. The font family name is the name shown in font
selection widgets in desktop applications: “Arial”, “Times New Roman”, “Comic Sans MS”.
Switching the codepage is not supported.
Parameters
• name – font family name
• bold – flag
• italic – flag
height(height: float) -> MTextEditor
Set the absolute text height in drawing units.
scale_height(factor: float) -> MTextEditor
Scale the text height by a factor. This scaling will accumulate, which means starting at
height 2.5 and scaling by 2 and again by 3 will set the text height to 2.5 x 2 x 3 = 15.
The current text height is not stored in the MTextEditor, you have to track the text height
by yourself! The initial text height is stored in the MText entity as DXF attribute
char_height.
width_factor(factor: float) -> MTextEditor
Set the absolute text width factor.
char_tracking_factor(factor: float) -> MTextEditor
Set the absolute character tracking factor.
oblique(angle: int) -> MTextEditor
Set the text oblique angle in degrees, vertical is 0, a value of 15 will lean the text 15
degree to the right.
color(name: str) -> MTextEditor
Set the text color by color name: “red”, “yellow”, “green”, “cyan”, “blue”, “magenta” or
“white”.
aci(aci: int) -> MTextEditor
Set the text color by AutoCAD Color Index (ACI) in range [0, 256].
rgb(rgb: RGB) -> MTextEditor
Set the text color as RGB value.
underline(text: str) -> MTextEditor
Append text with a line below the text.
overline(text: str) -> MTextEditor
Append text with a line above the text.
strike_through(text: str) -> MTextEditor
Append text with a line through the text.
group(text: str) -> MTextEditor
Group text, all properties changed inside a group are reverted at the end of the group.
AutoCAD supports grouping up to 8 levels.
stack(upr: str, lwr: str, t: str = '^') -> MTextEditor
Append stacked text upr over lwr, argument t defines the kind of stacking, the space “ “
after the “^” will be added automatically to avoid caret decoding:
"^": vertical stacked without divider line, e.g. \SA^ B:
A
B
"/": vertical stacked with divider line, e.g. \SX/Y:
X
-
Y
"#": diagonal stacked, with slanting divider line, e.g. \S1#4:
1/4
paragraph(props: ParagraphProperties) -> MTextEditor
Set paragraph properties by a ParagraphProperties object.
bullet_list(indent: float, bullets: Iterable[str], content: Iterable[str]) -> MTextEditor
Build bulleted lists by utilizing paragraph indentation and a tabulator stop. Any string
can be used as bullet. Indentation is a multiple of the initial MTEXT char height (see also
docs about ParagraphProperties), which means indentation in drawing units is
MText.dxf.char_height x indent.
Useful UTF bullets:
• “bull” U+2022 = • (Alt Numpad 7)
• “circle” U+25CB = ○ (Alt Numpad 9)
For numbered lists just use numbers as bullets:
MTextEditor.bullet_list(
indent=2,
bullets=["1.", "2."],
content=["first", "second"],
)
Parameters
• indent – content indentation as multiple of the initial MTEXT char height
• bullets – iterable of bullet strings, e.g. ["-"] * 3, for 3 dashes as bullet
strings
• content – iterable of list item strings, one string per list item, list items
should not contain new line or new paragraph commands.
Constants stored in the MTextEditor class:
┌──────────────────┬────────┐
│ NEW_LINE │ '\P' │
├──────────────────┼────────┤
│ NEW_PARAGRAPH │ '\P' │
├──────────────────┼────────┤
│ NEW_COLUMN │ '\N │
├──────────────────┼────────┤
│ UNDERLINE_START │ '\L' │
├──────────────────┼────────┤
│ UNDERLINE_STOP │ '\l' │
├──────────────────┼────────┤
│ OVERSTRIKE_START │ '\O' │
├──────────────────┼────────┤
│ OVERSTRIKE_STOP │ '\o' │
├──────────────────┼────────┤
│ STRIKE_START │ '\K' │
├──────────────────┼────────┤
│ STRIKE_STOP │ '\k' │
├──────────────────┼────────┤
│ ALIGN_BOTTOM │ '\A0;' │
├──────────────────┼────────┤
│ ALIGN_MIDDLE │ '\A1;' │
├──────────────────┼────────┤
│ ALIGN_TOP │ '\A2;' │
├──────────────────┼────────┤
│ NBSP │ '\~' │
├──────────────────┼────────┤
│ TAB │ '^I' │
└──────────────────┴────────┘
class ezdxf.tools.text.ParagraphProperties(indent=0, left=0, right=0, align=DEFAULT, tab_stops=[])
Stores all known MTEXT paragraph properties in a NamedTuple. Indentations and tab stops are
multiples of the default text height MText.dxf.char_height. E.g. char_height is 0.25 and indent is
4, the real indentation is 4 x 0.25 = 1 drawing unit. The default tabulator stops are 4, 8, 12, …
if no tabulator stops are explicit defined.
Parameters
• indent (float) – left indentation of the first line, relative to left, which means an
indent of 0 has always the same indentation as left
• left (float) – left indentation of the paragraph except for the first line
• right (float) – left indentation of the paragraph
• align – MTextParagraphAlignment enum
• tab_stops – tuple of tabulator stops, as float or as str, float values are left aligned
tab stops, strings with prefix "c" are center aligned tab stops and strings with prefix
"r" are right aligned tab stops
tostring() -> str
Returns the MTEXT paragraph properties as MTEXT inline code e.g. "\pxi-2,l2;".
class ezdxf.lldxf.const.MTextParagraphAlignment
DEFAULT
LEFT
RIGHT
CENTER
JUSTIFIED
DISTRIBUTED
Single Line Text
class ezdxf.tools.text.TextLine(text: str, font: fonts.AbstractFont)
Helper class which represents a single line text entity (e.g. Text).
Parameters
• text – content string
• font – ezdxf font definition like MonospaceFont or TrueTypeFont
property width: float
Returns the final (stretched) text width.
property height: float
Returns the final (stretched) text height.
stretch(alignment: TextEntityAlignment, p1: Vec3, p2: Vec3) -> None
Set stretch factors for FIT and ALIGNED alignments to fit the text between p1 and p2, only
the distance between these points is important. Other given alignment values are ignore.
font_measurements() -> fonts.FontMeasurements
Returns the scaled font measurements.
baseline_vertices(insert: UVec, halign: int = 0, valign: int = 0, angle: float = 0, scale:
tuple[float, float] = (1, 1)) -> list[Vec3]
Returns the left and the right baseline vertex of the text line.
Parameters
• insert – insertion location
• halign – horizontal alignment left=0, center=1, right=2
• valign – vertical alignment baseline=0, bottom=1, middle=2, top=3
• angle – text rotation in radians
• scale – scale in x- and y-axis as 2-tuple of float
corner_vertices(insert: UVec, halign: int = 0, valign: int = 0, angle: float = 0, scale:
tuple[float, float] = (1, 1), oblique: float = 0) -> list[Vec3]
Returns the corner vertices of the text line in the order bottom left, bottom right, top
right, top left.
Parameters
• insert – insertion location
• halign – horizontal alignment left=0, center=1, right=2
• valign – vertical alignment baseline=0, bottom=1, middle=2, top=3
• angle – text rotation in radians
• scale – scale in x- and y-axis as 2-tuple of float
• oblique – shear angle (slanting) in x-direction in radians
static transform_2d(vertices: Iterable[TypeAliasForwardRef('UVec')], insert: UVec = Vec3(0, 0, 0),
shift: tuple[float, float] = (0, 0), rotation: float = 0, scale: tuple[float, float] = (1, 1),
oblique: float = 0) -> list[Vec3]
Transform any vertices from the text line located at the base location at (0, 0) and
alignment LEFT.
Parameters
• vertices – iterable of vertices
• insert – insertion location
• shift – (shift-x, shift-y) as 2-tuple of float
• rotation – text rotation in radians
• scale – (scale-x, scale-y) as 2-tuple of float
• oblique – shear angle (slanting) in x-direction in radians
Functions
ezdxf.tools.text.caret_decode(text: str) -> str
DXF stores some special characters using caret notation. This function decodes this notation to
normalize the representation of special characters in the string.
see: https://en.wikipedia.org/wiki/Caret_notation
ezdxf.tools.text.estimate_mtext_content_extents(content: str, font: fonts.AbstractFont, column_width:
float = 0.0, line_spacing_factor: float = 1.0) -> tuple[float, float]
Estimate the width and height of the MText content string. The result is very inaccurate if inline
codes are used or line wrapping at the column border is involved! Column breaks \N will be
ignored.
Parameters
• content – the MText content string
• font – font abstraction based on ezdxf.tools.fonts.AbstractFont
• column_width – MText.dxf.width or 0.0 for an unrestricted column width
• line_spacing_factor – MText.dxf.line_spacing_factor
Returns
tuple[width, height]
ezdxf.tools.text.estimate_mtext_extents(mtext: MText) -> tuple[float, float]
Estimate the width and height of a single column MText entity.
This function is faster than the mtext_size() function, but the result is very inaccurate if
inline codes are used or line wrapping at the column border is involved!
Returns
Tuple[width, height]
ezdxf.tools.text.fast_plain_mtext(text: str, split=False) -> list[str] | str
Returns the plain MTEXT content as a single string or a list of strings if split is True.
Replaces \P by \n and removes other controls chars and inline codes.
This function is more than 4x faster than plain_mtext(), but does not remove single letter inline
commands with arguments without a terminating semicolon like this "\C1red text".
NOTE:
Well behaved CAD applications and libraries always create inline codes for commands with
arguments with a terminating semicolon like this "\C1;red text"!
Parameters
• text – MTEXT content string
• split – split content at line endings \P
ezdxf.tools.text.is_text_vertical_stacked(text: DXFEntity) -> bool
Returns True if the associated text Textstyle is vertical stacked.
ezdxf.tools.text.is_upside_down_text_angle(angle: float, tol: float = 3.0) -> bool
Returns True if the given text angle in degrees causes an upside down text in the WCS. The strict
flip range is 90° < angle < 270°, the tolerance angle tol extends this range to: 90+tol < angle <
270-tol. The angle is normalized to [0, 360).
Parameters
• angle – text angle in degrees
• tol – tolerance range in which text flipping will be avoided
ezdxf.tools.text.leading(cap_height: float, line_spacing: float = 1.0) -> float
Returns the distance from baseline to baseline.
Parameters
• cap_height – cap height of the line
• line_spacing – line spacing factor as percentage of 3-on-5 spacing
ezdxf.tools.text.plain_mtext(text: str, split=False, tabsize: int = 4) -> list[str] | str
Returns the plain MTEXT content as a single string or a list of strings if split is True. Replaces
\P by \n and removes other controls chars and inline codes.
This function is much slower than fast_plain_mtext(), but removes all inline codes.
Parameters
• text – MTEXT content string
• split – split content at line endings \P
• tabsize – count of replacement spaces for tabulators ^I
ezdxf.tools.text.plain_text(text: str) -> str
Returns the plain text for Text, Attrib and Attdef content.
ezdxf.tools.text.safe_string(s: str | None, max_len: int = MAX_STR_LEN) -> str
Returns a string with line breaks \n replaced by \P and the length limited to max_len.
ezdxf.tools.text.text_wrap(text: str, box_width: float | None, get_text_width: Callable[[str], float]) ->
list[str]
Wrap text at \n and given box_width. This tool was developed for usage with the MTEXT entity. This
isn’t the most straightforward word wrapping algorithm, but it aims to match the behavior of
AutoCAD.
Parameters
• text – text to wrap, included \n are handled as manual line breaks
• box_width – wrapping length, None to just wrap at \n
• get_text_width – callable which returns the width of the given string
ezdxf.tools.text.upright_text_angle(angle: float, tol: float = 3.0) -> float
Returns a readable (upright) text angle in the range angle <= 90+tol or angle >= 270-tol. The
angle is normalized to [0, 360).
Parameters
• angle – text angle in degrees
• tol – tolerance range in which text flipping will be avoided
Text Size Tools
class ezdxf.tools.text_size.TextSize
A frozen dataclass as return type for the text_size() function.
width The text width in drawing units (float).
cap_height
The font cap-height in drawing units (float).
total_height
The font total-height = cap-height + descender-height in drawing units (float).
ezdxf.tools.text_size.text_size(text: Text) -> TextSize
Returns the measured text width, the font cap-height and the font total-height for a Text entity.
This function uses the optional Matplotlib package if available to measure the final rendering
width and font-height for the Text entity as close as possible. This function does not measure the
real char height! Without access to the Matplotlib package the MonospaceFont is used and the
measurements are very inaccurate.
See the text2path add-on for more tools to work with the text path objects created by the
Matplotlib package.
class ezdxf.tools.text_size.MTextSize
A frozen dataclass as return type for the mtext_size() function.
total_width
The total width in drawing units (float)
total_height
The total height in drawing units (float), same as max(column_heights).
column_width
The width of a single column in drawing units (float)
gutter_width
The space between columns in drawing units (float)
column_heights
A tuple of columns heights (float) in drawing units. Contains at least one column height
and the column height is 0 for an empty column.
column_count
The count of columns (int).
ezdxf.tools.text_size.mtext_size(mtext: MText, tool: MTextSizeDetector | None = None) -> MTextSize
Returns the total-width, -height and columns information for a MText entity.
This function uses the optional Matplotlib package if available to do font measurements and the
internal text layout engine to determine the final rendering size for the MText entity as close as
possible. Without access to the Matplotlib package the MonospaceFont is used and the measurements
are very inaccurate.
Attention: The required full layout calculation is slow!
The first call to this function with Matplotlib support is very slow, because Matplotlib lookup
all available fonts on the system. To speedup the calculation and accepting inaccurate results you
can disable the Matplotlib support manually:
ezdxf.option.use_matplotlib = False
ezdxf.tools.text_size.estimate_mtext_extents(mtext: MText) -> tuple[float, float]
Estimate the width and height of a single column MText entity.
This function is faster than the mtext_size() function, but the result is very inaccurate if
inline codes are used or line wrapping at the column border is involved!
Returns
Tuple[width, height]
XClip Module
Added in version 1.2.
The XClip class can set or remove the clipping path of external references or block references.
The clipping boundary determines the portion of an XREF or block instance that is hidden, either outside
or inside the boundary (inside = inverted clipping path). The visibility of the clipping boundary is
controlled by the $XCLIPFRAME header variable.
The XClip class supports only 2D clippings path and cannot create inverted clipping paths.
[image]
There exist two coordinate systems for the clipping path polygon:
• BLOCK coordinate system: the BLOCK coordinates are relative to the BLOCK origin
• WCS coordinate system: the WCS coordinates are relative to the origin of the of the coodintate
system where the block reference (INSERT entity) is inserted
The XClip class provides methods to set and get the clipping path for both variants and returns a
ClippingPath object.
The clipping polygon can be set visible/invisible when the header variable $XCLIPFRAME is not 0,
otherwise the clipping polygon is always invisible.
Remove the clipping path by the XClip.discard_clipping_path() method, does not raise an exception when no
clipping path exist.
SEE ALSO:
example script: clipping_insert.py in the /examples/blocks folder
class ezdxf.xclip.XClip(insert: Insert)
Helper class to manage the clipping path of INSERT entities.
Provides a similar functionality as the XCLIP command in CAD applications.
IMPORTANT:
This class handles only 2D clipping paths.
The visibility of the clipping path can be set individually for each block reference, but the
HEADER variable $XCLIPFRAME ultimately determines whether the clipping path is displayed or
plotted by the application:
┌───┬───────────────┬─────────────┐
│ 0 │ not displayed │ not plotted │
├───┼───────────────┼─────────────┤
│ 1 │ displayed │ not plotted │
├───┼───────────────┼─────────────┤
│ 2 │ displayed │ plotted │
└───┴───────────────┴─────────────┘
The default setting is 2.
property has_clipping_path: bool
Returns if the INSERT entity has a clipping path.
property is_clipping_enabled: bool
Returns True if block reference clipping is enabled.
property is_inverted_clip: bool
Returns True if clipping path is inverted.
disable_clipping() -> None
Disable block reference clipping.
enable_clipping() -> None
Enable block reference clipping.
get_spatial_filter() -> SpatialFilter | None
Returns the underlaying SPATIAL_FILTER entity if the INSERT entity has a clipping path and
returns None otherwise.
get_xclip_frame_policy() -> int
get_block_clipping_path() -> ClippingPath
Returns the clipping path in block coordinates (relative to the block origin).
get_wcs_clipping_path() -> ClippingPath
Returns the clipping path in WCS coordinates (relative to the WCS origin) as 2D path
projected onto the xy-plane.
set_block_clipping_path(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Set clipping path in block coordinates (relative to block origin).
The clipping path is located in the xy-plane, the z-axis of all vertices will be ignored.
The clipping path doesn’t have to be closed (first vertex != last vertex). Two vertices
define a rectangle where the sides are parallel to x- and y-axis.
Raises DXFValueError – clipping path has less than two vertrices
set_wcs_clipping_path(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Set clipping path in WCS coordinates (relative to WCS origin).
The clipping path is located in the xy-plane, the z-axis of all vertices will be ignored.
The clipping path doesn’t have to be closed (first vertex != last vertex). Two vertices
define a rectangle where the sides are parallel to x- and y-axis.
Raises
• DXFValueError – clipping path has less than two vertrices
• ZeroDivisionError – Block reference transformation matrix is not invertible
discard_clipping_path() -> None
Delete the clipping path. The clipping path doesn’t have to exist.
This method does not discard the extension dictionary of the base entity, even when its
empty.
class ezdxf.xclip.ClippingPath(vertices: Sequence[Vec2] = (), inverted_clip: Sequence[Vec2] = (),
inverted_clip_compare: Sequence[Vec2] = (), is_inverted_clip: bool = False)
Stores the SPATIAL_FILTER clipping paths in original form that I still don’t fully understand for
inverted clipping paths. All boundary paths are simple polygons as a sequence of Vec2.
vertices
Contains the boundary polygon for regular clipping paths. Contains the outer boundary path
for inverted clippings paths - but not always!
Type Sequence[ezdxf.math._vector.Vec2]
inverted_clip
Contains the inner boundary for inverted clipping paths - but not always!
Type Sequence[ezdxf.math._vector.Vec2]
inverted_clip_compare
Contains the combined inner- and the outer boundaries for inverted clipping paths - but not
always!
Type Sequence[ezdxf.math._vector.Vec2]
is_inverted_clip
True for inverted clipping paths
Type bool
Zoom Layouts
These functions mimic the ZOOM commands in CAD applications.
Zooming means resetting the current viewport limits to new values. The coordinates for the functions
center() and window() are drawing units for the model space and paper space units for paper space
layouts. The modelspace units in Drawing.units are ignored.
The extents detection for the functions entities() and extents() is done by the ezdxf.bbox module. Read
the associated documentation to understand the limitations of the ezdxf.bbox module. Tl;dr The extents
detection is slow and not accurate.
Because the ZOOM operations in CAD applications are not that precise, then zoom functions of this module
uses the fast bounding box calculation mode of the bbox module, which means the argument flatten is
always False for extents() function calls.
The region displayed by CAD applications also depends on the aspect ratio of the application window,
which is not available to ezdxf, therefore the viewport size is just an educated guess of an aspect ratio
of 2:1 (16:9 minus top toolbars and the bottom status bar).
WARNING:
All zoom functions replace the current viewport configuration by a single window configuration.
Example to reset the main CAD viewport of the model space to the extents of its entities:
import ezdxf
from ezdxf import zoom
doc = ezdxf.new()
msp = doc.modelspace()
... # add your DXF entities
zoom.extents(msp)
doc.saveas("your.dxf")
ezdxf.zoom.center(layout: Layout, point: Sequence[float] | Vec2 | Vec3, size: Sequence[float] | Vec2 |
Vec3)
Resets the active viewport center of layout to the given point, argument size defines the width
and height of the viewport. Replaces the current viewport configuration by a single window
configuration.
ezdxf.zoom.objects(layout: Layout, entities: Iterable[DXFEntity], factor: float = 1)
Resets the active viewport limits of layout to the extents of the given entities. Only entities in
the given layout are taken into account. The argument factor scales the viewport limits. Replaces
the current viewport configuration by a single window configuration.
ezdxf.zoom.extents(layout: Layout, factor: float = 1)
Resets the active viewport limits of layout to the extents of all entities in this layout. The
argument factor scales the viewport limits. Replaces the current viewport configuration by a
single window configuration.
ezdxf.zoom.window(layout: Layout, p1: Sequence[float] | Vec2 | Vec3, p2: Sequence[float] | Vec2 | Vec3)
Resets the active viewport limits of layout to the lower left corner p1 and the upper right corner
p2. Replaces the current viewport configuration by a single window configuration.
Render Tools
The ezdxf.render subpackage provides helpful utilities to create complex forms.
• create complex meshes as Mesh entity.
• render complex curves like bezier curves, euler spirals or splines as Polyline entity
• vertex generators for simple and complex forms like circle, ellipse or euler spiral
Content
Spline
class ezdxf.render.Spline(points: Iterable[TypeAliasForwardRef('UVec')] | None = None, segments: int =
100)
This class can be used to render B-splines into DXF R12 files as approximated Polyline entities.
The advantage of this class over the R12Spline class is, that this is a real 3D curve, which means
that the B-spline vertices do have to be located in a flat plane, and no UCS class is needed to
place the curve in 3D space.
SEE ALSO:
The newer BSpline class provides the advanced vertex interpolation method flattening().
__init__(points: Iterable[TypeAliasForwardRef('UVec')] | None = None, segments: int = 100)
Parameters
• points – spline definition points
• segments – count of line segments for approximation, vertex count is segments + 1
subdivide(segments: int = 4) -> None
Calculate overall segment count, where segments is the sub-segment count, segments = 4,
means 4 line segments between two definition points e.g. 4 definition points and 4 segments
= 12 overall segments, useful for fit point rendering.
Parameters
segments – sub-segments count between two definition points
render_as_fit_points(layout: BaseLayout, degree: int = 3, method: str = 'chord', dxfattribs: dict
| None = None) -> None
Render a B-spline as 2D/3D Polyline, where the definition points are fit points.
• 2D spline vertices uses: add_polyline2d()
• 3D spline vertices uses: add_polyline3d()
Parameters
• layout – BaseLayout object
• degree – degree of B-spline (order = degree + 1)
• method – “uniform”, “distance”/”chord”, “centripetal”/”sqrt_chord” or “arc”
calculation method for parameter t
• dxfattribs – DXF attributes for Polyline
render_open_bspline(layout: BaseLayout, degree: int = 3, dxfattribs=None) -> None
Render an open uniform B-spline as 3D Polyline. Definition points are control points.
Parameters
• layout – BaseLayout object
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline
render_uniform_bspline(layout: BaseLayout, degree: int = 3, dxfattribs=None) -> None
Render a uniform B-spline as 3D Polyline. Definition points are control points.
Parameters
• layout – BaseLayout object
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline
render_closed_bspline(layout: BaseLayout, degree: int = 3, dxfattribs=None) -> None
Render a closed uniform B-spline as 3D Polyline. Definition points are control points.
Parameters
• layout – BaseLayout object
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline
render_open_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3,
dxfattribs=None) -> None
Render a rational open uniform BSpline as 3D Polyline. Definition points are control
points.
Parameters
• layout – BaseLayout object
• weights – list of weights, requires a weight value (float) for each definition
point.
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline
render_uniform_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3,
dxfattribs=None) -> None
Render a rational uniform B-spline as 3D Polyline. Definition points are control points.
Parameters
• layout – BaseLayout object
• weights – list of weights, requires a weight value (float) for each definition
point.
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline
render_closed_rbspline(layout: BaseLayout, weights: Iterable[float], degree: int = 3,
dxfattribs=None) -> None
Render a rational B-spline as 3D Polyline. Definition points are control points.
Parameters
• layout – BaseLayout object
• weights – list of weights, requires a weight value (float) for each definition
point.
• degree – degree of B-spline (order = degree + 1)
• dxfattribs – DXF attributes for Polyline
R12Spline
class ezdxf.render.R12Spline(control_points: Iterable[TypeAliasForwardRef('UVec')], degree: int = 2,
closed: bool = True)
DXF R12 supports 2D B-splines, but Autodesk do not document the usage in the DXF Reference. The
base entity for splines in DXF R12 is the POLYLINE entity. The spline itself is always in a plane,
but as any 2D entity, the spline can be transformed into the 3D object by elevation and extrusion
(OCS, UCS).
This way it was possible to store the spline parameters in the DXF R12 file, to allow CAD
applications to modify the spline parameters and rerender the B-spline afterward again as polyline
approximation. Therefore, the result is not better than an approximation by the Spline class, it
is also just a POLYLINE entity, but maybe someone need exact this tool in the future.
__init__(control_points: Iterable[TypeAliasForwardRef('UVec')], degree: int = 2, closed: bool =
True)
Parameters
• control_points – B-spline control frame vertices
• degree – degree of B-spline, only 2 and 3 is supported
• closed – True for closed curve
render(layout: BaseLayout, segments: int = 40, ucs: UCS | None = None, dxfattribs=None) ->
Polyline
Renders the B-spline into layout as 2D Polyline entity. Use an UCS to place the 2D spline
in the 3D space, see approximate() for more information.
Parameters
• layout – BaseLayout object
• segments – count of line segments for approximation, vertex count is segments + 1
• ucs – UCS definition, control points in ucs coordinates.
• dxfattribs – DXF attributes for Polyline
approximate(segments: int = 40, ucs: UCS | None = None) -> list[TypeAliasForwardRef('UVec')]
Approximate the B-spline by a polyline with segments line segments. If ucs is not None,
ucs defines an UCS, to transform the curve into OCS. The control points are placed xy-plane
of the UCS, don’t use z-axis coordinates, if so make sure all control points are in a plane
parallel to the OCS base plane (UCS xy-plane), else the result is unpredictable and depends
on the CAD application used to open the DXF file - it may crash.
Parameters
• segments – count of line segments for approximation, vertex count is segments + 1
• ucs – UCS definition, control points in ucs coordinates
Returns
list of vertices in OCS as Vec3 objects
Bezier
class ezdxf.render.Bezier
Render a bezier curve as 2D/3D Polyline.
The Bezier class is implemented with multiple segments, each segment is an optimized 4 point
bezier curve, the 4 control points of the curve are: the start point (1) and the end point (4),
point (2) is start point + start vector and point (3) is end point + end vector. Each segment has
its own approximation count.
SEE ALSO:
The new ezdxf.path package provides many advanced construction tools based on the Path class.
start(point: UVec, tangent: UVec) -> None
Set start point and start tangent.
Parameters
• point – start point
• tangent – start tangent as vector, example: (5, 0, 0) means a horizontal tangent
with a length of 5 drawing units
append(point: UVec, tangent1: UVec, tangent2: TypeAliasForwardRef('UVec') | None = None, segments:
int = 20)
Append a control point with two control tangents.
Parameters
• point – control point
• tangent1 – first tangent as vector “left” of the control point
• tangent2 – second tangent as vector “right” of the control point, if omitted
tangent2 = -tangent1
• segments – count of line segments for the polyline approximation, count of line
segments from the previous control point to the appended control point.
render(layout: BaseLayout, force3d: bool = False, dxfattribs=None) -> None
Render Bezier curve as 2D/3D Polyline.
Parameters
• layout – BaseLayout object
• force3d – force 3D polyline rendering
• dxfattribs – DXF attributes for Polyline
EulerSpiral
class ezdxf.render.EulerSpiral(curvature: float = 1)
Render an euler spiral as a 3D Polyline or a Spline entity.
This is a parametric curve, which always starts at the origin (0, 0).
__init__(curvature: float = 1)
Parameters
curvature – Radius of curvature
render_polyline(layout: BaseLayout, length: float = 1, segments: int = 100, matrix: Matrix44 |
None = None, dxfattribs=None)
Render curve as Polyline.
Parameters
• layout – BaseLayout object
• length – length measured along the spiral curve from its initial position
• segments – count of line segments to use, vertex count is segments + 1
• matrix – transformation matrix as Matrix44
• dxfattribs – DXF attributes for Polyline
Returns
Polyline
render_spline(layout: BaseLayout, length: float = 1, fit_points: int = 10, degree: int = 3,
matrix: Matrix44 | None = None, dxfattribs=None)
Render curve as Spline.
Parameters
• layout – BaseLayout object
• length – length measured along the spiral curve from its initial position
• fit_points – count of spline fit points to use
• degree – degree of B-spline
• matrix – transformation matrix as Matrix44
• dxfattribs – DXF attributes for Spline
Returns
Spline
Random Paths
Random path generators for testing purpose.
ezdxf.render.random_2d_path(steps: int = 100, max_step_size: float = 1.0, max_heading: float = math.pi /
2, retarget: int = 20) -> Iterable[Vec2]
Returns a random 2D path as iterable of Vec2 objects.
Parameters
• steps – count of vertices to generate
• max_step_size – max step size
• max_heading – limit heading angle change per step to ± max_heading/2 in radians
• retarget – specifies steps before changing global walking target
ezdxf.render.random_3d_path(steps: int = 100, max_step_size: float = 1.0, max_heading: float = math.pi /
2.0, max_pitch: float = math.pi / 8.0, retarget: int = 20) -> Iterable[Vec3]
Returns a random 3D path as iterable of Vec3 objects.
Parameters
• steps – count of vertices to generate
• max_step_size – max step size
• max_heading – limit heading angle change per step to ± max_heading/2, rotation about the
z-axis in radians
• max_pitch – limit pitch angle change per step to ± max_pitch/2, rotation about the x-axis
in radians
• retarget – specifies steps before changing global walking target
Forms
This module provides functions to create 2D and 3D forms as vertices or mesh objects.
2D Forms
• box()
• circle()
• ellipse()
• euler_spiral()
• gear()
• ngon()
• square()
• star()
• turtle()
3D Forms
• cone_2p()
• cone()
• cube()
• cylinder()
• cylinder_2p()
• helix()
• sphere()
• torus()
3D Form Builder
• extrude()
• extrude_twist_scale()
• from_profiles_linear()
• from_profiles_spline()
• rotation_form()
• sweep()
• sweep_profile()
2D Forms
Basic 2D shapes as iterable of Vec3.
ezdxf.render.forms.box(sx: float = 1.0, sy: float = 1.0, center=False) -> tuple[Vec3, Vec3, Vec3, Vec3]
Returns 4 vertices for a box with a width of sx by and a height of sy. The center of the box in
(0, 0) if center is True otherwise the lower left corner is (0, 0), upper right corner is (sx,
sy).
ezdxf.render.forms.circle(count: int, radius: float = 1, elevation: float = 0, close: bool = False) ->
Iterable[Vec3]
Create polygon vertices for a circle with the given radius and approximated by count vertices,
elevation is the z-axis for all vertices.
Parameters
• count – count of polygon vertices
• radius – circle radius
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.
Returns
vertices in counter-clockwise orientation as Vec3 objects
ezdxf.render.forms.ellipse(count: int, rx: float = 1, ry: float = 1, start_param: float = 0, end_param:
float = math.tau, elevation: float = 0) -> Iterable[Vec3]
Create polygon vertices for an ellipse with given rx as x-axis radius and ry as y-axis radius
approximated by count vertices, elevation is the z-axis for all vertices. The ellipse goes from
start_param to end_param in counter clockwise orientation.
Parameters
• count – count of polygon vertices
• rx – ellipse x-axis radius
• ry – ellipse y-axis radius
• start_param – start of ellipse in range [0, 2π]
• end_param – end of ellipse in range [0, 2π]
• elevation – z-axis for all vertices
Returns
vertices in counter clockwise orientation as Vec3 objects
ezdxf.render.forms.euler_spiral(count: int, length: float = 1, curvature: float = 1, elevation: float =
0) -> Iterable[Vec3]
Create polygon vertices for an euler spiral of a given length and radius of curvature. This is a
parametric curve, which always starts at the origin (0, 0).
Parameters
• count – count of polygon vertices
• length – length of curve in drawing units
• curvature – radius of curvature
• elevation – z-axis for all vertices
Returns
vertices as Vec3 objects
ezdxf.render.forms.gear(count: int, top_width: float, bottom_width: float, height: float, outside_radius:
float, elevation: float = 0, close: bool = False) -> Iterable[Vec3]
Returns the corner vertices of a gear shape (cogwheel).
WARNING:
This function does not create correct gears for mechanical engineering!
Parameters
• count – teeth count >= 3
• top_width – teeth width at outside radius
• bottom_width – teeth width at base radius
• height – teeth height; base radius = outside radius - height
• outside_radius – outside radius
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.
Returns
vertices in counter clockwise orientation as Vec3 objects
ezdxf.render.forms.ngon(count: int, length: float | None = None, radius: float | None = None, rotation:
float = 0.0, elevation: float = 0.0, close: bool = False) -> Iterable[Vec3]
Returns the corner vertices of a regular polygon. The polygon size is determined by the edge
length or the circum radius argument. If both are given length has the higher priority.
Parameters
• count – count of polygon corners >= 3
• length – length of polygon side
• radius – circum radius
• rotation – rotation angle in radians
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.
Returns
vertices as Vec3 objects
ezdxf.render.forms.square(size: float = 1.0, center=False) -> tuple[Vec3, Vec3, Vec3, Vec3]
Returns 4 vertices for a square with a side length of the given size. The center of the square in
(0, 0) if center is True otherwise the lower left corner is (0, 0), upper right corner is (size,
size).
ezdxf.render.forms.star(count: int, r1: float, r2: float, rotation: float = 0.0, elevation: float = 0.0,
close: bool = False) -> Iterable[Vec3]
Returns the corner vertices for a star shape.
The shape has count spikes, r1 defines the radius of the “outer” vertices and r2 defines the
radius of the “inner” vertices, but this does not mean that r1 has to be greater than r2.
Parameters
• count – spike count >= 3
• r1 – radius 1
• r2 – radius 2
• rotation – rotation angle in radians
• elevation – z-axis for all vertices
• close – yields first vertex also as last vertex if True.
Returns
vertices as Vec3 objects
ezdxf.render.forms.turtle(commands: str, start=Vec2(0, 0), angle: float = 0) -> Iterator[Vec2]
Returns the 2D vertices of a polyline created by turtle-graphic like commands:
• <length> - go <length> units forward in current direction and yield vertex
• r<angle> - turn right <angle> in degrees, a missing angle is 90 deg
• l<angle> - turn left <angle> in degrees, a missing angle is 90 deg
• @<x>,<y> - go relative <x>,<y> and yield vertex
The command string "10 l 10 l 10" returns the 4 corner vertices of a square with a side length of
10 drawing units.
Parameters
• commands – command string, commands are separated by spaces
• start – starting point, default is (0, 0)
• angle – starting direction, default is 0 deg
3D Forms
Create 3D forms as MeshTransformer objects.
ezdxf.render.forms.cube(center: bool = True) -> MeshTransformer
Create a cube as MeshTransformer object.
Parameters
center – ‘mass’ center of cube, (0, 0, 0) if True, else first corner at (0, 0, 0)
Returns: MeshTransformer
ezdxf.render.forms.cone(count: int = 16, radius: float = 1.0, apex: UVec = (0, 0, 1), *, caps=True) ->
MeshTransformer
Create a cone as MeshTransformer object, the base center is fixed in the origin (0, 0, 0).
Parameters
• count – edge count of basis_vector
• radius – radius of basis_vector
• apex – tip of the cone
• caps – add a bottom face as ngon if True
ezdxf.render.forms.cone_2p(count: int = 16, radius: float = 1.0, base_center: UVec = (0, 0, 0), apex:
UVec = (0, 0, 1), *, caps=True) -> MeshTransformer
Create a cone as MeshTransformer object from two points, base_center is the center of the base
circle and apex as the tip of the cone.
Parameters
• count – edge count of basis_vector
• radius – radius of basis_vector
• base_center – center point of base circle
• apex – tip of the cone
• caps – add a bottom face as ngon if True
Raises ValueError – the cone orientation cannot be detected (base center == apex)
ezdxf.render.forms.cylinder(count: int = 16, radius: float = 1.0, top_radius: float | None = None,
top_center: UVec = (0, 0, 1), *, caps=True) -> MeshTransformer
Create a cylinder as MeshTransformer object, the base center is fixed in the origin (0, 0, 0).
Parameters
• count – profiles edge count
• radius – radius for bottom profile
• top_radius – radius for top profile, if None top_radius == radius
• top_center – location vector for the center of the top profile
• caps – close hull with top- and bottom faces (ngons)
ezdxf.render.forms.cylinder_2p(count: int = 16, radius: float = 1, base_center: UVec = (0, 0, 0),
top_center: UVec = (0, 0, 1), *, caps=True) -> MeshTransformer
Creates a cylinder as MeshTransformer object from two points, base_center is the center of the
base circle and, top_center the center of the top circle.
Parameters
• count – cylinder profile edge count
• radius – radius for bottom profile
• base_center – center of base circle
• top_center – center of top circle
• caps – close hull with top- and bottom faces (ngons)
Raises ValueError – the cylinder orientation cannot be detected (base center == top center)
ezdxf.render.forms.helix(radius: float, pitch: float, turns: float, resolution: int = 16, ccw=True) ->
Iterator[Vec3]
Yields the vertices of a helix. The center of the helix is always (0, 0), a positive pitch value
creates a helix along the +z-axis, a negative value along the -z-axis.
Parameters
• radius – helix radius
• pitch – the height of one complete helix turn
• turns – count of turns
• resolution – vertices per turn
• ccw – creates a counter-clockwise turning (right-handed) helix if True
ezdxf.render.forms.sphere(count: int = 16, stacks: int = 8, radius: float = 1, *, quads=True) ->
MeshTransformer
Create a sphere as MeshTransformer object, the center of the sphere is always at (0, 0, 0).
Parameters
• count – longitudinal slices
• stacks – latitude slices
• radius – radius of sphere
• quads – use quadrilaterals as faces if True else triangles
ezdxf.render.forms.torus(major_count: int = 16, minor_count: int = 8, major_radius=1.0, minor_radius=0.1,
start_angle: float = 0.0, end_angle: float = math.tau, *, caps=True) -> MeshTransformer
Create a torus as MeshTransformer object, the center of the torus is always at (0, 0, 0). The
major_radius has to be bigger than the minor_radius.
Parameters
• major_count – count of circles
• minor_count – count of circle vertices
• major_radius – radius of the circle center
• minor_radius – radius of circle
• start_angle – start angle of torus in radians
• end_angle – end angle of torus in radians
• caps – close hull with start- and end faces (ngons) if the torus is open
3D Form Builder
ezdxf.render.forms.extrude(profile: Iterable[TypeAliasForwardRef('UVec')], path:
Iterable[TypeAliasForwardRef('UVec')], close=True, caps=False) -> MeshTransformer
Extrude a profile polygon along a path polyline, the vertices of profile should be in
counter-clockwise order. The sweeping profile will not be rotated at extrusion!
Parameters
• profile – sweeping profile as list of (x, y, z) tuples in counter-clockwise order
• path – extrusion path as list of (x, y, z) tuples
• close – close profile polygon if True
• caps – close hull with top- and bottom faces (ngons)
Returns: MeshTransformer
ezdxf.render.forms.extrude_twist_scale(profile: Iterable[TypeAliasForwardRef('UVec')], path:
Iterable[TypeAliasForwardRef('UVec')], *, twist: float = 0.0, scale: float = 1.0, step_size: float = 1.0,
close=True, caps=False, quads=True) -> MeshTransformer
Extrude a profile polygon along a path polyline, the vertices of profile should be in
counter-clockwise order. This implementation can scale and twist the sweeping profile along the
extrusion path. The path segment points are fix points, the max_step_size is used to create
intermediate profiles between this fix points. The max_step_size is adapted for each segment to
create equally spaced distances. The twist angle is the rotation angle in radians and the scale
argument defines the scale factor of the final profile. The twist angle and scaling factor of the
intermediate profiles will be linear interpolated between the start and end values.
Parameters
• profile – sweeping profile as list of (x, y, z) tuples in counter-clockwise order
• path – extrusion path as list of (x, y, z) tuples
• twist – rotate sweeping profile up to the given end rotation angle in radians
• scale – scale sweeping profile gradually from 1.0 to given value
• step_size – rough distance between automatically created intermediate profiles, the step
size is adapted to the distances between the path segment points, a value od 0.0 disables
creating intermediate profiles
• close – close profile polygon if True
• caps – close hull with top- and bottom faces (ngons)
• quads – use quads for “sweeping” faces if True else triangles, the top and bottom faces
are always ngons
Returns: MeshTransformer
ezdxf.render.forms.from_profiles_linear(profiles: Sequence[Sequence[Vec3]], *, close=True, quads=True,
caps=False) -> MeshTransformer
Returns a MeshTransformer instance from linear connected profiles.
Parameters
• profiles – list of profiles
• close – close profile polygon if True
• quads – use quadrilaterals as connection faces if True else triangles
• caps – close hull with top- and bottom faces (ngons)
ezdxf.render.forms.from_profiles_spline(profiles: Sequence[Sequence[Vec3]], subdivide: int = 4, *,
close=True, quads=True, caps=False) -> MeshTransformer
Returns a MeshTransformer instance by spline interpolation between given profiles. Requires at
least 4 profiles. A subdivide value of 4, means, create 4 face loops between two profiles, without
interpolation two profiles create one face loop.
Parameters
• profiles – list of profiles
• subdivide – count of face loops
• close – close profile polygon if True
• quads – use quadrilaterals as connection faces if True else triangles
• caps – close hull with top- and bottom faces (ngons)
ezdxf.render.forms.rotation_form(count: int, profile: Iterable[TypeAliasForwardRef('UVec')], angle: float
= math.tau, axis: UVec = (1, 0, 0), *, caps=False) -> MeshTransformer
Returns a MeshTransformer instance created by rotating a profile around an axis.
Parameters
• count – count of rotated profiles
• profile – profile to rotate as list of vertices
• angle – rotation angle in radians
• axis – rotation axis
• caps – close hull with start- and end faces (ngons)
ezdxf.render.forms.sweep(profile: Iterable[TypeAliasForwardRef('UVec')], sweeping_path:
Iterable[TypeAliasForwardRef('UVec')], *, close=True, quads=True, caps=True) -> MeshTransformer
Returns the mesh from sweeping a profile along a 3D path, where the sweeping path defines the
final location in the WCS.
The profile is defined in a reference system. The origin of this reference system will be moved
along the sweeping path where the z-axis of the reference system is pointing into the moving
direction.
Returns the mesh as ezdxf.render.MeshTransformer object.
Parameters
• profile – sweeping profile defined in the reference system as iterable of (x, y, z)
coordinates in counter-clockwise order
• sweeping_path – the sweeping path defined in the WCS as iterable of (x, y, z) coordinates
• close – close sweeping profile if True
• quads – use quadrilaterals as connection faces if True else triangles
• caps – close hull with top- and bottom faces (ngons)
ezdxf.render.forms.sweep_profile(profile: Iterable[TypeAliasForwardRef('UVec')], sweeping_path:
Iterable[TypeAliasForwardRef('UVec')]) -> list[Sequence[Vec3]]
Returns the intermediate profiles of sweeping a profile along a 3D path where the sweeping path
defines the final location in the WCS.
The profile is defined in a reference system. The origin of this reference system will be moved
along the sweeping path where the z-axis of the reference system is pointing into the moving
direction.
Returns the start-, end- and all intermediate profiles along the sweeping path.
MeshBuilder
The MeshBuilder classes are helper tools to manage meshes buildup by vertices and faces. The vertices
are stored in a vertices list as Vec3 instances. The faces are stored as a sequence of vertex indices
which is the location of the vertex in the vertex list. A single MeshBuilder class can contain multiple
separated meshes at the same time.
The method MeshBuilder.render_mesh() renders the content as a single DXF Mesh entity, which supports
ngons, ngons are polygons with more than 4 vertices. This entity requires at least DXF R2000.
The method MeshBuilder.render_polyface() renders the content as a single DXF Polyface entity, which
supports only triangles and quadrilaterals. This entity is supported by DXF R12.
The method MeshBuilder.render_3dfaces() renders each face of the mesh as a single DXF Face3d entity,
which supports only triangles and quadrilaterals. This entity is supported by DXF R12.
The MeshTransformer class is often used as an interface object to transfer mesh data between functions
and moduls, like for the mesh exchange add-on meshex.
The basic MeshBuilder class does not support transformations.
class ezdxf.render.MeshBuilder
vertices
List of vertices as Vec3 or (x, y, z) tuple
faces List of faces as list of vertex indices, where a vertex index is the index of the vertex
in the vertices list. A face requires at least three vertices, Mesh supports ngons, so the
count of vertices is not limited.
add_face(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> None
Add a face as vertices list to the mesh. A face requires at least 3 vertices, each vertex
is a (x, y, z) tuple or Vec3 object. The new vertex indices are stored as face in the faces
list.
Parameters
vertices – list of at least 3 vertices [(x1, y1, z1), (x2, y2, z2), (x3, y3, y3),
...]
add_mesh(vertices: list[Vec3] | None = None, faces: list[Sequence[int]] | None = None, mesh=None)
-> None
Add another mesh to this mesh.
A mesh can be a MeshBuilder, MeshVertexMerger or Mesh object or requires the attributes
vertices and faces.
Parameters
• vertices – list of vertices, a vertex is a (x, y, z) tuple or Vec3 object
• faces – list of faces, a face is a list of vertex indices
• mesh – another mesh entity
add_vertices(vertices: Iterable[TypeAliasForwardRef('UVec')]) -> Sequence[int]
Add new vertices to the mesh, each vertex is a (x, y, z) tuple or a Vec3 object, returns
the indices of the vertices added to the vertices list.
e.g. adding 4 vertices to an empty mesh, returns the indices (0, 1, 2, 3), adding
additional 4 vertices returns the indices (4, 5, 6, 7).
Parameters
vertices – list of vertices, vertex as (x, y, z) tuple or Vec3 objects
Returns
indices of the vertices added to the vertices list
Return type
tuple
bbox() -> BoundingBox
Returns the BoundingBox of the mesh.
copy() Returns a copy of mesh.
diagnose() -> MeshDiagnose
Returns the MeshDiagnose object for this mesh.
face_normals() -> Iterator[Vec3]
Yields all face normals, yields the NULLVEC instance for degenerated faces.
face_orientation_detector(reference: int = 0) -> FaceOrientationDetector
Returns a FaceOrientationDetector or short fod instance. The forward orientation is
defined by the reference face which is 0 by default.
The fod can check if all faces are reachable from the reference face and if all faces have
the same orientation. The fod can be reused to unify the face orientation of the mesh.
faces_as_vertices() -> Iterator[list[Vec3]]
Yields all faces as list of vertices.
flip_normals() -> None
Flips the normals of all faces by reversing the vertex order inplace.
classmethod from_builder(other: MeshBuilder)
Create new mesh from other mesh builder, faster than from_mesh() but supports only
MeshBuilder and inherited classes.
classmethod from_mesh(other: MeshBuilder | Mesh) -> T
Create new mesh from other mesh as class method.
Parameters
other – mesh of type MeshBuilder and inherited or DXF Mesh entity or any object
providing attributes vertices, edges and faces.
classmethod from_polyface(other: Polymesh | Polyface) -> T
Create new mesh from a Polyface or Polymesh object.
get_face_vertices(index: int) -> Sequence[Vec3]
Returns the face index as sequence of Vec3 objects.
get_face_normal(index: int) -> Vec3
Returns the normal vector of the face index as Vec3, returns the NULLVEC instance for
degenerated faces.
merge_coplanar_faces(passes: int = 1) -> MeshTransformer
Returns a new MeshBuilder object with merged adjacent coplanar faces.
The faces have to share at least two vertices and have to have the same clockwise or
counter-clockwise vertex order.
The current implementation is not very capable!
mesh_tessellation(max_vertex_count: int = 4) -> MeshTransformer
Returns a new MeshTransformer instance, where each face has no more vertices than the given
max_vertex_count.
The fast mode uses a shortcut for faces with less than 6 vertices which may not work for
concave faces!
normalize_faces() -> None
Removes duplicated vertex indices from faces and stores all faces as open faces, where the
last vertex is not coincident with the first vertex.
open_faces() -> Iterator[Sequence[int]]
Yields all faces as sequence of integers where the first vertex is not coincident with the
last vertex.
optimize_vertices(precision: int = 6) -> MeshTransformer
Returns a new mesh with optimized vertices. Coincident vertices are merged together and all
faces are open faces (first vertex != last vertex). Uses internally the MeshVertexMerger
class to merge vertices.
render_3dfaces(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 | None = None, ucs:
UCS | None = None)
Render mesh as Face3d entities into layout.
Parameters
• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}
• matrix – transformation matrix of type Matrix44
• ucs – transform vertices by UCS to WCS
render_3dsolid(layout: GenericLayoutType, dxfattribs=None) -> Solid3d
Render mesh as Solid3d entity into layout.
This is an experimental feature to create simple 3DSOLID entities from polyhedrons.
The method supports closed and open shells. A 3DSOLID entity can contain multiple shells.
Separate the meshes beforehand by the method separate_meshes() if required. The normals
vectors of all faces should point outwards. Faces can have more than 3 vertices (ngons) but
non-planar faces and concave faces will cause problems in some CAD applications. The
method mesh_tesselation() can help to break down the faces into triangles.
Requires a valid DXF document for layout and DXF version R2000 or newer.
Parameters
• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}
Raises
• DXFValueError – valid DXF document required, if layout.doc is None
• DXFVersionError – invalid DXF version
Added in version 1.2.0.
render_mesh(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 | None = None, ucs: UCS |
None = None)
Render mesh as Mesh entity into layout.
Parameters
• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}
• matrix – transformation matrix of type Matrix44
• ucs – transform vertices by UCS to WCS
render_normals(layout: GenericLayoutType, length: float = 1, relative=True, dxfattribs=None)
Render face normals as Line entities into layout, useful to check orientation of mesh
faces.
Parameters
• layout – BaseLayout object
• length – visual length of normal, use length < 0 to point normals in opposite
direction
• relative – scale length relative to face size if True
• dxfattribs – dict of DXF attributes e.g. {'layer': 'normals', 'color': 6}
render_polyface(layout: GenericLayoutType, dxfattribs=None, matrix: Matrix44 | None = None, ucs:
UCS | None = None)
Render mesh as Polyface entity into layout.
Parameters
• layout – BaseLayout object
• dxfattribs – dict of DXF attributes e.g. {'layer': 'mesh', 'color': 7}
• matrix – transformation matrix of type Matrix44
• ucs – transform vertices by UCS to WCS
separate_meshes() -> list[MeshTransformer]
A single MeshBuilder instance can store multiple separated meshes. This function returns
this separated meshes as multiple MeshTransformer instances.
subdivide(level: int = 1, quads=True) -> MeshTransformer
Returns a new MeshTransformer object with all faces subdivided.
Parameters
• level – subdivide levels from 1 to max of 5
• quads – create quad faces if True else create triangles
subdivide_ngons(max_vertex_count=4) -> Iterator[Sequence[Vec3]]
Yields all faces as sequence of Vec3 instances, where all ngons which have more than
max_vertex_count vertices gets subdivided. In contrast to the tessellation() method,
creates this method a new vertex in the centroid of the face. This can create a more
regular tessellation but only works reliable for convex faces!
tessellation(max_vertex_count: int = 4) -> Iterator[Sequence[Vec3]]
Yields all faces as sequence of Vec3 instances, each face has no more vertices than the
given max_vertex_count. This method uses the “ear clipping” algorithm which works with
concave faces too and does not create any additional vertices.
unify_face_normals(*, fod: FaceOrientationDetector | None = None) -> MeshTransformer
Returns a new MeshTransformer object with unified face normal vectors of all faces. The
forward direction (not necessarily outwards) is defined by the face-normals of the majority
of the faces. This function can not process non-manifold meshes (more than two faces are
connected by a single edge) or multiple disconnected meshes in a single MeshBuilder object.
It is possible to pass in an existing FaceOrientationDetector instance as argument fod.
Raises
• NonManifoldError – non-manifold mesh
• MultipleMeshesError – the MeshBuilder object contains multiple disconnected meshes
unify_face_normals_by_reference(reference: int = 0, *, force_outwards=False, fod:
FaceOrientationDetector | None = None) -> MeshTransformer
Returns a new MeshTransformer object with unified face normal vectors of all faces. The
forward direction (not necessarily outwards) is defined by the reference face, which is the
first face of the mesh by default. This function can not process non-manifold meshes (more
than two faces are connected by a single edge) or multiple disconnected meshes in a single
MeshBuilder object.
The outward direction of all face normals can be forced by stetting the argument
force_outwards to True but this works only for closed surfaces, and it’s time-consuming!
It is not possible to check for a closed surface as long the face normal vectors are not
unified. But it can be done afterward by the attribute MeshDiagnose.is_closed_surface() to
see if the result is trustworthy.
It is possible to pass in an existing FaceOrientationDetector instance as argument fod.
Parameters
• reference – index of the reference face
• force_outwards – forces face-normals to point outwards, this works only for closed
surfaces, and it’s time-consuming!
• fod – FaceOrientationDetector instance
Raises ValueError – non-manifold mesh or the MeshBuilder object
contains multiple disconnected meshes
MeshTransformer
Same functionality as MeshBuilder but supports inplace transformation.
class ezdxf.render.MeshTransformer
Subclass of MeshBuilder
transform(matrix: Matrix44)
Transform mesh inplace by applying the transformation matrix.
Parameters
matrix – 4x4 transformation matrix as Matrix44 object
translate(dx: float | TypeAliasForwardRef('UVec') = 0, dy: float = 0, dz: float = 0)
Translate mesh inplace.
Parameters
• dx – translation in x-axis or translation vector
• dy – translation in y-axis
• dz – translation in z-axis
scale(sx: float = 1, sy: float = 1, sz: float = 1)
Scale mesh inplace.
Parameters
• sx – scale factor for x-axis
• sy – scale factor for y-axis
• sz – scale factor for z-axis
scale_uniform(s: float)
Scale mesh uniform inplace.
Parameters
s – scale factor for x-, y- and z-axis
rotate_x(angle: float)
Rotate mesh around x-axis about angle inplace.
Parameters
angle – rotation angle in radians
rotate_y(angle: float)
Rotate mesh around y-axis about angle inplace.
Parameters
angle – rotation angle in radians
rotate_z(angle: float)
Rotate mesh around z-axis about angle inplace.
Parameters
angle – rotation angle in radians
rotate_axis(axis: UVec, angle: float)
Rotate mesh around an arbitrary axis located in the origin (0, 0, 0) about angle.
Parameters
• axis – rotation axis as Vec3
• angle – rotation angle in radians
MeshVertexMerger
Same functionality as MeshBuilder, but created meshes with unique vertices and no doublets, but
MeshVertexMerger needs extra memory for bookkeeping and also does not support transformations. The
location of the merged vertices is the location of the first vertex with the same key.
This class is intended as intermediate object to create compact meshes and convert them to
MeshTransformer objects to apply transformations:
mesh = MeshVertexMerger()
# create your mesh
mesh.add_face(...)
# convert mesh to MeshTransformer object
return MeshTransformer.from_builder(mesh)
class ezdxf.render.MeshVertexMerger(precision: int = 6)
Subclass of MeshBuilder
Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping.
MeshVertexMerger creates a key for every vertex by rounding its components by the Python round()
function and a given precision value. Each vertex with the same key gets the same vertex index,
which is the index of first vertex with this key, so all vertices with the same key will be
located at the location of this first vertex. If you want an average location of all vertices with
the same key use the MeshAverageVertexMerger class.
Parameters
precision – floating point precision for vertex rounding
MeshAverageVertexMerger
This is an extended version of MeshVertexMerger. The location of the merged vertices is the average
location of all vertices with the same key, this needs extra memory and runtime in comparison to
MeshVertexMerger and this class also does not support transformations.
class ezdxf.render.MeshAverageVertexMerger(precision: int = 6)
Subclass of MeshBuilder
Mesh with unique vertices and no doublets, but needs extra memory for bookkeeping and runtime for
calculation of average vertex location.
MeshAverageVertexMerger creates a key for every vertex by rounding its components by the Python
round() function and a given precision value. Each vertex with the same key gets the same vertex
index, which is the index of first vertex with this key, the difference to the MeshVertexMerger
class is the calculation of the average location for all vertices with the same key, this needs
extra memory to keep track of the count of vertices for each key and extra runtime for updating
the vertex location each time a vertex with an existing key is added.
Parameters
precision – floating point precision for vertex rounding
class ezdxf.render.mesh.EdgeStat(count: int, balance: int)
Named tuple of edge statistics.
count how often the edge (a, b) is used in faces as (a, b) or (b, a)
balance
count of edges (a, b) - count of edges (b, a) and should be 0 in “healthy” closed surfaces,
if the balance is not 0, maybe doubled coincident faces exist or faces may have mixed
clockwise and counter-clockwise vertex orders
MeshBuilder Helper Classes
class ezdxf.render.MeshDiagnose
Diagnose tool which can be used to analyze and detect errors of MeshBuilder objects like topology
errors for closed surfaces. The object contains cached values, which do not get updated if the
source mesh will be changed!
NOTE:
There exist no tools in ezdxf to repair broken surfaces, but you can use the
ezdxf.addons.meshex addon to exchange meshes with the open source tool MeshLab.
Create an instance of this tool by the MeshBuilder.diagnose() method.
property bbox: BoundingBox
Returns the BoundingBox of the mesh. (cached data)
property edge_stats: Dict[Tuple[int, int], EdgeStat]
Returns the edge statistics as a dict. The dict-key is the edge as tuple of two vertex
indices (a, b) where a is always smaller than b. The dict-value is an EdgeStat tuple of
edge count and edge balance, see EdgeStat for the definition of edge count and edge
balance. (cached data)
property euler_characteristic: int
Returns the Euler characteristic: https://en.wikipedia.org/wiki/Euler_characteristic
This number is always 2 for convex polyhedra.
property face_normals: Sequence[Vec3]
Returns all face normal vectors as sequence. The NULLVEC instance is used as normal vector
for degenerated faces. (cached data)
property faces: Sequence[Sequence[int]]
Sequence of faces as Sequence[int]
property is_closed_surface: bool
Returns True if the mesh has a closed surface. This method does not require a unified face
orientation. If multiple separated meshes are present the state is only True if all meshes
have a closed surface. (cached data)
Returns False for non-manifold meshes.
property is_edge_balance_broken: bool
Returns True if the edge balance is broken, this indicates a topology error for closed
surfaces. A non-broken edge balance reflects that each edge connects two faces, where the
edge is clockwise oriented in the first face and counter-clockwise oriented in the second
face. A broken edge balance indicates possible topology errors like mixed face vertex
orientations or a non-manifold mesh where an edge connects more than two faces. (cached
data)
property is_manifold: bool
Returns True if all edges have an edge count < 3. (cached data)
A non-manifold mesh has edges with 3 or more connected faces.
property n_edges: int
Returns the unique edge count. (cached data)
property n_faces: int
Returns the face count.
property n_vertices: int
Returns the vertex count.
property vertices: Sequence[Vec3]
Sequence of mesh vertices as Vec3 instances
centroid() -> Vec3
Returns the centroid of all vertices. (center of mass)
estimate_face_normals_direction() -> float
Returns the estimated face-normals direction as float value in the range [-1.0, 1.0] for a
closed surface.
This heuristic works well for simple convex hulls but struggles with more complex
structures like a torus (doughnut).
A counter-clockwise (ccw) vertex arrangement for outward pointing faces is assumed but a
clockwise (cw) arrangement works too but the return values are reversed.
The closer the value to 1.0 (-1.0 for cw) the more likely all normals pointing outwards
from the surface.
The closer the value to -1.0 (1.0 for cw) the more likely all normals pointing inwards from
the surface.
There are no exact confidence values if all faces pointing outwards, here some examples for
surfaces created by ezdxf.render.forms functions:
• cube() returns 1.0
• cylinder() returns 0.9992
• sphere() returns 0.9994
• cone() returns 0.9162
• cylinder() with all hull faces pointing outwards but caps pointing inwards returns
0.7785 but the property is_edge_balance_broken returns True which indicates the mixed
vertex orientation
• and the estimation of 0.0469 for a torus() is barely usable
has_non_planar_faces() -> bool
Returns True if any face is non-planar.
surface_area() -> float
Returns the surface area.
total_edge_count() -> int
Returns the total edge count of all faces, shared edges are counted separately for each
face. In closed surfaces this count should be 2x the unique edge count n_edges. (cached
data)
unique_edges() -> Iterable[Tuple[int, int]]
Yields the unique edges of the mesh as int 2-tuples. (cached data)
volume() -> float
Returns the volume of a closed surface or 0 otherwise.
WARNING:
The face vertices have to be in counter-clockwise order, this requirement is not checked
by this method.
The result is not correct for multiple separated meshes in a single MeshBuilder
object!!!
class ezdxf.render.FaceOrientationDetector(mesh: MeshBuilder, reference: int = 0)
Helper class for face orientation and face normal vector detection. Use the method
MeshBuilder.face_orientation_detector() to create an instance.
The face orientation detector classifies the faces of a mesh by their forward or backward
orientation. The forward orientation is defined by a reference face, which is the first face of
the mesh by default and this orientation is not necessarily outwards.
This class has some overlapping features with MeshDiagnose but it has a longer setup time and
needs more memory than MeshDiagnose.
Parameters
• mesh – source mesh as MeshBuilder object
• reference – index of the reference face
is_manifold
True if all edges have an edge count < 3. A non-manifold mesh has edges with 3 or more
connected faces.
property all_reachable: bool
Returns True if all faces are reachable from the reference face same as property
is_single_mesh.
property count: tuple[int, int]
Returns the count of forward and backward oriented faces.
property backward_faces: Iterator[Sequence[int]]
Yields all backward oriented faces.
property forward_faces: Iterator[Sequence[int]]
Yields all forward oriented faces.
property has_uniform_face_normals: bool
Returns True if all reachable faces are forward oriented according to the reference face.
property is_closed_surface: bool
Returns True if the mesh has a closed surface. This method does not require a unified face
orientation. If multiple separated meshes are present the state is only True if all meshes
have a closed surface.
Returns False for non-manifold meshes.
property is_single_mesh: bool
Returns True if only a single mesh is present same as property all_reachable.
classify_faces(reference: int = 0) -> None
Detect the forward and backward oriented faces.
The forward and backward orientation has to be defined by a reference face.
is_reference_face_pointing_outwards() -> bool
Returns True if the normal vector of the reference face is pointing outwards. This works
only for meshes with unified faces which represent a closed surfaces, and it’s a
time-consuming calculation!
Trace
This module provides tools to create banded lines like LWPOLYLINE with width information. Path rendering
as quadrilaterals: Trace, Solid or Face3d.
class ezdxf.render.trace.TraceBuilder
Sequence of 2D banded lines like polylines with start- and end width or curves with start- and end
width.
NOTE:
Accepts 3D input, but z-axis is ignored. The TraceBuilder is a 2D only object and uses only the
OCS coordinates!
abs_tol
Absolute tolerance for floating point comparisons
append(trace: AbstractTrace) -> None
Append a new trace.
close()
Close multi traces by merging first and last trace, if linear traces.
faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]]
Yields all faces as 4-tuples of Vec2 objects in OCS.
faces_wcs(ocs: OCS, elevation: float) -> Iterable[Sequence[Vec3]]
Yields all faces as 4-tuples of Vec3 objects in WCS.
virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing | None = None) ->
Iterable[Quadrilateral]
Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs.
If a document is given, the doc attribute of the new entities will be set and the new
entities will be automatically added to the entity database of that document.
NOTE:
The TraceBuilder is a 2D only object and uses only the OCS coordinates!
Parameters
• dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE”
• dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities
• doc – associated document
classmethod from_polyline(polyline: DXFGraphic, segments: int = 64) -> TraceBuilder
Create a complete trace from a LWPOLYLINE or a 2D POLYLINE entity, the trace consist of
multiple sub-traces if bulge values are present. Uses only the OCS coordinates!
Parameters
• polyline – LWPolyline or 2D Polyline
• segments – count of segments for bulge approximation, given count is for a full
circle, partial arcs have proportional less segments, but at least 3
__len__()
__getitem__()
class ezdxf.render.trace.LinearTrace
Linear 2D banded lines like polylines with start- and end width.
Accepts 3D input, but z-axis is ignored.
abs_tol
Absolute tolerance for floating point comparisons
is_started
True if at least one station exist.
add_station(point: UVec, start_width: float, end_width: float | None = None) -> None
Add a trace station (like a vertex) at location point, start_width is the width of the next
segment starting at this station, end_width is the end width of the next segment.
Adding the last location again, replaces the actual last location e.g. adding lines (a,
b), (b, c), creates only 3 stations (a, b, c), this is very important to connect to/from
splines.
Parameters
• point – 2D location (vertex), z-axis of 3D vertices is ignored.
• start_width – start width of next segment
• end_width – end width of next segment
faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]]
Yields all faces as 4-tuples of Vec2 objects.
First and last miter is 90 degrees if the path is not closed, otherwise the intersection of
first and last segment is taken into account, a closed path has to have explicit the same
last and first vertex.
virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing | None = None) ->
Iterable[Quadrilateral]
Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs.
If a document is given, the doc attribute of the new entities will be set and the new
entities will be automatically added to the entity database of that document.
Parameters
• dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE”
• dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities
• doc – associated document
class ezdxf.render.trace.CurvedTrace
2D banded curves like arcs or splines with start- and end width.
Represents always only one curved entity and all miter of curve segments are perpendicular to
curve tangents.
Accepts 3D input, but z-axis is ignored.
faces() -> Iterable[Tuple[Vec2, Vec2, Vec2, Vec2]]
Yields all faces as 4-tuples of Vec2 objects.
virtual_entities(dxftype='TRACE', dxfattribs=None, doc: Drawing | None = None) ->
Iterable[Quadrilateral]
Yields faces as SOLID, TRACE or 3DFACE entities with DXF attributes given in dxfattribs.
If a document is given, the doc attribute of the new entities will be set and the new
entities will be automatically added to the entity database of that document.
Parameters
• dxftype – DXF type as string, “SOLID”, “TRACE” or “3DFACE”
• dxfattribs – DXF attributes for SOLID, TRACE or 3DFACE entities
• doc – associated document
classmethod from_arc(arc: ConstructionArc, start_width: float, end_width: float, segments: int =
64) -> CurvedTrace
Create curved trace from an arc.
Parameters
• arc – ConstructionArc object
• start_width – start width
• end_width – end width
• segments – count of segments for full circle (360 degree) approximation, partial
arcs have proportional less segments, but at least 3
Raises ValueError – if arc.radius <= 0
classmethod from_spline(spline: BSpline, start_width: float, end_width: float, segments: int) ->
CurvedTrace
Create curved trace from a B-spline.
Parameters
• spline – BSpline object
• start_width – start width
• end_width – end width
• segments – count of segments for approximation
Point Rendering
Helper function to render Point entities as DXF primitives.
ezdxf.render.point.virtual_entities(point: Point, pdsize: float = 1, pdmode: int = 0) -> list[DXFGraphic]
Yields point graphic as DXF primitives LINE and CIRCLE entities. The dimensionless point is
rendered as zero-length line!
Check for this condition:
e.dxftype() == 'LINE' and e.dxf.start.isclose(e.dxf.end)
if the rendering engine can’t handle zero-length lines.
Parameters
• point – DXF POINT entity
• pdsize – point size in drawing units
• pdmode – point styling mode, see Point class
SEE ALSO:
Go to ezdxf.entities.Point class documentation for more information about POINT styling modes.
MultiLeaderBuilder
These are helper classes to build MultiLeader entities in an easy way. The MultiLeader entity supports
two kinds of content, for each exist a specialized builder class:
• MultiLeaderMTextBuilder for MText content
• MultiLeaderBlockBuilder for Block content
The usual steps of the building process are:
1. create entity by a factory method
• add_multileader_mtext()
• add_multileader_block()
2. set the content
• MultiLeaderMTextBuilder.set_content()
• MultiLeaderBlockBuilder.set_content()
• MultiLeaderBlockBuilder.set_attribute()
3. set properties
• MultiLeaderBuilder.set_arrow_properties()
• MultiLeaderBuilder.set_connection_properties()
• MultiLeaderBuilder.set_connection_types()
• MultiLeaderBuilder.set_leader_properties()
• MultiLeaderBuilder.set_mleader_style()
• MultiLeaderBuilder.set_overall_scaling()
4. add one or more leader lines
• MultiLeaderBuilder.add_leader_line()
5. finalize building process
• MultiLeaderBuilder.build()
The Tutorial for MultiLeader shows how to use these helper classes in more detail.
class ezdxf.render.MultiLeaderBuilder
Abstract base class to build MultiLeader entities.
property context: MLeaderContext
Returns the context entity MLeaderContext.
property multileader: MultiLeader
Returns the MultiLeader entity.
add_leader_line(side: ConnectionSide, vertices: Iterable[Vec2]) -> None
Add leader as iterable of vertices in render UCS coordinates (WCS by default).
NOTE:
Vertical (top, bottom) and horizontal attachment sides (left, right) can not be mixed in
a single entity - this is a limitation of the MULTILEADER entity.
Parameters
• side – connection side where to attach the leader line
• vertices – leader vertices
build(insert: Vec2, rotation: float = 0.0, ucs: UCS | None = None) -> None
Compute the required geometry data. The construction plane is the xy-plane of the given
render UCS.
Parameters
• insert – insert location for the content in render UCS coordinates
• rotation – content rotation angle around the render UCS z-axis in degrees
• ucs – the render UCS, default is the WCS
set_arrow_properties(name: str = '', size: float = 0.0)
Set leader arrow properties all leader lines have the same arrow type.
The MULTILEADER entity is able to support multiple arrows, but this seems to be unsupported
by CAD applications and is therefore also not supported by the builder classes.
set_connection_properties(landing_gap: float = 0.0, dogleg_length: float = 0.0)
Set the properties how to connect the leader line to the content.
The landing gap is the space between the content and the start of the leader line. The
“dogleg” is the first line segment of the leader in the “horizontal” direction of the
content.
set_connection_types(left=HorizontalConnection.by_style, right=HorizontalConnection.by_style,
top=VerticalConnection.by_style, bottom=VerticalConnection.by_style)
Set the connection type for each connection side.
set_leader_properties(color: int | RGB = colors.BYBLOCK, linetype: str = 'BYBLOCK', lineweight:
int = const.LINEWEIGHT_BYBLOCK, leader_type=LeaderType.straight_lines)
Set leader line properties.
Parameters
• color – line color as AutoCAD Color Index (ACI) or RGB tuple
• linetype – as name string, e.g. “BYLAYER”
• lineweight – as integer value, see: Lineweights
• leader_type – straight lines of spline type
set_mleader_style(style: MLeaderStyle)
Reset base properties by MLeaderStyle properties. This also resets the content!
set_overall_scaling(scale: float)
Set the overall scaling factor for the whole entity, except for the leader line vertices!
Parameters
scale – scaling factor > 0.0
MultiLeaderMTextBuilder
Specialization of MultiLeaderBuilder to build MultiLeader with MTEXT content.
class ezdxf.render.MultiLeaderMTextBuilder
set_content(content: str, color: int | RGB | None = None, char_height: float = 0.0, alignment:
TextAlignment = TextAlignment.left, style: str = '')
Set MTEXT content.
Parameters
• content – MTEXT content as string
• color – block color as AutoCAD Color Index (ACI) or RGB tuple
• char_height – initial char height in drawing units
• alignment – TextAlignment - left, center, right
• style – name of Textstyle as string
quick_leader(content: str, target: Vec2, segment1: Vec2, segment2: Vec2 | None = None,
connection_type: HorizontalConnection | VerticalConnection =
HorizontalConnection.middle_of_top_line, ucs: UCS | None = None) -> None
Creates a quick MTEXT leader. The target point defines where the leader points to. The
segment1 is the first segment of the leader line relative to the target point, segment2 is
an optional second line segment relative to the first line segment. The connection_type
defines the type of connection (horizontal or vertical) and the MTEXT alignment (left,
center or right). Horizontal connections are always left or right aligned, vertical
connections are always center aligned.
Parameters
• content – MTEXT content string
• target – leader target point as Vec2
• segment1 – first leader line segment as relative distance to insert
• segment2 – optional second leader line segment as relative distance to first line
segment
• connection_type – one of HorizontalConnection or VerticalConnection
• ucs – the rendering UCS, default is the WCS
MultiLeaderBlockBuilder
Specialization of MultiLeaderBuilder to build MultiLeader with BLOCK content.
class ezdxf.render.MultiLeaderBlockBuilder
property block_layout: BlockLayout
Returns the block layout.
property extents: BoundingBox
Returns the bounding box of the block.
set_content(name: str, color: int | RGB = colors.BYBLOCK, scale: float = 1.0,
alignment=BlockAlignment.center_extents)
Set BLOCK content.
Parameters
• name – the block name as string
• color – block color as AutoCAD Color Index (ACI) or RGB tuple
• scale – the block scaling, not to be confused with overall scaling
• alignment – the block insertion point or the center of extents
set_attribute(tag: str, text: str, width: float = 1.0)
Add BLOCK attributes based on an ATTDEF entity in the block definition. All properties of
the new created ATTRIB entity are defined by the template ATTDEF entity including the
location.
Parameters
• tag – attribute tag name
• text – attribute content string
• width – width factor
Enums
class ezdxf.render.LeaderType(*values)
The leader type.
none
straight_lines
splines
class ezdxf.render.ConnectionSide(*values)
The leader connection side.
Vertical (top, bottom) and horizontal attachment sides (left, right) can not be mixed in a single
entity - this is a limitation of the MULTILEADER entity.
left
right
top
bottom
class ezdxf.render.HorizontalConnection(*values)
The horizontal leader connection type.
by_style
top_of_top_line
middle_of_top_line
middle_of_text
middle_of_bottom_line
bottom_of_bottom_line
bottom_of_bottom_line_underline
bottom_of_top_line_underline
bottom_of_top_line
bottom_of_top_line_underline_all
class ezdxf.render.VerticalConnection(*values)
The vertical leader connection type.
by_style
center
center_overline
class ezdxf.render.TextAlignment(*values)
The MText alignment type.
left
center
right
class ezdxf.render.BlockAlignment(*values)
The Block alignment type.
center_extents
insertion_point
Arrows
This module provides support for the AutoCAD standard arrow heads used in DIMENSION, LEADER and
MULTILEADER entities. Library user don’t have to use the ARROWS objects directly, but should know the
arrow names stored in it as attributes. The arrow names should be accessed that way:
import ezdxf
arrow = ezdxf.ARROWS.closed_filled
ezdxf.render.arrows.ARROWS
Single instance of _Arrows to work with.
class ezdxf.render.arrows._Arrows
Management object for standard arrows.
__acad__
Set of AutoCAD standard arrow names.
__ezdxf__
Set of arrow names special to ezdxf.
architectural_tick
[image]
closed_filled
[image]
dot [image]
dot_small
[image]
dot_blank
[image]
origin_indicator
[image]
origin_indicator_2
[image]
open [image]
right_angle
[image]
open_30
[image]
closed [image]
dot_smallblank
[image]
none [image]
oblique
[image]
box_filled
[image]
box [image]
closed_blank
[image]
datum_triangle_filled
[image]
datum_triangle
[image]
integral
[image]
ez_arrow
[image]
ez_arrow_blank
[image]
ez_arrow_filled
[image]
is_acad_arrow(item: str) -> bool
Returns True if item is a standard AutoCAD arrow.
is_ezdxf_arrow(item: str) -> bool
Returns True if item is a special ezdxf arrow.
insert_arrow(layout: GenericLayoutType, name: str, insert: UVec = NULLVEC, size: float = 1.0,
rotation: float = 0, *, dxfattribs=None) -> Vec2
Insert arrow as block reference into layout.
render_arrow(layout: GenericLayoutType, name: str, insert: UVec = NULLVEC, size: float = 1.0,
rotation: float = 0, *, dxfattribs=None) -> Vec2
Render arrow as basic DXF entities into layout.
virtual_entities(name: str, insert: UVec = NULLVEC, size: float = 0.625, rotation: float = 0, *,
dxfattribs=None) -> Iterator[DXFGraphic]
Returns all arrow components as virtual DXF entities.
Hatching
This module provides rendering support for hatch patterns as used in Hatch and MPolygon entities.
High Level Functions
ezdxf.render.hatching.hatch_entity(polygon: DXFPolygon, filter_text_boxes=True, jiggle_origin: bool =
True) -> Iterator[tuple[Vec3, Vec3]]
Yields the hatch pattern of the given HATCH or MPOLYGON entity as 3D lines. Each line is a pair
of Vec3 instances as start- and end vertex, points are represented as lines of zero length, which
means the start vertex is equal to the end vertex.
The function yields nothing if polygon has a solid- or gradient filling or does not have a usable
pattern assigned.
Parameters
• polygon – Hatch or MPolygon entity
• filter_text_boxes – ignore text boxes if True
• jiggle_origin – move pattern line origins a small amount to avoid intersections in corner
points which causes errors in patterns
ezdxf.render.hatching.hatch_polygons(baseline: HatchBaseLine, polygons: Sequence[Sequence[Vec2]],
terminate: Callable[[], bool] | None = None) -> Iterator[Line]
Yields all pattern lines for all hatch lines generated by the given HatchBaseLine, intersecting
the given 2D polygons as Line instances. The polygons should represent a single entity with or
without holes, the order of the polygons and their winding orientation (cw or ccw) is not
important. Entities which do not intersect or overlap should be handled separately!
Each polygon is a sequence of Vec2 instances, they are treated as closed polygons even if the last
vertex is not equal to the first vertex.
The hole detection is done by a simple inside/outside counting algorithm and far from perfect, but
is able to handle ordinary polygons well.
The terminate function WILL BE CALLED PERIODICALLY AND should return True to terminate execution.
This can be used to implement a timeout, which can be required if using a very small hatching
distance, especially if you get the data from untrusted sources.
Parameters
• baseline – HatchBaseLine
• polygons – multiple sequences of Vec2 instances of a single entity, the order of
exterior- and hole paths and the winding orientation (cw or ccw) of paths is not
important
• terminate – callback function which is called periodically and should return True to
terminate the hatching function
ezdxf.render.hatching.hatch_paths(baseline: HatchBaseLine, paths: Sequence[Path], terminate: Callable[[],
bool] | None = None) -> Iterator[Line]
Yields all pattern lines for all hatch lines generated by the given HatchBaseLine, intersecting
the given 2D Path instances as Line instances. The paths are handled as projected into the
xy-plane the z-axis of path vertices will be ignored if present.
Same as the hatch_polygons() function, but for Path instances instead of polygons build of
vertices. This function does not flatten the paths into vertices, instead the real intersections
of the Bézier curves and the hatch lines are calculated.
For more information see the docs of the hatch_polygons() function.
Parameters
• baseline – HatchBaseLine
• paths – sequence of Path instances of a single entity, the order of exterior- and hole
paths and the winding orientation (cw or ccw) of the paths is not important
• terminate – callback function which is called periodically and should return True to
terminate the hatching function
Classes
class ezdxf.render.hatching.HatchBaseLine(origin: Vec2, direction: Vec2, offset: Vec2, line_pattern:
list[float] | None = None, min_hatch_line_distance=MIN_HATCH_LINE_DISTANCE)
A hatch baseline defines the source line for hatching a geometry. A complete hatch pattern of a
DXF entity can consist of one or more hatch baselines.
Parameters
• origin – the origin of the hatch line as Vec2 instance
• direction – the hatch line direction as Vec2 instance, must not (0, 0)
• offset – the offset of the hatch line origin to the next or to the previous hatch line
• line_pattern – line pattern as sequence of floats, see also PatternRenderer
• min_hatch_line_distance – minimum hatch line distance to render, raises an
DenseHatchingLinesError exception if the distance between hatch lines is smaller than
this value
Raises
• HatchLineDirectionError – hatch baseline has no direction, (0, 0) vector
• DenseHatchingLinesError – hatching lines are too narrow
hatch_line(distance: float) -> HatchLine
Returns the HatchLine at the given signed distance.
pattern_renderer(distance: float) -> PatternRenderer
Returns the PatternRenderer for the given signed distance.
signed_distance(point: Vec2) -> float
Returns the signed normal distance of the given point from this hatch baseline.
class ezdxf.render.hatching.HatchLine(origin: Vec2, direction: Vec2, distance: float)
Represents a single hatch line.
Parameters
• origin – the origin of the hatch line as Vec2 instance
• direction – the hatch line direction as Vec2 instance, must not (0, 0)
• distance – the normal distance to the base hatch line as float
intersect_line(a: Vec2, b: Vec2, dist_a: float, dist_b: float) -> Intersection
Returns the Intersection of this hatch line and the line defined by the points a and b.
The arguments dist_a and dist_b are the signed normal distances of the points a and b from
the hatch baseline. The normal distances from the baseline are easy to calculate by the
HatchBaseLine.signed_distance() method and allow a fast intersection calculation by a
simple point interpolation.
Parameters
• a – start point of the line as Vec2 instance
• b – end point of the line as Vec2 instance
• dist_a – normal distance of point a to the hatch baseline as float
• dist_b – normal distance of point b to the hatch baseline as float
intersect_cubic_bezier_curve(curve: Bezier4P) -> Sequence[Intersection]
Returns 0 to 3 Intersection points of this hatch line with a cubic Bèzier curve.
Parameters
curve – the cubic Bèzier curve as ezdxf.math.Bezier4P instance
class ezdxf.render.hatching.PatternRenderer(hatch_line: HatchLine, pattern: Sequence[float])
The hatch pattern of a DXF entity has one or more HatchBaseLine instances with an origin,
direction, offset and line pattern. The PatternRenderer for a certain distance from the baseline
has to be acquired from the HatchBaseLine by the pattern_renderer() method.
The origin of the hatch line is the starting point of the line pattern. The offset defines the
origin of the adjacent hatch line and doesn’t have to be orthogonal to the hatch line direction.
Line Pattern
The line pattern is a sequence of floats, where a value > 0.0 is a dash, a value < 0.0 is a gap
and value of 0.0 is a point.
Parameters
• hatch_line – HatchLine
• pattern – the line pattern as sequence of float values
render(start: Vec2, end: Vec2) -> Iterator[tuple[Vec2, Vec2]]
Yields the pattern lines as pairs of Vec2 instances from the start- to the end point on the
hatch line. For points the start- and end point are the same Vec2 instance and can be
tested by the is operator.
The start- and end points should be located collinear at the hatch line of this instance,
otherwise the points a projected onto this hatch line.
class ezdxf.render.hatching.Intersection(type: IntersectionType = IntersectionType.NONE, p0: Vec2 =
Vec2(nan, nan), p1: Vec2 = Vec2(nan, nan))
Represents an intersection.
type intersection type as IntersectionType instance
p0 (first) intersection point as Vec2 instance
p1 second intersection point as Vec2 instance, only if type is COLLINEAR
class ezdxf.render.hatching.IntersectionType(*values)
NONE no intersection
REGULAR
regular intersection point at a polygon edge or a Bèzier curve
START intersection point at the start vertex of a polygon edge
END intersection point at the end vertex of a polygon edge
COLLINEAR
intersection is collinear to a polygon edge
class ezdxf.render.hatching.Line(start: 'Vec2', end: 'Vec2', distance: 'float')
start start point as Vec2 instance
end end point as Vec2 instance
distance
signed normal distance to the HatchBaseLine
Helper Functions
ezdxf.render.hatching.hatch_boundary_paths(polygon: DXFPolygon, filter_text_boxes=True) -> list[Path]
Returns the hatch boundary paths as ezdxf.path.Path instances of HATCH and MPOLYGON entities.
Ignores text boxes if argument filter_text_boxes is True.
ezdxf.render.hatching.hatch_line_distances(point_distances: Sequence[float], normal_distance: float) ->
list[float]
Returns all hatch line distances in the range of the given point distances.
ezdxf.render.hatching.pattern_baselines(polygon: DXFPolygon, min_hatch_line_distance: float =
MIN_HATCH_LINE_DISTANCE, *, jiggle_origin: bool = False) -> Iterator[HatchBaseLine]
Yields the hatch pattern baselines of HATCH and MPOLYGON entities as HatchBaseLine instances. Set
jiggle_origin to True to move pattern line origins a small amount to avoid intersections in corner
points which causes errors in patterns.
Exceptions
class ezdxf.render.hatching.HatchingError
Base exception class of the hatching module.
class ezdxf.render.hatching.HatchLineDirectionError
Hatching direction is undefined or a (0, 0) vector.
class ezdxf.render.hatching.DenseHatchingLinesError
Very small hatching distance which creates too many hatching lines.
TODO:
• ACAD_TABLE helper tools
• Dynamic Block helper tools
Global Options
Global Options Object
The global ezdxf options are stored in the object ezdxf.options.
Recommended usage of the global options object:
import ezdxf
value = ezdxf.options.attribute
IMPORTANT:
Most options are only read at startup (support folders, paths to executables), changing these values
has no effect at runtime. To change these options, you must create a configuration file, see section
Config Files.
The options object uses the Standard Python class ConfigParser to manage the configuration. Shortcut
attributes like test_files are simple properties and most shortcuts are read only marked by (Read only),
read and writeable attributes are marked by (Read/Write).
To change options, especially the read only attributes, you have to edit the config file with a text
editor, or set options by the set() method and write the current configuration into a config file.
Config Files
The default config files are loaded from the user home directory as “~/.config/ezdxf/ezdxf.ini”, and the
current working directory as “./ezdxf.ini”. A custom config file can be specified by the environment
variable EZDXF_CONFIG_FILE. Ezdxf follows the XDG Base Directory specification if the environment
variable XDG_CONFIG_HOME is set.
The config file loading order:
1. user home directory: “~/.config/ezdxf/ezdxf.ini”
2. current working directory: “./ezdxf.ini”
3. config file specified by EZDXF_CONFIG_FILE
A configuration file that is loaded later does not replace the previously loaded ones, only the existing
options in the newly loaded file are added to the configuration and can overwrite existing options.
Configuration files are regular INI files, managed by the standard Python ConfigParser class.
File Structure:
[core]
default_dimension_text_style = OpenSansCondensed-Light
test_files = D:\Source\dxftest
support_dirs =
"C:\Program Files\Bricsys\BricsCAD V23 en_US\Fonts",
"~/dir2",
"~/dir3",
load_proxy_graphics = true
store_proxy_graphics = true
log_unprocessed_tags = false
filter_invalid_xdata_group_codes = true
write_fixed_meta_data_for_testing = false
disable_c_ext = false
[browse-command]
text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}
Modify and Save Changes
This code shows how to get and set values of the underlying ConfigParser object, but use the shortcut
attributes if available:
# Set options, value has to ba a str, use "true"/"false" for boolean values
ezdxf.options.set(section, key, value)
# Get option as string
value = ezdxf.options.get(section, key, default="")
# Special getter for boolean, int and float
value = ezdxf.options.get_bool(section, key, default=False)
value = ezdxf.options.get_int(section, key, default=0)
value = ezdxf.options.get_float(section, key, default=0.0)
If you set options, they are not stored automatically in a config file, you have to write back the config
file manually:
# write back the default user config file "ezdxf.ini" in the
# user home directory
ezdxf.options.write_home_config()
# write back to the default config file "ezdxf.ini" in the
# current working directory
ezdxf.options.write_file()
# write back to a specific config file
ezdxf.options.write_file("my_config.ini")
# which has to be loaded manually at startup
ezdxf.options.read_file("my_config.ini")
This example shows how to change the test_files path and save the changes into a custom config file
“my_config.ini”:
import ezdxf
test_files = Path("~/my-dxf-test-files").expand_user()
ezdxf.options.set(
ezdxf.options.CORE, # section
"test_files", # key
"~/my-dxf-test-files", # value
)
ezdxf.options.write_file("my_config.ini")
Use a Custom Config File
You can specify a config file by the environment variable EZDXF_CONFIG_FILE, which is loaded after the
default config files.
C:\> set EZDXF_CONFIG_FILE=D:\user\path\custom.ini
Custom config files are not loaded automatically like the default config files.
This example shows how to load the previous created custom config file “my_config.ini” from the current
working directory:
import ezdxf
ezdxf.options.read("my_config.ini")
That is all and because this is the last loaded config file, it overrides all default config files and
the config file specified by EZDXF_CONFIG_FILE.
Functions
ezdxf.options.set(section: str, key: str, value: str)
Set option key in section to values as str.
ezdxf.options.get(section: str, key: str, default: str = '') -> str
Get option key in section as string.
ezdxf.options.get_bool(section: str, key: str, default: bool = False) -> bool
Get option key in section as bool.
ezdxf.options.get_int(section: str, key: str, default: int = 0) -> int
Get option key in section as int.
ezdxf.options.get_float(section: str, key: str, default: float = 0.0) -> flot
Get option key in section as float.
ezdxf.options.write(fp: TextIO)
Write configuration into given file object fp, the file object must be a writeable text file with
“utf8” encoding.
ezdxf.options.write_file(filename: str = 'ezdxf.ini')
Write current configuration into file filename, default is “ezdxf.ini” in the current working
directory.
ezdxf.options.write_home_config()
Write configuration into file “~/.config/ezdxf/ezdxf.ini”, $XDG_CONFIG_HOME is supported if set.
ezdxf.options.read_file(filename: str)
Append content from config file filename, but does not reset the configuration.
ezdxf.options.print()
Print configuration to stdout.
ezdxf.options.reset()
Reset options to factory default values.
ezdxf.options.delete_default_config_files()
Delete the default config files “ezdxf.ini” in the current working and in the user home directory
“~/.config/ezdxf”, $XDG_CONFIG_HOME is supported if set.
ezdxf.options.preserve_proxy_graphics(state=True)
Enable/disable proxy graphic load/store support by setting the options load_proxy_graphics and
store_proxy_graphics to state.
ezdxf.options.loaded_config_files
Read only property of loaded config files as tuple for Path objects.
Core Options
For all core options the section name is core.
Default Dimension Text Style
The default dimension text style is used by the DIMENSION renderer of ezdxf, if the specified text style
exist in the STYLE table. To use any of the default style of ezdxf you have to setup the styles at the
creation of the DXF document: ezdxf.new(setup=True), or setup the ezdxf default styles for a loaded DXF
document:
import ezdxf
from ezdxf.tool.standard import setup_drawing
doc = ezdxf.readfile("your.dxf")
setup_drawing(doc)
Config file key: default_dimension_text_style
Shortcut attribute:
ezdxf.options.default_dimension_text_style
(Read/Write) Get/Set default text style for DIMENSION rendering, default value is
OpenSansCondensed-Light.
Load Proxy Graphic
Proxy graphics are not essential for DXF files, but they can provide a simple graphical representation
for complex entities, but extra memory is needed to store this information. You can save some memory by
not loading the proxy graphic, but the proxy graphic is lost if you write back the DXF file.
The current version of ezdxf uses this proxy graphic to render MLEADER entities by the drawing add-on.
Config file key: load_proxy_graphics
Shortcut attribute:
ezdxf.options.load_proxy_graphics
(Read/Write) Load proxy graphics if True, default is True.
Store Proxy Graphic
Prevent exporting proxy graphics if set to False.
Config file key: store_proxy_graphics
Shortcut attribute:
ezdxf.options.store_proxy_graphics
(Read/Write) Export proxy graphics if True, default is True.
Support Directories
Search directories for support files:
• plot style tables, the .ctb or .stb pen assignment files
• shape font files of type .shx or .shp or .lff
IMPORTANT:
When you add new font directories to support_dirs or new fonts to one of the support directories, you
have to rebuild the font cache to use these fonts, see section Rebuilding the Font Cache for more
information.
Config file key: support_dirs
Shortcut attribute:
ezdxf.options.support_dirs
(Read/Write) Search directories as list of strings.
Use quotes for paths including spaces:
[core]
support_dirs =
~/dir1,
~/dir2,
"~/dir 3",
Debugging Options
For all debugging options the section name is core.
Test Files
Path to test files. Some of the CADKit test files are used by the integration tests, these files should
be located in the ezdxf.options.test_files_path / "CADKitSamples" folder.
Config file key: test_files
Shortcut attributes:
ezdxf.options.test_files
(Read only) Returns the path to the ezdxf test files as str, expands “~” construct automatically.
ezdxf.options.test_files_path
(Read only) Path to test files as pathlib.Path object.
Filter Invalid XDATA Group Codes
Only a very limited set of group codes is valid in the XDATA section and AutoCAD is very picky about
that. Ezdxf removes invalid XDATA group codes if this option is set to True, but this needs processing
time, which is wasted if you get your DXF files from trusted sources like AutoCAD or BricsCAD.
Config file key: filter_invalid_xdata_group_codes
ezdxf.options.filter_invalid_xdata_group_codes
(Read only) Filter invalid XDATA group codes, default value is True.
Log Unprocessed Tags
Logs unprocessed DXF tags, this helps to find new and undocumented DXF features.
Config file key: log_unprocessed_tags
ezdxf.options.log_unprocessed_tags
(Read/Write) Log unprocessed DXF tags for debugging, default value is False.
Write Fixed Meta Data for Testing
Write the DXF files with fixed meta data to test your DXF files by a diff-like command, this is necessary
to get always the same meta data like the saving time stored in the HEADER section. This may not work
across different ezdxf versions!
Config file key: write_fixed_meta_data_for_testing
ezdxf.options.write_fixed_meta_data_for_testing
(Read/Write) Enable this option to always create same meta data for testing scenarios, e.g. to use
a diff-like tool to compare DXF documents, default is False.
Disable C-Extension
It is possible to deactivate the optional C-extensions if there are any issues with the C-extensions.
This has to be done in a default config file or by environment variable before the first import of ezdxf.
For pypy3 the C-extensions are always disabled, because the JIT compiled Python code is much faster.
IMPORTANT:
This option works only in the default config files, user config files which are loaded by
ezdxf.options.read_file() cannot disable the C-Extensions, because at this point the setup process of
ezdxf is already finished!
Config file key: disable_c_ext
ezdxf.options.disable_c_ext
(Read only) This option disables the C-extensions if True. This can only be done before the first
import of ezdxf by using a config file or the environment variable EZDXF_DISABLE_C_EXT.
Use C-Extensions
ezdxf.options.use_c_ext
(Read only) Shows the actual state of C-extensions usage.
Environment Variables
Some feature can be controlled by environment variables. Command line example for disabling the optional
C-extensions on Windows:
C:\> set EZDXF_DISABLE_C_EXT=1
IMPORTANT:
If you change any environment variable, you have to restart the Python interpreter!
EZDXF_DISABLE_C_EXT
Set environment variable EZDXF_DISABLE_C_EXT to 1 or True to disable the usage of the
C-extensions.
EZDXF_TEST_FILES
Path to the ezdxf test files required by some tests, for instance the CADKit sample files should
be located in the EZDXF_TEST_FILES/CADKitSamples folder. See also option ezdxf.options.test_files.
EZDXF_CONFIG_FILE
Specifies a user config file which will be loaded automatically after the default config files at
the first import of ezdxf.
For Developers
DXF Internals
• DXF Reference provided by Autodesk.
• DXF Developer Documentation provided by Autodesk.
Basic DXF Structures
DXF File Encoding
DXF R2004 and prior
Drawing files of DXF R2004 (AC1018) and prior are saved as ASCII files with the encoding set by the
header variable $DWGCODEPAGE, which is ANSI_1252 by default if $DWGCODEPAGE is not set.
Characters used in the drawing which do not exist in the chosen ASCII encoding are encoded as unicode
characters with the schema \U+nnnn. see Unicode table
Known $DWGCODEPAGE encodings
┌───────────┬────────┬────────────────┐
│ DXF │ Python │ Name │
├───────────┼────────┼────────────────┤
│ ANSI_874 │ cp874 │ Thai │
├───────────┼────────┼────────────────┤
│ ANSI_932 │ cp932 │ Japanese │
├───────────┼────────┼────────────────┤
│ ANSI_936 │ gbk │ UnifiedChinese │
├───────────┼────────┼────────────────┤
│ ANSI_949 │ cp949 │ Korean │
├───────────┼────────┼────────────────┤
│ ANSI_950 │ cp950 │ TradChinese │
├───────────┼────────┼────────────────┤
│ ANSI_1250 │ cp1250 │ CentralEurope │
├───────────┼────────┼────────────────┤
│ ANSI_1251 │ cp1251 │ Cyrillic │
├───────────┼────────┼────────────────┤
│ ANSI_1252 │ cp1252 │ WesternEurope │
├───────────┼────────┼────────────────┤
│ ANSI_1253 │ cp1253 │ Greek │
├───────────┼────────┼────────────────┤
│ ANSI_1254 │ cp1254 │ Turkish │
├───────────┼────────┼────────────────┤
│ ANSI_1255 │ cp1255 │ Hebrew │
├───────────┼────────┼────────────────┤
│ ANSI_1256 │ cp1256 │ Arabic │
├───────────┼────────┼────────────────┤
│ ANSI_1257 │ cp1257 │ Baltic │
├───────────┼────────┼────────────────┤
│ ANSI_1258 │ cp1258 │ Vietnam │
└───────────┴────────┴────────────────┘
DXF R2007 and later
Starting with DXF R2007 (AC1021) the drawing file is UTF-8 encoded, the header variable $DWGCODEPAGE is
still in use, but I don’t know, if the setting still has any meaning.
Encoding characters in the unicode schema \U+nnnn is still functional.
SEE ALSO:
String value encoding
DXF Tags
A Drawing Interchange File is simply an ASCII text file with a file type of .dxf and special formatted
text. The basic file structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on
its own line and a the DXF value on the following line. In the ezdxf documentation DXF tags will be
written as (group code, value).
With the introduction of extended symbol names in DXF R2000, the 255-character limit for strings has been
increased to 2049 single-byte characters not including the newline at the end of the line. Nonetheless
its safer to use only strings with 255 and less characters, because its not clear if this fact is true
for ALL string group codes or only for symbols like layer- or text style names and not all 3rd party
libraries may handle this fact correct. The MTEXT content and binary data is still divided into chunks
with less than 255 characters.
Group codes are indicating the value type:
┌────────────┬───────────────────────────────────────┐
│ Group Code │ Value Type │
├────────────┼───────────────────────────────────────┤
│ 0-9 │ String │
├────────────┼───────────────────────────────────────┤
│ 10-39 │ Double precision 3D point value │
├────────────┼───────────────────────────────────────┤
│ 40-59 │ Double-precision floating-point value │
├────────────┼───────────────────────────────────────┤
│ 60-79 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 90-99 │ 32-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 100 │ String │
├────────────┼───────────────────────────────────────┤
│ 102 │ String │
├────────────┼───────────────────────────────────────┤
│ 105 │ String representing hexadecimal (hex) │
│ │ handle value │
├────────────┼───────────────────────────────────────┤
│ 110-119 │ Double precision floating-point value │
├────────────┼───────────────────────────────────────┤
│ 120-129 │ Double precision floating-point value │
├────────────┼───────────────────────────────────────┤
│ 130-139 │ Double precision floating-point value │
├────────────┼───────────────────────────────────────┤
│ 140-149 │ Double precision scalar │
│ │ floating-point value │
├────────────┼───────────────────────────────────────┤
│ 160-169 │ 64-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 170-179 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 210-239 │ Double-precision floating-point value │
├────────────┼───────────────────────────────────────┤
│ 270-279 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 280-289 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 290-299 │ Boolean flag value │
├────────────┼───────────────────────────────────────┤
│ 300-309 │ Arbitrary text string │
├────────────┼───────────────────────────────────────┤
│ 310-319 │ String representing hex value of │
│ │ binary chunk │
├────────────┼───────────────────────────────────────┤
│ 320-329 │ Arbitrary pointer, hex object ID, not │
│ │ translated during INSERT and XREF │
│ │ operations │
├────────────┼───────────────────────────────────────┤
│ 330-339 │ Soft-pointer, hex object ID, │
│ │ translated during INSERT and XREF │
│ │ operations │
├────────────┼───────────────────────────────────────┤
│ 340-349 │ Hard-pointer, hex object ID, │
│ │ translated during INSERT and XREF │
│ │ operations │
├────────────┼───────────────────────────────────────┤
│ 350-359 │ Soft-owner, hex object ID, translated │
│ │ during INSERT and XREF operations │
├────────────┼───────────────────────────────────────┤
│ 360-369 │ Hard-owner, hex object ID, translated │
│ │ during INSERT and XREF operations │
├────────────┼───────────────────────────────────────┤
│ 370-379 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 380-389 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 390-399 │ String representing hex handle value │
├────────────┼───────────────────────────────────────┤
│ 400-409 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 410-419 │ String │
├────────────┼───────────────────────────────────────┤
│ 420-429 │ 32-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 430-439 │ String │
├────────────┼───────────────────────────────────────┤
│ 440-449 │ 32-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 450-459 │ Long │
├────────────┼───────────────────────────────────────┤
│ 460-469 │ Double-precision floating-point value │
├────────────┼───────────────────────────────────────┤
│ 470-479 │ String │
├────────────┼───────────────────────────────────────┤
│ 480-481 │ Hard-pointer, hex object ID, │
│ │ translated during INSERT and XREF │
│ │ operations │
├────────────┼───────────────────────────────────────┤
│ 999 │ Comment (string) │
├────────────┼───────────────────────────────────────┤
│ 1000-1009 │ String │
├────────────┼───────────────────────────────────────┤
│ 1010-1059 │ Double-precision floating-point value │
├────────────┼───────────────────────────────────────┤
│ 1060-1070 │ 16-bit integer value │
├────────────┼───────────────────────────────────────┤
│ 1071 │ 32-bit integer value │
└────────────┴───────────────────────────────────────┘
Explanation for some important group codes:
┌───────────────┬───────────────────────────────────────┐
│ Group Code │ Meaning │
├───────────────┼───────────────────────────────────────┤
│ 0 │ DXF structure tag, entity start/end │
│ │ or table entries │
├───────────────┼───────────────────────────────────────┤
│ 1 │ The primary text value for an entity │
├───────────────┼───────────────────────────────────────┤
│ 2 │ A name: Attribute tag, Block name, │
│ │ and so on. Also used to identify a │
│ │ DXF section or table name. │
├───────────────┼───────────────────────────────────────┤
│ 3-4 │ Other textual or name values │
├───────────────┼───────────────────────────────────────┤
│ 5 │ Entity handle as hex string (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 6 │ Line type name (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 7 │ Text style name (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 8 │ Layer name (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 9 │ Variable name identifier (used only │
│ │ in HEADER section of the DXF file) │
├───────────────┼───────────────────────────────────────┤
│ 10 │ Primary X coordinate (start point of │
│ │ a Line or Text entity, center of a │
│ │ Circle, etc.) │
├───────────────┼───────────────────────────────────────┤
│ 11-18 │ Other X coordinates │
├───────────────┼───────────────────────────────────────┤
│ 20 │ Primary Y coordinate. 2n values │
│ │ always correspond to 1n values and │
│ │ immediately follow them in the file │
│ │ (expected by ezdxf!) │
├───────────────┼───────────────────────────────────────┤
│ 21-28 │ Other Y coordinates │
├───────────────┼───────────────────────────────────────┤
│ 30 │ Primary Z coordinate. 3n values │
│ │ always correspond to 1n and 2n values │
│ │ and immediately follow them in the │
│ │ file (expected by ezdxf!) │
├───────────────┼───────────────────────────────────────┤
│ 31-38 │ Other Z coordinates │
├───────────────┼───────────────────────────────────────┤
│ 39 │ This entity’s thickness if nonzero │
│ │ (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 40-48 │ Float values (text height, scale │
│ │ factors, etc.) │
├───────────────┼───────────────────────────────────────┤
│ 49 │ Repeated value - multiple 49 groups │
│ │ may appear in one entity for variable │
│ │ length tables (such as the dash │
│ │ lengths in the LTYPE table). A 7x │
│ │ group always appears before the first │
│ │ 49 group to specify the table length │
├───────────────┼───────────────────────────────────────┤
│ 50-58 │ Angles in degree │
├───────────────┼───────────────────────────────────────┤
│ 62 │ Color number (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 66 │ “Entities follow” flag (fixed), only │
│ │ in INSERT and POLYLINE entities │
├───────────────┼───────────────────────────────────────┤
│ 67 │ Identifies whether entity is in │
│ │ modelspace (0) or paperspace (1) │
├───────────────┼───────────────────────────────────────┤
│ 68 │ Identifies whether viewport is on but │
│ │ fully off screen, is not active, or │
│ │ is off │
├───────────────┼───────────────────────────────────────┤
│ 69 │ Viewport identification number │
├───────────────┼───────────────────────────────────────┤
│ 70-78 │ Integer values such as repeat counts, │
│ │ flag bits, or modes │
├───────────────┼───────────────────────────────────────┤
│ 105 │ DIMSTYLE entity handle as hex string │
│ │ (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 210, 220, 230 │ X, Y, and Z components of extrusion │
│ │ direction (fixed) │
├───────────────┼───────────────────────────────────────┤
│ 310 │ Proxy entity graphics as binary │
│ │ encoded data │
├───────────────┼───────────────────────────────────────┤
│ 330 │ Owner handle as hex string │
├───────────────┼───────────────────────────────────────┤
│ 347 │ MATERIAL handle as hex string │
├───────────────┼───────────────────────────────────────┤
│ 348 │ VISUALSTYLE handle as hex string │
├───────────────┼───────────────────────────────────────┤
│ 370 │ Lineweight in mm times 100 (e.g. │
│ │ 0.13mm = 13). │
├───────────────┼───────────────────────────────────────┤
│ 390 │ PLOTSTYLE handle as hex string │
├───────────────┼───────────────────────────────────────┤
│ 420 │ True color value as 0x00RRGGBB 24-bit │
│ │ value │
├───────────────┼───────────────────────────────────────┤
│ 430 │ Color name as string │
├───────────────┼───────────────────────────────────────┤
│ 440 │ Transparency value 0x020000TT 0 = │
│ │ fully transparent / 255 = opaque │
├───────────────┼───────────────────────────────────────┤
│ 999 │ Comments │
└───────────────┴───────────────────────────────────────┘
For explanation of all group codes see: DXF Group Codes in Numerical Order Reference provided by Autodesk
Extended Data
DXF R2018 Reference
Extended data (XDATA) is created by AutoLISP or ObjectARX applications but any other application like
ezdxf can also define XDATA. If an entity contains extended data, it follows the entity’s normal
definition.
But extended group codes (>=1000) can appear before the XDATA section, an example is the
BLOCKBASEPOINTPARAMETER entity in AutoCAD Civil 3D or AutoCAD Map 3D.
┌──────────────────┬───────────────────────────────────────┐
│ Group Code │ Description │
├──────────────────┼───────────────────────────────────────┤
│ 1000 │ Strings in extended data can be up to │
│ │ 255 bytes long (with the 256th byte │
│ │ reserved for the null character) │
├──────────────────┼───────────────────────────────────────┤
│ 1001 │ (fixed) Registered application name │
│ │ (ASCII string up to 31 bytes long) │
│ │ for XDATA │
├──────────────────┼───────────────────────────────────────┤
│ 1002 │ (fixed) An extended data control │
│ │ string can be either '{' or '}'. │
│ │ These braces enable applications to │
│ │ organize their data by subdividing │
│ │ the data into lists. Lists can be │
│ │ nested. │
├──────────────────┼───────────────────────────────────────┤
│ 1003 │ Name of the layer associated with the │
│ │ extended data │
├──────────────────┼───────────────────────────────────────┤
│ 1004 │ Binary data is organized into │
│ │ variable-length chunks. The maximum │
│ │ length of each chunk is 127 bytes. In │
│ │ ASCII DXF files, binary data is │
│ │ represented as a string of │
│ │ hexadecimal digits, two per binary │
│ │ byte │
├──────────────────┼───────────────────────────────────────┤
│ 1005 │ Database Handle of entities in the │
│ │ drawing database, see also: About │
│ │ 1005 Group Codes │
├──────────────────┼───────────────────────────────────────┤
│ 1010, 1020, 1030 │ Three real values, in the order X, Y, │
│ │ Z. They can be used as a point or │
│ │ vector record that will not be │
│ │ modified at any transformation of the │
│ │ entity. │
├──────────────────┼───────────────────────────────────────┤
│ 1011, 1021, 1031 │ a WCS point that is moved, scaled, │
│ │ rotated and mirrored along with the │
│ │ entity │
├──────────────────┼───────────────────────────────────────┤
│ 1012, 1012, 1022 │ a WCS displacement that is scaled, │
│ │ rotated and mirrored along with the │
│ │ entity, but is not moved │
├──────────────────┼───────────────────────────────────────┤
│ 1013, 1023, 1033 │ a WCS direction that is rotated and │
│ │ mirrored along with the entity, but │
│ │ is not moved or scaled │
├──────────────────┼───────────────────────────────────────┤
│ 1040 │ A real value │
├──────────────────┼───────────────────────────────────────┤
│ 1041 │ Distance, a real value that is scaled │
│ │ along with the parent entity │
├──────────────────┼───────────────────────────────────────┤
│ 1042 │ Scale Factor, also a real value that │
│ │ is scaled along with the parent. The │
│ │ difference between a distance and a │
│ │ scale factor is application-defined │
├──────────────────┼───────────────────────────────────────┤
│ 1070 │ A 16-bit integer (signed or unsigned) │
├──────────────────┼───────────────────────────────────────┤
│ 1071 │ A 32-bit signed (long) integer │
└──────────────────┴───────────────────────────────────────┘
The (1001, …) tag indicates the beginning of extended data. In contrast to normal entity data, with
extended data the same group code can appear multiple times, and order is important.
Extended data is grouped by registered application name. Each registered application group begins with a
(1001, APPID) tag, with the application name as APPID string value. Registered application names
correspond to APPID symbol table entries.
An application can use as many APPID names as needed. APPID names are permanent, although they can be
purged if they aren’t currently used in the drawing. Each APPID name can have no more than one data
group attached to each entity. Within an application group, the sequence of extended data groups and
their meaning is defined by the application.
String value encoding
String values stored in a DXF file is plain ASCII or UTF-8, AutoCAD also supports CIF (Common Interchange
Format) and MIF (Maker Interchange Format) encoding. The UTF-8 format is only supported in DXF R2007 and
later.
Ezdxf on import converts all strings into Python unicode strings without encoding or decoding CIF/MIF.
String values containing Unicode characters are represented with control character sequences \U+nnnn.
(e.g. r'TEST\U+7F3A\U+4E4F\U+89E3\U+91CA\U+6B63THIS\U+56FE')
To support the DXF unicode encoding ezdxf registers an encoding codec dxf_backslash_replace, defined in
ezdxf.lldxf.encoding().
String values can be stored with these dxf group codes:
• 0 - 9
• 100 - 101
• 300 - 309
• 410 - 419
• 430 - 439
• 470 - 479
• 999 - 1003
Multi tag text (MTEXT)
If the text string is less than 250 characters, all characters appear in tag (1, …). If the text string
is longer than 250 characters, the string is divided into 250-character chunks, which appear in one or
more (3, …) tags. If (3, …) tags are used, the last group is a (1, …) tag and has fewer than 250
characters:
3
... TwoHundredAndFifty Characters ....
3
... TwoHundredAndFifty Characters ....
1
less than TwoHundredAndFifty Characters
As far I know this is only supported by the MTEXT entity.
SEE ALSO:
DXF File Encoding
DXF R13 and later tag structure
With the introduction of DXF R13 Autodesk added additional group codes and DXF tag structures to the DXF
Standard.
Subclass Markers
Subclass markers (100, Subclass Name) divides DXF objects into several sections. Group codes can be
reused in different sections. A subclass ends with the following subclass marker or at the beginning of
xdata or the end of the object. See Subclass Marker Example in the DXF Reference.
Quote about group codes from the DXF reference
Some group codes that define an entity always appear; others are optional and appear only if their
values differ from the defaults.
Do not write programs that rely on the order given here. The end of an entity is indicated by the next
0 group, which begins the next entity or indicates the end of the section.
Note: Accommodating DXF files from future releases of AutoCAD will be easier if you write your DXF
processing program in a table-driven way, ignore undefined group codes, and make no assumptions about
the order of group codes in an entity. With each new AutoCAD release, new group codes will be added to
entities to accommodate additional features.
Usage of group codes in subclasses twice
Some later entities entities contains the same group code twice for different purposes, so order in the
sense of which one comes first is important. (e.g. ATTDEF group code 280)
Tag order is sometimes important especially for AutoCAD
In LWPOLYLINE the order of tags is important, if the count tag is not the first tag in the AcDbPolyline
subclass, AutoCAD will not close the polyline when the close flag is set, by the way other applications
like BricsCAD ignores the tag order and renders the polyline always correct.
Extension Dictionary
The extension dictionary is an optional sequence that stores the handle of a DICTIONARY object that
belongs to the current object, which in turn may contain entries. This facility allows attachment of
arbitrary database objects to any database object. Any object or entity may have this section.
The extension dictionary tag sequence:
102
{ACAD_XDICTIONARY
360
Hard-owner ID/handle to owner dictionary
102
}
Persistent Reactors
Persistent reactors are an optional sequence that stores object handles of objects registering themselves
as reactors on the current object. Any object or entity may have this section.
The persistent reactors tag sequence:
102
{ACAD_REACTORS
330
first Soft-pointer ID/handle to owner dictionary
330
second Soft-pointer ID/handle to owner dictionary
...
102
}
Application-Defined Codes
Starting at DXF R13, DXF objects can contain application-defined codes outside of XDATA. This
application-defined codes can contain any tag except (0, …) and (102, ‘{…’). “{YOURAPPID” means the APPID
string with an preceding “{”. The application defined data tag sequence:
102
{YOURAPPID
...
102
}
(102, 'YOURAPPID}') is also a valid closing tag:
102
{YOURAPPID
...
102
YOURAPPID}
All groups defined with a beginning (102, …) appear in the DXF reference before the first subclass
marker, I don’t know if these groups can appear after the first or any subclass marker. Ezdxf accepts
them at any position, and by default ezdxf adds new app data in front of the first subclass marker to the
first tag section of an DXF object.
Exception XRECORD: Tags with group code 102 and a value string without a preceding “{” or the scheme
“YOURAPPID}”, should be treated as usual group codes.
Embedded Objects
The concept of embedded objects was introduced with AutoCAD 2018 (DXF version AC1032) and this is the
only information I found about it at the Autodesk knowledge base: Embedded and Encapsulated Objects
Quote from Embedded and Encapsulated Objects:
For DXF filing, the embedded object must be filed out and in after all the data of the encapsulating
object has been filed out and in.
A separator is needed between the encapsulating object’s data and the subsequent embedded object’s
data. The separator must be similar in function to the group 0 or 100 in that it must cause the filer
to stop reading data. The normal DXF group code 0 cannot be used because DXF proxies use it to
determine when to stop reading data. The group code 100 could have been used, but it might have caused
confusion when manually reading a DXF file, and there was a need to distinguish when an embedded
object is about to be written out in order to do some internal bookkeeping. Therefore, the DXF group
code 101 was introduced.
Hard facts:
• Only used in ATTRIB, ATTDEF (embedded MTEXT) and MTEXT (columns) in DXF R2018.
• Embedded object start with (101, “Embedded Object”) tag
• Embedded object is appended to the encapsulated object
• Embedded object tags can contain any group code except the DXF structure tag (0, …)
Unconfirmed assumptions:
• The embedded object is written before the Extended Data. No examples for entities including embedded
objects and XDATA at the same time.
• XDATA sections replaced by embedded objects, at least for the MTEXT entity
• The encapsulating object can contain more than one embedded object.
• Embedded objects separated by (101, “Embedded Object”) tags
• every entity can contain embedded objects
Real world example from an AutoCAD 2018 file:
100 <<< start of encapsulating object
AcDbMText
10
2762.148
20
2327.073
30
0.0
40
2.5
41
18.852
46
0.0
71
1
72
5
1
{\fArial|b0|i0|c162|p34;CHANGE;\P\P\PTEXT}
73
1
44
1.0
101 <<< start of embedded object
Embedded Object
70
1
10
1.0
20
0.0
30
0.0
11
2762.148
21
2327.073
31
0.0
40
18.852
41
0.0
42
15.428
43
15.043
71
2
72
1
44
18.852
45
12.5
73
0
74
0
46
0.0
Handles
A handle is an arbitrary but in your DXF file unique hex value as string like ‘10FF’. It is common to to
use uppercase letters for hex numbers. Handle can have up to 16 hexadecimal digits (8 bytes).
For DXF R10 until R12 the usage of handles was optional. The header variable $HANDLING set to 1 indicate
the usage of handles, else $HANDLING is 0 or missing.
For DXF R13 and later the usage of handles is mandatory and the header variable $HANDLING was removed.
The $HANDSEED variable in the header section should be greater than the biggest handle used in the DXF
file, so a CAD application can assign handle values starting with the $HANDSEED value. But as always,
don’t rely on the header variable it could be wrong, AutoCAD ignores this value.
Handle Definition
Entity handle definition is always the (5, ...), except for entities of the DIMSTYLE table (105, ...),
because the DIMSTYLE entity has also a group code 5 tag for DIMBLK.
Handle Pointer
A pointer is a reference to a DXF object in the same DXF file. There are four types of pointers:
• Soft-pointer handle
• Hard-pointer handle
• Soft-owner handle
• Hard-owner handle
Also, a group code range for “arbitrary” handles is defined to allow convenient storage of handle values
that are unchanged at any operation (AutoCAD).
Pointer and Ownership
A pointer is a reference that indicates usage, but not possession or responsibility, for another object.
A pointer reference means that the object uses the other object in some way, and shares access to it. An
ownership reference means that an owner object is responsible for the objects for which it has an owner
handle. An object can have any number of pointer references associated with it, but it can have only one
owner.
Hard and Soft References
Hard references, whether they are pointer or owner, protect an object from being purged. Soft references
do not.
In AutoCAD, block definitions and complex entities are hard owners of their elements. A symbol table and
dictionaries are soft owners of their elements. Polyline entities are hard owners of their vertex and
seqend entities. Insert entities are hard owners of their attrib and seqend entities.
When establishing a reference to another object, it is recommended that you think about whether the
reference should protect an object from the PURGE command.
A hard- and soft pointers will be translated during INSERT and XREF operations.
Arbitrary Handles
Arbitrary handles are distinct in that they are not translated to session-persistent identifiers
internally, or to entity names in AutoLISP, and so on. They are stored as handles. When handle values are
translated in drawing-merge operations, arbitrary handles are ignored.
In all environments, arbitrary handles can be exchanged for entity names of the current drawing by means
of the handent functions. A common usage of arbitrary handles is to refer to objects in external DXF and
DWG files.
About 1005 Group Codes
(1005, ...) xdata have the same behavior and semantics as soft pointers, which means that they are
translated whenever the host object is merged into a different drawing. However, 1005 items are not
translated to session-persistent identifiers or internal entity names in AutoLISP and ObjectARX. They are
stored as handles.
When a drawing with handles and extended data handles is imported into another drawing using INSERT,
INSERT , XREF Bind, XBIND, or partial OPEN, the extended data handles are **translated* in the same
manner as their corresponding entity handles, thus maintaining their binding. This is also done in the
EXPLODE block operation or for any other AutoCAD operation. When AUDIT detects an extended data handle
that doesn’t match the handle of an entity in the drawing file, it is considered an error. If AUDIT is
fixing entities, it sets the handle to “0”
DXF File Structure
A DXF File is simply an ASCII text file with a file type of .dxf and special formatted text. The basic
file structure are DXF tags, a DXF tag consist of a DXF group code as an integer value on its own line
and a the DXF value on the following line. In the ezdxf documentation DXF tags will be written as (group
code, value). There exist a binary DXF format, but it seems that it is not often used and for reducing
file size, zipping is much more efficient. ezdxf does support reading binary encoded DXF files.
SEE ALSO:
For more information about DXF tags see: DXF Tags
A usual DXF file is organized in sections, starting with the DXF tag (0, ‘SECTION’) and ending with the
DXF tag (0, ‘ENDSEC’). The (0, ‘EOF’) tag signals the end of file.
1. HEADER: General information about the drawing is found in this section of the DXF file. Each
parameter has a variable name starting with ‘$’ and an associated value. Has to be the first section.
2. CLASSES: Holds the information for application defined classes. (DXF R13 and later)
3. TABLES:: Contains several tables for style and property definitions.
• Linetype table (LTYPE)
• Layer table (LAYER)
• Text Style table (STYLE)
• View table (VIEW): (IMHO) layout of the CAD working space, only interesting for interactive CAD
applications
• Viewport configuration table (VPORT): The VPORT table is unique in that it may contain several
entries with the same name (indicating a multiple-viewport configuration). The entries corresponding
to the active viewport configuration all have the name *ACTIVE. The first such entry describes the
current viewport.
• Dimension Style table (DIMSTYLE)
• User Coordinate System table (UCS) (IMHO) only interesting for interactive CAD applications
• Application Identification table (APPID): Table of names for all applications registered with a
drawing.
• Block Record table (BLOCK_RECORD) (DXF R13 and Later)
4. BLOCKS: Contains all block definitions. The block name *Model_Space or *MODEL_SPACE is reserved for
the drawing modelspace and the block name *Paper_Space or *PAPER_SPACE is reserved for the active
paperspace layout. Both block definitions are empty, the content of the modelspace and the active
paperspace is stored in the ENTITIES section. The entities of other layouts are stored in special
block definitions called *Paper_Spacennn, nnn is an arbitrary but unique number.
5. ENTITIES: Contains all graphical entities of the modelspace and the active paperspace layout. Entities
of other layouts are stored in the BLOCKS sections.
6. OBJECTS: Contains all non-graphical objects of the drawing (DXF R13 and later)
7. THUMBNAILIMAGE: Contains a preview image of the DXF file, it is optional and can usually be ignored.
(DXF R13 and later)
8. ACDSDATA: (DXF R2013 and later) No information in the DXF reference about this section
9. END OF FILE
For further information read the original DXF Reference.
Structure of a usual DXF R12 file:
0 <<< Begin HEADER section, has to be the first section
SECTION
2
HEADER
<<< Header variable items go here
0 <<< End HEADER section
ENDSEC
0 <<< Begin TABLES section
SECTION
2
TABLES
0
TABLE
2
VPORT
70 <<< viewport table maximum item count
<<< viewport table items go here
0
ENDTAB
0
TABLE
2
APPID, DIMSTYLE, LTYPE, LAYER, STYLE, UCS, VIEW, or VPORT
70 <<< Table maximum item count, a not reliable value and ignored by AutoCAD
<<< Table items go here
0
ENDTAB
0 <<< End TABLES section
ENDSEC
0 <<< Begin BLOCKS section
SECTION
2
BLOCKS
<<< Block definition entities go here
0 <<< End BLOCKS section
ENDSEC
0 <<< Begin ENTITIES section
SECTION
2
ENTITIES
<<< Drawing entities go here
0 <<< End ENTITIES section
ENDSEC
0 <<< End of file marker (required)
EOF
Minimal DXF Content
DXF R12
Contrary to the previous chapter, the DXF R12 format (AC1009) and prior requires just the ENTITIES
section:
0
SECTION
2
ENTITIES
0
ENDSEC
0
EOF
DXF R13/R14 and later
DXF version R13/14 and later needs much more DXF content than DXF R12.
Required sections: HEADER, CLASSES, TABLES, ENTITIES, OBJECTS
The HEADER section requires two entries:
• $ACADVER
• $HANDSEED
The CLASSES section can be empty, but some DXF entities requires class definitions to work in AutoCAD.
The TABLES section requires following tables:
• VPORT entry *ACTIVE is not required! Empty table is ok for AutoCAD.
• LTYPE with at least the following line types defined:
• BYBLOCK
• BYLAYER
• CONTINUOUS
• LAYER with at least an entry for layer ‘0’
• STYLE with at least an entry for style STANDARD
• VIEW can be empty
• UCS can be empty
• APPID with at least an entry for ACAD
• DIMSTYLE with at least an entry for style STANDARD
• BLOCK_RECORDS with two entries:
• *MODEL_SPACE
• *PAPER_SPACE
The BLOCKS section requires two BLOCKS:
• *MODEL_SPACE
• *PAPER_SPACE
The ENTITIES section can be empty.
The OBJECTS section requires following entities:
• DICTIONARY - the root dict - one entry named ACAD_GROUP
• DICTIONARY ACAD_GROUP can be empty
Minimal DXF to download: https://github.com/mozman/ezdxf/tree/master/examples_dxf
Data Model
Database Objects
(from the DXF Reference)
AutoCAD drawings consist largely of structured containers for database objects. Database objects each
have the following features:
• A handle whose value is unique to the drawing/DXF file, and is constant for the lifetime of the
drawing. This format has existed since AutoCAD Release 10, and as of AutoCAD Release 13, handles are
always enabled.
• An optional XDATA table, as entities have had since AutoCAD Release 11.
• An optional persistent reactor table.
• An optional ownership pointer to an extension dictionary which, in turn, owns subobjects placed in
it by an application.
Symbol tables and symbol table records are database objects and, thus, have a handle. They can also have
xdata and persistent reactors in their DXF records.
DXF R12 Data Model
The DXF R12 data model is identical to the file structure:
• HEADER section: common settings for the DXF drawing
• TABLES section: definitions for LAYERS, LINETYPE, STYLES ….
• BLOCKS section: block definitions and its content
• ENTITIES section: modelspace and paperspace content
References are realized by simple names. The INSERT entity references the BLOCK definition by the BLOCK
name, a TEXT entity defines the associated STYLE and LAYER by its name and so on, handles are not needed.
Layout association of graphical entities in the ENTITIES section by the paper_space tag (67, 0 or 1), 0
or missing tag means modelspace, 1 means paperspace. The content of BLOCK definitions is enclosed by the
BLOCK and the ENDBLK entity, no additional references are needed.
A clean and simple file structure and data model, which seems to be the reason why the DXF R12 Reference
(released 1992) is still a widely used file format and Autodesk/AutoCAD supports the format by reading
and writing DXF R12 files until today (DXF R13/R14 has no writing support by AutoCAD!).
TODO: list of available entities
SEE ALSO:
More information about the DXF DXF File Structure
DXF R13+ Data Model
With the DXF R13 file format, handles are mandatory and they are really used for organizing the new data
structures introduced with DXF R13.
The HEADER section is still the same with just more available settings.
The new CLASSES section contains AutoCAD specific data, has to be written like AutoCAD it does, but must
not be understood.
The TABLES section got a new BLOCK_RECORD table - see Block Management Structures for more information.
The BLOCKS sections is mostly the same, but with handles, owner tags and new ENTITY types. Not active
paperspace layouts store their content also in the BLOCKS section - see Layout Management Structures for
more information.
The ENTITIES section is also mostly same, but with handles, owner tags and new ENTITY types.
TODO: list of new available entities
And the new OBJECTS section - now its getting complicated!
Most information about the OBJECTS section is just guessed or gathered by trail and error, because the
documentation of the OBJECTS section and its objects in the DXF reference provided by Autodesk is very
shallow. This is also the reason why I started the DXF Internals section, may be it helps other
developers to start one or two steps above level zero.
The OBJECTS sections stores all the non-graphical entities of the DXF drawing. Non-graphical entities
from now on just called ‘DXF objects’ to differentiate them from graphical entities, just called
‘entities’. The OBJECTS section follows commonly the ENTITIES section, but this is not mandatory.
DXF R13 introduces several new DXF objects, which resides exclusive in the OBJECTS section, taken from
the DXF R14 reference, because I have no access to the DXF R13 reference, the DXF R13 reference is a
compiled .hlp file which can’t be read on Windows 10 or later, this a perfect example for not using
closed (proprietary) data formats ;):
• DICTIONARY: a general structural entity as a <name: handle> container
• ACDBDICTIONARYWDFLT: a DICTIONARY with a default value
• DICTIONARYVAR: used by AutoCAD to store named values in the database
• ACAD_PROXY_OBJECT: proxy object for entities created by other applications than AutoCAD
• GROUP: groups graphical entities without the need of a BLOCK definition
• IDBUFFER: just a list of references to objects
• IMAGEDEF: IMAGE definition structure, required by the IMAGE entity
• IMAGEDEF_REACTOR: also required by the IMAGE entity
• LAYER_INDEX: container for LAYER names
• MLINESTYLE
• OBJECT_PTR
• RASTERVARIABLES
• SPATIAL_INDEX: is always written out empty to a DXF file. This object can be ignored.
• SPATIAL_FILTER
• SORTENTSTABLE: control for regeneration/redraw order of entities
• XRECORD: used to store and manage arbitrary data. This object is similar in concept to XDATA but is
not limited by size or order. Not supported by R13c0 through R13c3.
Still missing the LAYOUT object, which is mandatory in DXF R2000 to manage multiple paperspace layouts. I
don’t know how DXF R13/R14 manages multiple layouts or if they even support this feature, but I don’t
care much about DXF R13/R14, because AutoCAD has no write support for this two formats anymore. Ezdxf
tries to upgrade this two DXF versions to DXF R2000 with the advantage of only two different data models
to support: DXF R12 and DXF R2000+
New objects introduced by DXF R2000:
• LAYOUT: management object for modelspace and multiple paperspace layouts
• ACDBPLACEHOLDER: surprise - just a place holder
New objects in DXF R2004:
• DIMASSOC
• LAYER_FILTER
• MATERIAL
• PLOTSETTINGS
• VBA_PROJECT
New objects in DXF R2007:
• DATATABLE
• FIELD
• LIGHTLIST
• RENDER
• RENDERENVIRONMENT
• MENTALRAYRENDERSETTINGS
• RENDERGLOBAL
• SECTION
• SUNSTUDY
• TABLESTYLE
• UNDERLAYDEFINITION
• VISUALSTYLE
• WIPEOUTVARIABLES
New objects in DXF R2013:
• GEODATA
New objects in DXF R2018:
• ACDBNAVISWORKSMODELDEF
Undocumented objects:
• SCALE
• ACDBSECTIONVIEWSTYLE
• FIELDLIST
Objects Organisation
Many objects in the OBJECTS section are organized in a tree-like structure of DICTIONARY objects.
Starting point for this data structure is the ‘root’ DICTIONARY with several entries to other DICTIONARY
objects. The root DICTIONARY has to be the first object in the OBJECTS section. The management dicts
for GROUP and LAYOUT objects are really important, but IMHO most of the other management tables are
optional and for the most use cases not necessary. Ezdxf creates only these entries in the root dict and
most of them pointing to an empty DICTIONARY:
• ACAD_COLOR: points to an empty DICTIONARY
• ACAD_GROUP: required
• ACAD_LAYOUT: required
• ACAD_MATERIAL: points to an empty DICTIONARY
• ACAD_MLEADERSTYLE: points to an empty DICTIONARY
• ACAD_MLINESTYLE: points to an empty DICTIONARY
• ACAD_PLOTSETTINGS: points to an empty DICTIONARY
• ACAD_PLOTSTYLENAME: required, points to ACDBDICTIONARYWDFLT with one entry: ‘Normal’
• ACAD_SCALELIST: points to an empty DICTIONARY
• ACAD_TABLESTYLE: points to an empty DICTIONARY
• ACAD_VISUALSTYLE: points to an empty DICTIONARY
Root DICTIONARY content for DXF R2018
0
SECTION
2 <<< start of the OBJECTS section
OBJECTS
0 <<< root DICTIONARY has to be the first object in the OBJECTS section
DICTIONARY
5 <<< handle
C
330 <<< owner tag
0 <<< always #0, has no owner
100
AcDbDictionary
281 <<< hard owner flag
1
3 <<< first entry
ACAD_CIP_PREVIOUS_PRODUCT_INFO
350 <<< handle to target (pointer)
78B <<< points to a XRECORD with product info about the creator application
3 <<< entry with unknown meaning, if I should guess: something with about colors ...
ACAD_COLOR
350
4FB <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACAD_DETAILVIEWSTYLE
350
7ED <<< points to a DICTIONARY
3 <<< GROUP management, mandatory in all DXF versions
ACAD_GROUP
350
4FC <<< points to a DICTIONARY
3 <<< LAYOUT management, mandatory if more than the *active* paperspace is used
ACAD_LAYOUT
350
4FD <<< points to a DICTIONARY
3 <<< MATERIAL management
ACAD_MATERIAL
350
4FE <<< points to a DICTIONARY
3 <<< MLEADERSTYLE management
ACAD_MLEADERSTYLE
350
4FF <<< points to a DICTIONARY
3 <<< MLINESTYLE management
ACAD_MLINESTYLE
350
500 <<< points to a DICTIONARY
3 <<< PLOTSETTINGS management
ACAD_PLOTSETTINGS
350
501 <<< points to a DICTIONARY
3 <<< plot style name management
ACAD_PLOTSTYLENAME
350
503 <<< points to a ACDBDICTIONARYWDFLT
3 <<< SCALE management
ACAD_SCALELIST
350
504 <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACAD_SECTIONVIEWSTYLE
350
7EB <<< points to a DICTIONARY
3 <<< TABLESTYLE management
ACAD_TABLESTYLE
350
505 <<< points to a DICTIONARY
3 <<< VISUALSTYLE management
ACAD_VISUALSTYLE
350
506 <<< points to a DICTIONARY
3 <<< entry with unknown meaning
ACDB_RECOMPOSE_DATA
350
7F3
3 <<< entry with unknown meaning
AcDbVariableDictionary
350
7AE <<< points to a DICTIONARY with handles to DICTIONARYVAR objects
0
DICTIONARY
...
...
0
ENDSEC
DXF Structures
DXF Sections
HEADER Section
In DXF R12 and prior the HEADER section was optional, but since DXF R13 the HEADER section is mandatory.
The overall structure is:
0 <<< Begin HEADER section
SECTION
2
HEADER
9
$ACADVER <<< Header variable items go here
1
AC1009
...
0
ENDSEC <<< End HEADER section
A header variable has a name defined by a (9, Name) tag and following value tags.
SEE ALSO:
Documentation of ezdxf HeaderSection class.
DXF Reference: Header Variables
CLASSES Section
The CLASSES section contains CLASS definitions which are only important for Autodesk products, some DXF
entities require a class definition or AutoCAD will not open the DXF file.
The CLASSES sections was introduced with DXF AC1015 (AutoCAD Release R13).
SEE ALSO:
DXF Reference: About the DXF CLASSES Section
Documentation of ezdxf ClassesSection class.
The CLASSES section in DXF files holds the information for application-defined classes whose instances
appear in the BLOCKS, ENTITIES, and OBJECTS sections of the database. It is assumed that a class
definition is permanently fixed in the class hierarchy. All fields are required.
Update 2019-03-03:
Class names are not unique, Autodesk Architectural Desktop 2007 uses the same name, but with different
CPP class names in the CLASS section, so storing classes in a dictionary by name as key caused loss of
class entries in ezdxf, using a tuple of (name, cpp_class_name) as storage key solved the problem.
CLASS Entities
SEE ALSO:
DXF Reference: Group Codes for the CLASS entity
CLASS entities have no handle and therefore ezdxf does not store the CLASS entity in the drawing entities
database!
0
SECTION
2 <<< begin CLASSES section
CLASSES
0 <<< first CLASS entity
CLASS
1 <<< class DXF entity name; THIS ENTRY IS MAYBE NOT UNIQUE
ACDBDICTIONARYWDFLT
2 <<< C++ class name; always unique
AcDbDictionaryWithDefault
3 <<< application name
ObjectDBX Classes
90 <<< proxy capabilities flags
0
91 <<< instance counter for custom class, since DXF version AC1018 (R2004)
0 <<< no problem if the counter is wrong, AutoCAD doesn't care about
280 <<< was-a-proxy flag: 1= class was not loaded when this DXF file was created
0 <<< 0= otherwise
281 <<< is-an-entity flag: 1= instances reside in the BLOCKS or ENTITIES section
0 <<< 0= instances may appear only in the OBJECTS section
0 <<< next CLASS entity
CLASS
...
0 <<< end of CLASSES section
ENDSEC
TABLES Section
The TABLES section contains the resource tables of a DXF document.
APPID Table
The APPID table stores unique application identifiers. These identifiers are used to mark sub-sections in
the XDATA section of DXF entities. AutoCAD will not load DXF files which uses AppIDs without an entry in
the AppIDs table and the “ACAD” entry must always exist.
Some known AppIDs:
┌──────────────────────┬──────────┬──────────────────────────────┐
│ APPID │ Used by │ Description │
├──────────────────────┼──────────┼──────────────────────────────┤
│ ACAD │ Autodesk │ various use cases │
├──────────────────────┼──────────┼──────────────────────────────┤
│ AcAecLayerStandard │ Autodesk │ layer description │
├──────────────────────┼──────────┼──────────────────────────────┤
│ AcCmTransparency │ Autodesk │ layer transparency │
├──────────────────────┼──────────┼──────────────────────────────┤
│ HATCHBACKGROUNDCOLOR │ Autodesk │ background color for pattern │
│ │ │ fillings │
├──────────────────────┼──────────┼──────────────────────────────┤
│ EZDXF │ ezdxf │ meta data │
└──────────────────────┴──────────┴──────────────────────────────┘
SEE ALSO:
• DXF Reference: TABLES Section
• DXF Reference: APPID Table
• AppID class
Table Structure DXF R12
0 <<< start of table
TABLE
2 <<< table type
APPID
70 <<< count of table entries, AutoCAD ignores this value
3
0 <<< 1. table entry
APPID
2 <<< unique application identifier
ACAD
70 <<< flags, see `APPID`_ reference
0 <<< in common cases always 0
0 <<< next table entry
APPID
...
0 <<< end of APPID table
ENDTAB
Table Structure DXF R2000+
0 <<< start of table
TABLE
2 <<< table type
APPID
5 <<< table handle
3
330 <<< owner tag, tables have no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries, AutoCAD ignores this value
3
0 <<< first table entry
APPID
5 <<< handle of appid
2A
330 <<< owner handle, handle of APPID table
3
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbRegAppTableRecord
2 <<< unique application identifier
ACAD
70 <<< flags, see `APPID`_ reference
0 <<< in common cases always 0
0 <<< next table entry
APPID
...
0 <<< end of APPID table
ENDTAB
Name References
APPID table entries are referenced by name:
• XDATA section of DXF entities
BLOCK_RECORD Table
Block records are essential elements for the entities management, each layout (modelspace and paperspace)
and every block definition has a block record entry. This block record is the hard owner of the entities
of layouts, each entity has an owner handle which points to a block record of the layout.
DIMSTYLE Table
The DIMSTYLE table stores all dimension style definitions of a DXF drawing.
You have access to the dimension styles table by the attribute Drawing.dimstyles.
SEE ALSO:
• DXF Reference: TABLES Section
• DXF Reference: DIMSTYLE Table
Table Structure DXF R12
0 <<< start of table
TABLE
2 <<< set table type
DIMSTYLE
70 <<< count of line types defined in this table, AutoCAD ignores this value
9
0 <<< 1. DIMSTYLE table entry
DIMSTYLE
<<< DIMSTYLE data tags
0 <<< 2. DIMSTYLE table entry
DIMSTYLE
<<< DIMSTYLE data tags and so on
0 <<< end of DIMSTYLE table
ENDTAB
DIMSTYLE Entry DXF R12
DIMSTYLE Variables DXF R12
Source: CADDManager Blog [image] [image]
┌──────────┬──────┬──────────────────────────────┐
│ DIMVAR │ Code │ Description │
├──────────┼──────┼──────────────────────────────┤
│ DIMALT │ 170 │ Controls the display of │
│ │ │ alternate units in │
│ │ │ dimensions. │
├──────────┼──────┼──────────────────────────────┤
│ DIMALTD │ 171 │ Controls the number of │
│ │ │ decimal places in alternate │
│ │ │ units. If DIMALT is turned │
│ │ │ on, DIMALTD sets the number │
│ │ │ of digits displayed to the │
│ │ │ right of the decimal point │
│ │ │ in the alternate │
│ │ │ measurement. │
├──────────┼──────┼──────────────────────────────┤
│ DIMALTF │ 143 │ Controls the multiplier for │
│ │ │ alternate units. If DIMALT │
│ │ │ is turned on, DIMALTF │
│ │ │ multiplies linear dimensions │
│ │ │ by a factor to produce a │
│ │ │ value in an alternate system │
│ │ │ of measurement. The initial │
│ │ │ value represents the number │
│ │ │ of millimeters in an inch. │
├──────────┼──────┼──────────────────────────────┤
│ DIMAPOST │ 4 │ Specifies a text prefix or │
│ │ │ suffix (or both) to the │
│ │ │ alternate dimension │
│ │ │ measurement for all types of │
│ │ │ dimensions except angular. │
│ │ │ For instance, if the current │
│ │ │ units are Architectural, │
│ │ │ DIMALT is on, DIMALTF is │
│ │ │ 25.4 (the number of │
│ │ │ millimeters per inch), │
│ │ │ DIMALTD is 2, and DIMPOST is │
│ │ │ set to “mm”, a distance of │
│ │ │ 10 units would be displayed │
│ │ │ as 10”[254.00mm]. │
├──────────┼──────┼──────────────────────────────┤
│ DIMASZ │ 41 │ Controls the size of │
│ │ │ dimension line and leader │
│ │ │ line arrowheads. Also │
│ │ │ controls the size of hook │
│ │ │ lines. Multiples of the │
│ │ │ arrowhead size determine │
│ │ │ whether dimension lines and │
│ │ │ text should fit between the │
│ │ │ extension lines. DIMASZ is │
│ │ │ also used to scale arrowhead │
│ │ │ blocks if set by DIMBLK. │
│ │ │ DIMASZ has no effect when │
│ │ │ DIMTSZ is other than zero. │
├──────────┼──────┼──────────────────────────────┤
│ DIMBLK │ 5 │ Sets the arrowhead block │
│ │ │ displayed at the ends of │
│ │ │ dimension lines. │
├──────────┼──────┼──────────────────────────────┤
│ DIMBLK1 │ 6 │ Sets the arrowhead for the │
│ │ │ first end of the dimension │
│ │ │ line when DIMSAH is 1. │
├──────────┼──────┼──────────────────────────────┤
│ DIMBLK2 │ 7 │ Sets the arrowhead for the │
│ │ │ second end of the dimension │
│ │ │ line when DIMSAH is 1. │
├──────────┼──────┼──────────────────────────────┤
│ DIMCEN │ 141 │ Controls drawing of circle │
│ │ │ or arc center marks and │
│ │ │ centerlines by the │
│ │ │ DIMCENTER, DIMDIAMETER, and │
│ │ │ DIMRADIUS commands. For │
│ │ │ DIMDIAMETER and DIMRADIUS, │
│ │ │ the center mark is drawn │
│ │ │ only if you place the │
│ │ │ dimension line outside the │
│ │ │ circle or arc. │
│ │ │ │
│ │ │ • 0 = No center │
│ │ │ marks or lines are │
│ │ │ drawn │
│ │ │ │
│ │ │ • <0 = Centerlines │
│ │ │ are drawn │
│ │ │ │
│ │ │ • >0 = Center marks │
│ │ │ are drawn │
├──────────┼──────┼──────────────────────────────┤
│ DIMCLRD │ 176 │ Assigns colors to dimension │
│ │ │ lines, arrowheads, and │
│ │ │ dimension leader lines. │
│ │ │ │
│ │ │ • 0 = BYBLOCK │
│ │ │ │
│ │ │ • 1-255 = ACI AutoCAD │
│ │ │ Color Index │
│ │ │ │
│ │ │ • 256 = BYLAYER │
├──────────┼──────┼──────────────────────────────┤
│ DIMCLRE │ 177 │ Assigns colors to dimension │
│ │ │ extension lines, values like │
│ │ │ DIMCLRD │
├──────────┼──────┼──────────────────────────────┤
│ DIMCLRT │ 178 │ Assigns colors to dimension │
│ │ │ text, values like DIMCLRD │
├──────────┼──────┼──────────────────────────────┤
│ DIMDLE │ 46 │ Sets the distance the │
│ │ │ dimension line extends │
│ │ │ beyond the extension line │
│ │ │ when oblique strokes are │
│ │ │ drawn instead of arrowheads. │
├──────────┼──────┼──────────────────────────────┤
│ DIMDLI │ 43 │ Controls the spacing of the │
│ │ │ dimension lines in baseline │
│ │ │ dimensions. Each dimension │
│ │ │ line is offset from the │
│ │ │ previous one by this amount, │
│ │ │ if necessary, to avoid │
│ │ │ drawing over it. Changes │
│ │ │ made with DIMDLI are not │
│ │ │ applied to existing │
│ │ │ dimensions. │
├──────────┼──────┼──────────────────────────────┤
│ DIMEXE │ 44 │ Specifies how far to extend │
│ │ │ the extension line beyond │
│ │ │ the dimension line. │
├──────────┼──────┼──────────────────────────────┤
│ DIMEXO │ 42 │ Specifies how far extension │
│ │ │ lines are offset from origin │
│ │ │ points. With fixed-length │
│ │ │ extension lines, this value │
│ │ │ determines the minimum │
│ │ │ offset. │
├──────────┼──────┼──────────────────────────────┤
│ DIMGAP │ 147 │ Sets the distance around the │
│ │ │ dimension text when the │
│ │ │ dimension line breaks to │
│ │ │ accommodate dimension text. │
│ │ │ Also sets the gap between │
│ │ │ annotation and a hook line │
│ │ │ created with the LEADER │
│ │ │ command. If you enter a │
│ │ │ negative value, DIMGAP │
│ │ │ places a box around the │
│ │ │ dimension text. │
│ │ │ │
│ │ │ DIMGAP is also used as the │
│ │ │ minimum length for pieces of │
│ │ │ the dimension line. When the │
│ │ │ default position for the │
│ │ │ dimension text is │
│ │ │ calculated, text is │
│ │ │ positioned inside the │
│ │ │ extension lines only if │
│ │ │ doing so breaks the │
│ │ │ dimension lines into two │
│ │ │ segments at least as long as │
│ │ │ DIMGAP. Text placed above │
│ │ │ or below the dimension line │
│ │ │ is moved inside only if │
│ │ │ there is room for the │
│ │ │ arrowheads, dimension text, │
│ │ │ and a margin between them at │
│ │ │ least as large as DIMGAP: 2 │
│ │ │ * (DIMASZ + DIMGAP). │
├──────────┼──────┼──────────────────────────────┤
│ DIMLFAC │ 144 │ Sets a scale factor for │
│ │ │ linear dimension │
│ │ │ measurements. All linear │
│ │ │ dimension distances, │
│ │ │ including radii, diameters, │
│ │ │ and coordinates, are │
│ │ │ multiplied by DIMLFAC before │
│ │ │ being converted to dimension │
│ │ │ text. Positive values of │
│ │ │ DIMLFAC are applied to │
│ │ │ dimensions in both │
│ │ │ modelspace and paperspace; │
│ │ │ negative values are applied │
│ │ │ to paperspace only. │
│ │ │ │
│ │ │ DIMLFAC applies primarily to │
│ │ │ nonassociative dimensions │
│ │ │ (DIMASSOC set 0 or 1). For │
│ │ │ nonassociative dimensions in │
│ │ │ paperspace, DIMLFAC must be │
│ │ │ set individually for each │
│ │ │ layout viewport to │
│ │ │ accommodate viewport │
│ │ │ scaling. │
│ │ │ │
│ │ │ DIMLFAC has no effect on │
│ │ │ angular dimensions, and is │
│ │ │ not applied to the values │
│ │ │ held in DIMRND, DIMTM, or │
│ │ │ DIMTP. │
├──────────┼──────┼──────────────────────────────┤
│ DIMLIM │ 72 │ Generates dimension limits │
│ │ │ as the default text. Setting │
│ │ │ DIMLIM to On turns DIMTOL │
│ │ │ off. │
│ │ │ │
│ │ │ • 0 = Dimension │
│ │ │ limits are not │
│ │ │ generated as │
│ │ │ default text │
│ │ │ │
│ │ │ • 1 = Dimension │
│ │ │ limits are │
│ │ │ generated as │
│ │ │ default text │
├──────────┼──────┼──────────────────────────────┤
│ DIMPOST │ 3 │ Specifies a text prefix or │
│ │ │ suffix (or both) to the │
│ │ │ dimension measurement. │
│ │ │ │
│ │ │ For example, to establish a │
│ │ │ suffix for millimeters, set │
│ │ │ DIMPOST to mm; a distance of │
│ │ │ 19.2 units would be │
│ │ │ displayed as 19.2 mm. If │
│ │ │ tolerances are turned on, │
│ │ │ the suffix is applied to the │
│ │ │ tolerances as well as to the │
│ │ │ main dimension. │
│ │ │ │
│ │ │ Use “<>” to indicate │
│ │ │ placement of the text in │
│ │ │ relation to the dimension │
│ │ │ value. For example, enter │
│ │ │ “<>mm” to display a 5.0 │
│ │ │ millimeter radial dimension │
│ │ │ as “5.0mm”. If you entered │
│ │ │ mm “<>”, the dimension would │
│ │ │ be displayed as “mm 5.0”. │
├──────────┼──────┼──────────────────────────────┤
│ DIMRND │ 45 │ Rounds all dimensioning │
│ │ │ distances to the specified │
│ │ │ value. │
│ │ │ │
│ │ │ For instance, if DIMRND is │
│ │ │ set to 0.25, all distances │
│ │ │ round to the nearest 0.25 │
│ │ │ unit. If you set DIMRND to │
│ │ │ 1.0, all distances round to │
│ │ │ the nearest integer. Note │
│ │ │ that the number of digits │
│ │ │ edited after the decimal │
│ │ │ point depends on the │
│ │ │ precision set by DIMDEC. │
│ │ │ DIMRND does not apply to │
│ │ │ angular dimensions. │
├──────────┼──────┼──────────────────────────────┤
│ DIMSAH │ 173 │ Controls the display of │
│ │ │ dimension line arrowhead │
│ │ │ blocks. │
│ │ │ │
│ │ │ • 0 = Use arrowhead │
│ │ │ blocks set by │
│ │ │ DIMBLK │
│ │ │ │
│ │ │ • 1 = Use arrowhead │
│ │ │ blocks set by │
│ │ │ DIMBLK1 and DIMBLK2 │
├──────────┼──────┼──────────────────────────────┤
│ DIMSCALE │ 40 │ Sets the overall scale │
│ │ │ factor applied to │
│ │ │ dimensioning variables that │
│ │ │ specify sizes, distances, or │
│ │ │ offsets. Also affects the │
│ │ │ leader objects with the │
│ │ │ LEADER command. │
│ │ │ │
│ │ │ Use MLEADERSCALE to scale │
│ │ │ multileader objects created │
│ │ │ with the MLEADER command. │
│ │ │ │
│ │ │ • 0.0 = A reasonable │
│ │ │ default value is │
│ │ │ computed based on │
│ │ │ the scaling between │
│ │ │ the current model │
│ │ │ space viewport and │
│ │ │ paperspace. If you │
│ │ │ are in paperspace │
│ │ │ or modelspace and │
│ │ │ not using the │
│ │ │ paperspace feature, │
│ │ │ the scale factor is │
│ │ │ 1.0. │
│ │ │ │
│ │ │ • >0 = A scale factor │
│ │ │ is computed that │
│ │ │ leads text sizes, │
│ │ │ arrowhead sizes, │
│ │ │ and other scaled │
│ │ │ distances to plot │
│ │ │ at their face │
│ │ │ values. │
│ │ │ │
│ │ │ DIMSCALE does not │
│ │ │ affect measured │
│ │ │ lengths, coordinates, │
│ │ │ or angles. │
│ │ │ │
│ │ │ Use DIMSCALE to │
│ │ │ control the overall │
│ │ │ scale of dimensions. │
│ │ │ However, if the │
│ │ │ current dimension │
│ │ │ style is annotative, │
│ │ │ DIMSCALE is │
│ │ │ automatically set to │
│ │ │ zero and the │
│ │ │ dimension scale is │
│ │ │ controlled by the │
│ │ │ CANNOSCALE system │
│ │ │ variable. DIMSCALE │
│ │ │ cannot be set to a │
│ │ │ non-zero value when │
│ │ │ using annotative │
│ │ │ dimensions. │
├──────────┼──────┼──────────────────────────────┤
│ DIMSE1 │ 75 │ Suppresses display of the │
│ │ │ first extension line. │
│ │ │ │
│ │ │ • 0 = Extension line │
│ │ │ is not suppressed │
│ │ │ │
│ │ │ • 1 = Extension line │
│ │ │ is suppressed │
├──────────┼──────┼──────────────────────────────┤
│ DIMSE2 │ 76 │ Suppresses display of the │
│ │ │ second extension line. │
│ │ │ │
│ │ │ • 0 = Extension line │
│ │ │ is not suppressed │
│ │ │ │
│ │ │ • 1 = Extension line │
│ │ │ is suppressed │
├──────────┼──────┼──────────────────────────────┤
│ DIMSOXD │ 175 │ Suppresses arrowheads if not │
│ │ │ enough space is available │
│ │ │ inside the extension lines. │
│ │ │ │
│ │ │ • 0 = Arrowheads are │
│ │ │ not suppressed │
│ │ │ │
│ │ │ • 1 = Arrowheads are │
│ │ │ suppressed │
│ │ │ │
│ │ │ If not enough space │
│ │ │ is available inside │
│ │ │ the extension lines │
│ │ │ and DIMTIX is on, │
│ │ │ setting DIMSOXD to On │
│ │ │ suppresses the │
│ │ │ arrowheads. If DIMTIX │
│ │ │ is off, DIMSOXD has │
│ │ │ no effect. │
├──────────┼──────┼──────────────────────────────┤
│ DIMTAD │ 77 │ Controls the vertical │
│ │ │ position of text in relation │
│ │ │ to the dimension line. │
│ │ │ │
│ │ │ • 0 = Centers the │
│ │ │ dimension text │
│ │ │ between the │
│ │ │ extension lines. │
│ │ │ │
│ │ │ • 1 = Places the │
│ │ │ dimension text │
│ │ │ above the dimension │
│ │ │ line except when │
│ │ │ the dimension line │
│ │ │ is not horizontal │
│ │ │ and text inside the │
│ │ │ extension lines is │
│ │ │ forced horizontal │
│ │ │ (DIMTIH = 1). The │
│ │ │ distance from the │
│ │ │ dimension line to │
│ │ │ the baseline of the │
│ │ │ lowest line of text │
│ │ │ is the current │
│ │ │ DIMGAP value. │
│ │ │ │
│ │ │ • 2 = Places the │
│ │ │ dimension text on │
│ │ │ the side of the │
│ │ │ dimension line │
│ │ │ farthest away from │
│ │ │ the defining │
│ │ │ points. │
│ │ │ │
│ │ │ • 3 = Places the │
│ │ │ dimension text to │
│ │ │ conform to Japanese │
│ │ │ Industrial │
│ │ │ Standards (JIS). │
│ │ │ │
│ │ │ • 4 = Places the │
│ │ │ dimension text │
│ │ │ below the dimension │
│ │ │ line. │
├──────────┼──────┼──────────────────────────────┤
│ DIMTFAC │ 146 │ Specifies a scale factor for │
│ │ │ the text height of fractions │
│ │ │ and tolerance values │
│ │ │ relative to the dimension │
│ │ │ text height, as set by │
│ │ │ DIMTXT. │
│ │ │ │
│ │ │ For example, if DIMTFAC is │
│ │ │ set to 1.0, the text height │
│ │ │ of fractions and tolerances │
│ │ │ is the same height as the │
│ │ │ dimension text. If DIMTFAC │
│ │ │ is set to 0.7500, the text │
│ │ │ height of fractions and │
│ │ │ tolerances is three-quarters │
│ │ │ the size of dimension text. │
├──────────┼──────┼──────────────────────────────┤
│ DIMTIH │ 73 │ Controls the position of │
│ │ │ dimension text inside the │
│ │ │ extension lines for all │
│ │ │ dimension types except │
│ │ │ Ordinate. │
│ │ │ │
│ │ │ • 0 = Aligns text │
│ │ │ with the dimension │
│ │ │ line │
│ │ │ │
│ │ │ • 1 = Draws text │
│ │ │ horizontally │
├──────────┼──────┼──────────────────────────────┤
│ DIMTIX │ 174 │ Draws text between extension │
│ │ │ lines. │
│ │ │ │
│ │ │ • 0 = Varies with the │
│ │ │ type of dimension. │
│ │ │ For linear and │
│ │ │ angular dimensions, │
│ │ │ text is placed │
│ │ │ inside the │
│ │ │ extension lines if │
│ │ │ there is sufficient │
│ │ │ room. For radius │
│ │ │ and diameter │
│ │ │ dimensions hat │
│ │ │ don’t fit inside │
│ │ │ the circle or arc, │
│ │ │ DIMTIX has no │
│ │ │ effect and always │
│ │ │ forces the text │
│ │ │ outside the circle │
│ │ │ or arc. │
│ │ │ │
│ │ │ • 1 = Draws dimension │
│ │ │ text between the │
│ │ │ extension lines │
│ │ │ even if it would │
│ │ │ ordinarily be │
│ │ │ placed outside │
│ │ │ those lines │
├──────────┼──────┼──────────────────────────────┤
│ DIMTM │ 48 │ Sets the minimum (or lower) │
│ │ │ tolerance limit for │
│ │ │ dimension text when DIMTOL │
│ │ │ or DIMLIM is on. DIMTM │
│ │ │ accepts signed values. If │
│ │ │ DIMTOL is on and DIMTP and │
│ │ │ DIMTM are set to the same │
│ │ │ value, a tolerance value is │
│ │ │ drawn. If DIMTM and DIMTP │
│ │ │ values differ, the upper │
│ │ │ tolerance is drawn above the │
│ │ │ lower, and a plus sign is │
│ │ │ added to the DIMTP value if │
│ │ │ it is positive. For DIMTM, │
│ │ │ the program uses the │
│ │ │ negative of the value you │
│ │ │ enter (adding a minus sign │
│ │ │ if you specify a positive │
│ │ │ number and a plus sign if │
│ │ │ you specify a negative │
│ │ │ number). │
├──────────┼──────┼──────────────────────────────┤
│ DIMTOFL │ 172 │ Controls whether a dimension │
│ │ │ line is drawn between the │
│ │ │ extension lines even when │
│ │ │ the text is placed outside. │
│ │ │ For radius and diameter │
│ │ │ dimensions (when DIMTIX is │
│ │ │ off), draws a dimension line │
│ │ │ inside the circle or arc and │
│ │ │ places the text, arrowheads, │
│ │ │ and leader outside. │
│ │ │ │
│ │ │ • 0 = Does not draw │
│ │ │ dimension lines │
│ │ │ between the │
│ │ │ measured points │
│ │ │ when arrowheads are │
│ │ │ placed outside the │
│ │ │ measured points │
│ │ │ │
│ │ │ • 1 = Draws dimension │
│ │ │ lines between the │
│ │ │ measured points │
│ │ │ even when │
│ │ │ arrowheads are │
│ │ │ placed outside the │
│ │ │ measured points │
├──────────┼──────┼──────────────────────────────┤
│ DIMTOH │ 74 │ Controls the position of │
│ │ │ dimension text outside the │
│ │ │ extension lines. │
│ │ │ │
│ │ │ • 0 = Aligns text │
│ │ │ with the dimension │
│ │ │ line │
│ │ │ │
│ │ │ • 1 = Draws text │
│ │ │ horizontally │
├──────────┼──────┼──────────────────────────────┤
│ DIMTOL │ 71 │ Appends tolerances to │
│ │ │ dimension text. Setting │
│ │ │ DIMTOL to on turns DIMLIM │
│ │ │ off. │
├──────────┼──────┼──────────────────────────────┤
│ DIMTP │ 47 │ Sets the maximum (or upper) │
│ │ │ tolerance limit for │
│ │ │ dimension text when DIMTOL │
│ │ │ or DIMLIM is on. DIMTP │
│ │ │ accepts signed values. If │
│ │ │ DIMTOL is on and DIMTP and │
│ │ │ DIMTM are set to the same │
│ │ │ value, a tolerance value is │
│ │ │ drawn. If DIMTM and DIMTP │
│ │ │ values differ, the upper │
│ │ │ tolerance is drawn above the │
│ │ │ lower and a plus sign is │
│ │ │ added to the DIMTP value if │
│ │ │ it is positive. │
├──────────┼──────┼──────────────────────────────┤
│ DIMTSZ │ 142 │ Specifies the size of │
│ │ │ oblique strokes drawn │
│ │ │ instead of arrowheads for │
│ │ │ linear, radius, and diameter │
│ │ │ dimensioning. │
│ │ │ │
│ │ │ • 0 = Draws │
│ │ │ arrowheads. │
│ │ │ │
│ │ │ • >0 = Draws oblique │
│ │ │ strokes instead of │
│ │ │ arrowheads. The │
│ │ │ size of the oblique │
│ │ │ strokes is │
│ │ │ determined by this │
│ │ │ value multiplied by │
│ │ │ the DIMSCALE value │
├──────────┼──────┼──────────────────────────────┤
│ DIMTVP │ 145 │ Controls the vertical │
│ │ │ position of dimension text │
│ │ │ above or below the dimension │
│ │ │ line. The DIMTVP value is │
│ │ │ used when DIMTAD = 0. The │
│ │ │ magnitude of the vertical │
│ │ │ offset of text is the │
│ │ │ product of the text height │
│ │ │ and DIMTVP. Setting DIMTVP │
│ │ │ to 1.0 is equivalent to │
│ │ │ setting DIMTAD = 1. The │
│ │ │ dimension line splits to │
│ │ │ accommodate the text only if │
│ │ │ the absolute value of DIMTVP │
│ │ │ is less than 0.7. │
├──────────┼──────┼──────────────────────────────┤
│ DIMTXT │ 140 │ Specifies the height of │
│ │ │ dimension text, unless the │
│ │ │ current text style has a │
│ │ │ fixed height. │
├──────────┼──────┼──────────────────────────────┤
│ DIMZIN │ 78 │ Controls the suppression of │
│ │ │ zeros in the primary unit │
│ │ │ value. Values 0-3 affect │
│ │ │ feet-and-inch dimensions │
│ │ │ only: │
│ │ │ │
│ │ │ • 0 = Suppresses zero │
│ │ │ feet and precisely │
│ │ │ zero inches │
│ │ │ │
│ │ │ • 1 = Includes zero │
│ │ │ feet and precisely │
│ │ │ zero inches │
│ │ │ │
│ │ │ • 2 = Includes zero │
│ │ │ feet and suppresses │
│ │ │ zero inches │
│ │ │ │
│ │ │ • 3 = Includes zero │
│ │ │ inches and │
│ │ │ suppresses zero │
│ │ │ feet │
│ │ │ │
│ │ │ • 4 (Bit 3) = │
│ │ │ Suppresses leading │
│ │ │ zeros in decimal │
│ │ │ dimensions (for │
│ │ │ example, 0.5000 │
│ │ │ becomes .5000) │
│ │ │ │
│ │ │ • 8 (Bit 4) = │
│ │ │ Suppresses trailing │
│ │ │ zeros in decimal │
│ │ │ dimensions (for │
│ │ │ example, 12.5000 │
│ │ │ becomes 12.5) │
│ │ │ │
│ │ │ • 12 (Bit 3+4) = │
│ │ │ Suppresses both │
│ │ │ leading and │
│ │ │ trailing zeros (for │
│ │ │ example, 0.5000 │
│ │ │ becomes .5) │
└──────────┴──────┴──────────────────────────────┘
Table Structure DXF R2000+
0 <<< start of table
TABLE
2 <<< set table type
DIMSTYLE
5 <<< DIMSTYLE table handle
5F
330 <<< owner tag, tables has no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of dimension styles defined in this table, AutoCAD ignores this value
9
0 <<< 1. DIMSTYLE table entry
DIMSTYLE
<<< DIMSTYLE data tags
0 <<< 2. DIMSTYLE table entry
DIMSTYLE
<<< DIMSTYLE data tags and so on
0 <<< end of DIMSTYLE table
ENDTAB
Additional DIMSTYLE Variables DXF R13/14
Source: CADDManager Blog
┌─────────────────┬──────┬──────────────────────────────────┐
│ DIMVAR │ code │ Description │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMADEC │ 179 │ Controls the number of │
│ │ │ precision places displayed │
│ │ │ in angular dimensions. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMALTTD │ 274 │ Sets the number of decimal │
│ │ │ places for the tolerance │
│ │ │ values in the alternate │
│ │ │ units of a dimension. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMALTTZ │ 286 │ Controls suppression of │
│ │ │ zeros in tolerance values. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMALTU │ 273 │ Sets the units format for │
│ │ │ alternate units of all │
│ │ │ dimension substyles except │
│ │ │ Angular. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMALTZ │ 285 │ Controls the suppression of │
│ │ │ zeros for alternate unit │
│ │ │ dimension values. DIMALTZ │
│ │ │ values 0-3 affect │
│ │ │ feet-and-inch dimensions │
│ │ │ only. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMAUNIT │ 275 │ Sets the units format for │
│ │ │ angular dimensions. │
│ │ │ │
│ │ │ • 0 = Decimal degrees │
│ │ │ │
│ │ │ • 1 = │
│ │ │ Degrees/minutes/seconds │
│ │ │ │
│ │ │ • 2 = Grad │
│ │ │ │
│ │ │ • 3 = Radians │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMBLK_HANDLE │ 342 │ defines DIMBLK as handle to the │
│ │ │ BLOCK RECORD entry │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMBLK1_HANDLE │ 343 │ defines DIMBLK1 as handle to the │
│ │ │ BLOCK RECORD entry │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMBLK2_HANDLE │ 344 │ defines DIMBLK2 as handle to the │
│ │ │ BLOCK RECORD entry │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMDEC │ 271 │ Sets the number of decimal │
│ │ │ places displayed for the primary │
│ │ │ units of a dimension. The │
│ │ │ precision is based on the units │
│ │ │ or angle format you have │
│ │ │ selected. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMDSEP │ 278 │ Specifies a single-character │
│ │ │ decimal separator to use when │
│ │ │ creating dimensions whose unit │
│ │ │ format is decimal. When │
│ │ │ prompted, enter a single │
│ │ │ character at the Command prompt. │
│ │ │ If dimension units is set to │
│ │ │ Decimal, the DIMDSEP character │
│ │ │ is used instead of the default │
│ │ │ decimal point. If DIMDSEP is set │
│ │ │ to NULL (default value, reset by │
│ │ │ entering a period), the decimal │
│ │ │ point is used as the dimension │
│ │ │ separator. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMJUST │ 280 │ Controls the horizontal │
│ │ │ positioning of dimension text. │
│ │ │ │
│ │ │ • 0 = Positions the text │
│ │ │ above the dimension │
│ │ │ line and │
│ │ │ center-justifies it │
│ │ │ between the extension │
│ │ │ lines │
│ │ │ │
│ │ │ • 1 = Positions the text │
│ │ │ next to the first │
│ │ │ extension line │
│ │ │ │
│ │ │ • 2 = Positions the text │
│ │ │ next to the second │
│ │ │ extension line │
│ │ │ │
│ │ │ • 3 = Positions the text │
│ │ │ above and aligned with │
│ │ │ the first extension │
│ │ │ line │
│ │ │ │
│ │ │ • 4 = =Positions the │
│ │ │ text above and aligned │
│ │ │ with the second │
│ │ │ extension line │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMSD1 │ 281 │ Controls suppression of the │
│ │ │ first dimension line and │
│ │ │ arrowhead. When turned on, │
│ │ │ suppresses the display of the │
│ │ │ dimension line and arrowhead │
│ │ │ between the first extension line │
│ │ │ and the text. │
│ │ │ │
│ │ │ • 0 = First dimension │
│ │ │ line is not suppressed │
│ │ │ │
│ │ │ • 1 = First dimension │
│ │ │ line is suppressed │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMSD2 │ 282 │ Controls suppression of the │
│ │ │ second dimension line and │
│ │ │ arrowhead. When turned on, │
│ │ │ suppresses the display of the │
│ │ │ dimension line and arrowhead │
│ │ │ between the second extension │
│ │ │ line and the text. │
│ │ │ │
│ │ │ • 0 = Second dimension │
│ │ │ line is not suppressed │
│ │ │ │
│ │ │ • 1 = Second dimension │
│ │ │ line is suppressed │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMTDEC │ 272 │ Sets the number of decimal │
│ │ │ places to display in tolerance │
│ │ │ values for the primary units in │
│ │ │ a dimension. This system │
│ │ │ variable has no effect unless │
│ │ │ DIMTOL is set to On. The default │
│ │ │ for DIMTOL is Off. │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMTOLJ │ 283 │ Sets the vertical justification │
│ │ │ for tolerance values relative to │
│ │ │ the nominal dimension text. │
│ │ │ This system variable has no │
│ │ │ effect unless DIMTOL is set to │
│ │ │ On. The default for DIMTOL is │
│ │ │ Off. │
│ │ │ │
│ │ │ • 0 = Bottom │
│ │ │ │
│ │ │ • 1 = Middle │
│ │ │ │
│ │ │ • 2 = Top │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMTXSTY_HANDLE │ 340 │ Specifies the text style of the │
│ │ │ dimension as handle to STYLE │
│ │ │ table entry │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMTZIN │ 284 │ Controls the suppression of │
│ │ │ zeros in tolerance values. │
│ │ │ │
│ │ │ Values 0-3 affect feet-and-inch │
│ │ │ dimensions only. │
│ │ │ │
│ │ │ • 0 = Suppresses zero │
│ │ │ feet and precisely zero │
│ │ │ inches │
│ │ │ │
│ │ │ • 1 = Includes zero feet │
│ │ │ and precisely zero │
│ │ │ inches │
│ │ │ │
│ │ │ • 2 = Includes zero feet │
│ │ │ and suppresses zero │
│ │ │ inches │
│ │ │ │
│ │ │ • 3 = Includes zero │
│ │ │ inches and suppresses │
│ │ │ zero feet │
│ │ │ │
│ │ │ • 4 = Suppresses leading │
│ │ │ zeros in decimal │
│ │ │ dimensions (for │
│ │ │ example, 0.5000 becomes │
│ │ │ .5000) │
│ │ │ │
│ │ │ • 8 = Suppresses trailing │
│ │ │ zeros in decimal │
│ │ │ dimensions (for │
│ │ │ example, 12.5000 │
│ │ │ becomes 12.5) │
│ │ │ │
│ │ │ • 12 = Suppresses both │
│ │ │ leading and trailing │
│ │ │ zeros (for example, │
│ │ │ 0.5000 becomes .5) │
├─────────────────┼──────┼──────────────────────────────────┤
│ DIMUPT │ 288 │ Controls options for │
│ │ │ user-positioned text. │
│ │ │ │
│ │ │ • 0 = Cursor controls │
│ │ │ only the dimension line │
│ │ │ location │
│ │ │ │
│ │ │ • 1 = Cursor controls │
│ │ │ both the text position │
│ │ │ and the dimension line │
│ │ │ location │
└─────────────────┴──────┴──────────────────────────────────┘
Additional DIMSTYLE Variables DXF R2000
Source: CADDManager Blog
┌──────────────────┬──────┬──────────────────────────────┐
│ DIMVAR │ Code │ Description │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMALTRND │ 148 │ Rounds off the alternate │
│ │ │ dimension units. │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMATFIT │ 289 │ Determines how dimension │
│ │ │ text and arrows are arranged │
│ │ │ when space is not sufficient │
│ │ │ to place both within the │
│ │ │ extension lines. │
│ │ │ │
│ │ │ • 0 = Places both │
│ │ │ text and arrows │
│ │ │ outside extension │
│ │ │ lines │
│ │ │ │
│ │ │ • 1 = Moves arrows │
│ │ │ first, then text │
│ │ │ │
│ │ │ • 2 = Moves text │
│ │ │ first, then arrows │
│ │ │ │
│ │ │ • 3 = Moves either │
│ │ │ text or arrows, │
│ │ │ whichever fits best │
│ │ │ │
│ │ │ A leader is added to │
│ │ │ moved dimension text │
│ │ │ when DIMTMOVE is set │
│ │ │ to 1. │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMAZIN │ 79 │ Suppresses zeros for angular │
│ │ │ dimensions. │
│ │ │ │
│ │ │ • 0 = Displays all │
│ │ │ leading and │
│ │ │ trailing zeros │
│ │ │ │
│ │ │ • 1 = Suppresses │
│ │ │ leading zeros in │
│ │ │ decimal dimensions │
│ │ │ (for example, │
│ │ │ 0.5000 becomes │
│ │ │ .5000) │
│ │ │ │
│ │ │ • 2 = Suppresses │
│ │ │ trailing zeros in │
│ │ │ decimal dimensions │
│ │ │ (for example, │
│ │ │ 12.5000 becomes │
│ │ │ 12.5) │
│ │ │ │
│ │ │ • 3 = Suppresses │
│ │ │ leading and │
│ │ │ trailing zeros (for │
│ │ │ example, 0.5000 │
│ │ │ becomes .5) │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMFRAC │ 276 │ Sets the fraction format │
│ │ │ when DIMLUNIT is set to 4 │
│ │ │ (Architectural) or 5 │
│ │ │ (Fractional). │
│ │ │ │
│ │ │ • 0 = Horizontal │
│ │ │ stacking │
│ │ │ │
│ │ │ • 1 = Diagonal │
│ │ │ stacking │
│ │ │ │
│ │ │ • 2 = Not stacked │
│ │ │ (for example, 1/2) │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMLDRBLK_HANDLE │ 341 │ Specifies the arrow type for │
│ │ │ leaders. Handle to BLOCK │
│ │ │ RECORD │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMLUNIT │ 277 │ Sets units for all dimension │
│ │ │ types except Angular. │
│ │ │ │
│ │ │ • 1 = Scientific │
│ │ │ │
│ │ │ • 2 = Decimal │
│ │ │ │
│ │ │ • 3 = Engineering │
│ │ │ │
│ │ │ • 4 = Architectural │
│ │ │ (always displayed │
│ │ │ stacked) │
│ │ │ │
│ │ │ • 5 = Fractional │
│ │ │ (always displayed │
│ │ │ stacked) │
│ │ │ │
│ │ │ • 6 = Microsoft │
│ │ │ Windows Desktop │
│ │ │ (decimal format │
│ │ │ using Control Panel │
│ │ │ settings for │
│ │ │ decimal separator │
│ │ │ and number grouping │
│ │ │ symbols) │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMLWD │ 371 │ Assigns lineweight to │
│ │ │ dimension lines. │
│ │ │ │
│ │ │ • -3 = Default (the │
│ │ │ LWDEFAULT value) │
│ │ │ │
│ │ │ • -2 = BYBLOCK │
│ │ │ │
│ │ │ • -1 = BYLAYER │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMLWE │ 372 │ Assigns lineweight to │
│ │ │ extension lines. │
│ │ │ │
│ │ │ • -3 = Default (the │
│ │ │ LWDEFAULT value) │
│ │ │ │
│ │ │ • -2 = BYBLOCK │
│ │ │ │
│ │ │ • -1 = BYLAYER │
├──────────────────┼──────┼──────────────────────────────┤
│ DIMTMOVE │ 279 │ Sets dimension text movement │
│ │ │ rules. │
│ │ │ │
│ │ │ • 0 = Moves the │
│ │ │ dimension line with │
│ │ │ dimension text │
│ │ │ │
│ │ │ • 1 = Adds a leader │
│ │ │ when dimension text │
│ │ │ is moved │
│ │ │ │
│ │ │ • 2 = Allows text to │
│ │ │ be moved freely │
│ │ │ without a leader │
└──────────────────┴──────┴──────────────────────────────┘
Text Location
This image shows the default text locations created by BricsCAD for dimension variables dimtad and
dimjust: [image]
Unofficial DIMSTYLE Variables for DXF R2007 and later
The following DIMVARS are not documented in the DXF Reference by Autodesk.
┌─────────────────┬──────┬──────────────────────────────┐
│ DIMVAR │ Code │ Description │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMTFILL │ 69 │ Text fill 0=off; │
│ │ │ 1=background color; 2=custom │
│ │ │ color (see DIMTFILLCLR) │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMTFILLCLR │ 70 │ Text fill custom color as │
│ │ │ color index │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMFXLON │ 290 │ Extension line has fixed │
│ │ │ length if set to 1 │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMFXL │ 49 │ Length of extension line │
│ │ │ below dimension line if │
│ │ │ fixed (DIMFXLON is 1), │
│ │ │ DIMEXE defines the the │
│ │ │ length above the dimension │
│ │ │ line │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMJOGANG │ 50 │ Angle of oblique dimension │
│ │ │ line segment in jogged │
│ │ │ radius dimension │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMLTYPE_HANDLE │ 345 │ Specifies the LINETYPE of │
│ │ │ the dimension line. Handle │
│ │ │ to LTYPE table entry │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMLTEX1_HANDLE │ 346 │ Specifies the LINETYPE of │
│ │ │ the extension line 1. Handle │
│ │ │ to LTYPE table entry │
├─────────────────┼──────┼──────────────────────────────┤
│ DIMLTEX2_HANDLE │ 347 │ Specifies the LINETYPE of │
│ │ │ the extension line 2. Handle │
│ │ │ to LTYPE table entry │
└─────────────────┴──────┴──────────────────────────────┘
Extended Settings as Special XDATA Groups
Prior to DXF R2007, some extended settings for the dimension and the extension lines are stored in the
XDATA section by following entries, this is not documented by Autodesk:
1001
ACAD_DSTYLE_DIM_LINETYPE <<< linetype for dimension line
1070
380 <<< group code, which differs from R2007 DIMDLTYPE
1005
FFFF <<< handle to LTYPE entry
1001
ACAD_DSTYLE_DIM_EXT1_LINETYPE <<< linetype for extension line 1
1070
381 <<< group code, which differs from R2007 DIMLTEX1
1005
FFFF <<< handle to LTYPE entry
1001
ACAD_DSTYLE_DIM_EXT2_LINETYPE <<< linetype for extension line 1
1070
382 <<< group code, which differs from R2007 DIMLTEX2
1005
FFFF <<< handle to LTYPE entry
1001
ACAD_DSTYLE_DIMEXT_ENABLED <<< extension line fixed
1070
383 <<< group code, which differs from R2007 DIMEXFIX
1070
1 <<< fixed if 1 else 0
1001
ACAD_DSTYLE_DIMEXT_LENGTH <<< extension line fixed length
1070
378 <<< group code, which differs from R2007 DIMEXLEN
1040
1.33 <<< length of extension line below dimension line
This XDATA groups requires also an appropriate APPID entry in the APPID table. This feature is not
supported by ezdxf.
LAYER Table
TODO
SEE ALSO:
• DXF Reference: TABLES Section
• DXF Reference: LAYER Table
• Layer class
Table Structure DXF R2000+
0 <<< start of table
TABLE
2 <<< name of table "LAYER"
LAYER
5 <<< handle of the TABLE
2
330 <<< owner tag is always "0"
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of layers defined in this table, AutoCAD ignores this value
5
0 <<< 1. LAYER table entry
LAYER
... <<< LAYER entity tags
0 <<< 2. LAYER table entry
LAYER
... <<< LAYER entity tags
0 <<< end of TABLE
ENDTAB
Layer Entity Tags DXF R2000+
There are some quirks:
• the frozen/thawed state is stored in flags (group code 70)
• the locked/unlocked state is stored in flags (group code 70)
• the off state is stored as negative color value (group code 6)
• the layer description is stored in the XDATA section
• the transparency value is stored in the XDATA section
0 <<< LAYER table entry
LAYER
5 <<< handle of LAYER
10
330 <<< owner handle, handle of LAYER table
2
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLayerTableRecord
2 <<< layer name
0 <<< layer "0"
70 <<< flags
0
62 <<< color
7 <<< a negative value switches the layer off
420 <<< optional true color value
0
6 <<< linetype
Continuous
290 <<< optional plot flag
1
370 <<< lineweight
-3
390 <<< handle to plot style
F
347 <<< material handle
47
348 <<< unknown1
0
1001 <<< XDATA section, APPID
AcAecLayerStandard
1000 <<< unknown first value, here an empty string
1000 <<< layer description
This layer has a description
1001 <<< APPID
AcCmTransparency
1071 <<< layer transparency value
0
Layer Viewport Overrides
Some layer attributes can be overridden individually for any VIEWPORT entity. This overrides are stored
as extension dictionary entries of the LAYER entity pointing to XRECORD entities in the objects section:
0
LAYER
5
9F
102 <<< APP data, extension dictionary
{ACAD_XDICTIONARY
360 <<< handle to the xdict in the objects section
B3
102
}
330
2
100
AcDbSymbolTableRecord
100
AcDbLayerTableRecord
2
LayerA
...
The extension DICTIONARY entity:
0 <<< entity type
DICTIONARY
5 <<< handle
B3
330 <<< owner handle
9F <<< the layer owns this dictionary
100 <<< subclass marker
AcDbDictionary
280 <<< hard owned flag
1
281 <<< cloning type
1 <<< keep existing
3 <<< transparency override
ADSK_XREC_LAYER_ALPHA_OVR
360 <<< handle to XRECORD
E5
3 <<< color override
ADSK_XREC_LAYER_COLOR_OVR
360 <<< handle to XRECORD
B4
3 <<< linetype override
ADSK_XREC_LAYER_LINETYPE_OVR
360 <<< handle to XRECORD
DD
3 <<< lineweight override
ADSK_XREC_LAYER_LINEWT_OVR
360 <<< handle to XRECORD
E2
Transparency override XRECORD:
0 <<< entity type
XRECORD
5 <<< handle
E5
102 <<< reactors app data
{ACAD_REACTORS
330
B3 <<< extension dictionary
102
}
330 <<< owner tag
B3 <<< extension dictionary
100 <<< subclass marker
AcDbXrecord
280 <<< cloning flag
1 <<< keep existing
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_ALPHA_OVERRIDE
335 <<< handle to VIEWPORT
AC
440 <<< transparency override
33554661
102
}
Color override XRECORD:
0
XRECORD
... <<< like transparency XRECORD
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_COLOR_OVERRIDE
335 <<< handle to VIEWPORT
AF
420 <<< color override
-1023409925 <<< raw color value
102
}
Linetype override XRECORD:
0
XRECORD
... <<< like transparency XRECORD
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_LINETYPE_OVERRIDE
335 <<< handle to VIEWPORT
AC
343 <<< linetype override
DC <<< handle to LINETYPE table entry
102
}
Lineweight override XRECORD:
0
XRECORD
... <<< like transparency XRECORD
102 <<< for each overridden VIEWPORT one entry
{ADSK_LYR_LINEWT_OVERRIDE
335 <<< handle to VIEWPORT
AC
91 <<< lineweight override
13 <<< lineweight value
102
}
Name References
LAYER table entries are referenced by name:
• all graphical DXF entities
• VIEWPORT entity, frozen layers
• LAYER_FILTER
• LAYER_INDEX
LTYPE Table
The LTYPE table stores all line type definitions of a DXF drawing. Every line type used in the drawing
has to have a table entry, or the DXF drawing is invalid for AutoCAD.
DXF R12 supports just simple line types, DXF R2000+ supports also complex line types with text or shapes
included.
You have access to the line types table by the attribute Drawing.linetypes. The line type table itself
is not stored in the entity database, but the table entries are stored in entity database, and can be
accessed by its handle.
SEE ALSO:
• DXF Reference: TABLES Section
• DXF Reference: LTYPE Table
• Linetype class
Table Structure DXF R12
0 <<< start of table
TABLE
2 <<< table type
LTYPE
70 <<< count of table entries, AutoCAD ignores this value
9
0 <<< 1. LTYPE table entry
LTYPE
<<< LTYPE data tags
0 <<< 2. LTYPE table entry
LTYPE
<<< LTYPE data tags and so on
0 <<< end of LTYPE table
ENDTAB
Table Structure DXF R2000+
0 <<< start of table
TABLE
2 <<< table type
LTYPE
5 <<< table handle
5F
330 <<< owner tag, tables have no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entiries, AutoCAD ignores this value
9
0 <<< 1. LTYPE table entry
LTYPE
<<< LTYPE data tags
0 <<< 2. LTYPE table entry
LTYPE
<<< LTYPE data tags and so on
0 <<< end of LTYPE table
ENDTAB
Simple Line Type
ezdxf setup for line type “CENTER”:
dwg.linetypes.add("CENTER",
description="Center ____ _ ____ _ ____ _ ____ _ ____ _ ____",
pattern=[2.0, 1.25, -0.25, 0.25, -0.25],
)
Simple Line Type Tag Structure DXF R2000+
0 <<< line type table entry
LTYPE
5 <<< handle of line type
1B1
330 <<< owner handle, handle of LTYPE table
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2 <<< line type name
CENTER
70 <<< flags
0
3
Center ____ _ ____ _ ____ _ ____ _ ____ _ ____
72 <<< signature tag
65 <<< ascii code for "A"
73 <<< count of pattern groups starting with a code 49 tag
4 <<< 4 pattern groups
40 <<< overall pattern length in drawing units
2.0
49 <<< 1. pattern group
1.25 <<< >0 line, <0 gap, =0 point
74 <<< type marker
0 <<< 0 for line group
49 <<< 2. pattern group
-0.25
74
0
49 <<< 3. pattern group
0.25
74
0
49 <<< 4. pattern group
-0.25
74
0
Complex Line Type TEXT
ezdxf setup for line type “GASLEITUNG”:
dwg.linetypes.add("GASLEITUNG",
description="Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--",
length=1,
pattern='A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25',
)
TEXT Tag Structure
0
LTYPE
5
614
330
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2
GASLEITUNG
70
0
3
Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----GAS--
72 <<< signature tag
65 <<< ascii code for "A"
73 <<< count of pattern groups starting with a code 49 tag
3 <<< 3 pattern groups
40 <<< overall pattern length in drawing units
1
49 <<< 1. pattern group
0.5 <<< >0 line, <0 gap, =0 point
74 <<< type marker
0 <<< 0 for line group
49 <<< 2. pattern group
-0.2
74 <<< type marker
2 <<< 2 for text group
75 <<< shape number in shape-file
0 <<< always 0 for text group
340 <<< handle to text style "STANDARD"
11
46 <<< scaling factor: "s" in pattern definition
0.1
50 <<< rotation angle: "r" and "u" in pattern definition
0.0
44 <<< shift x units: "x" in pattern definition = parallel to line direction
-0.1
45 <<< shift y units: "y" in pattern definition = normal to line direction
-0.05
9 <<< text
GAS
49 <<< 3. pattern group
-0.25
74
0
Complex Line Type SHAPE
ezdxf setup for line type ‘GRENZE2’:
dwg.linetypes.new('GRENZE2', dxfattribs={
'description': 'Grenze eckig ----[]-----[]----[]-----[]----[]--',
'length': 1.45,
'pattern': 'A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1',
})
SHAPE Tag Structure
0
LTYPE
5
615
330
5F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbLinetypeTableRecord
2
GRENZE2
70
0
3
Grenze eckig ----[]-----[]----[]-----[]----[]--
72 <<< signature tag
65 <<< ascii code for "A"
73 <<< count of pattern groups starting with a code 49 tag
4 <<< 4 pattern groups
40 <<< overall pattern length in drawing units
1.45
49 <<< 1. pattern group
0.25 <<< >0 line, <0 gap, =0 point
74 <<< type marker
0 <<< 0 for line group
49 <<< 2. pattern group
-0.1
74 <<< type marker
4 <<< 4 for shape group
75 <<< shape number in shape-file
132
340 <<< handle to shape-file entry "ltypeshp.shx"
616
46 <<< scaling factor: "s" in pattern definition
0.1
50 <<< rotation angle: "r" and "u" in pattern definition
0.0
44 <<< shift x units: "x" in pattern definition = parallel to line direction
-0.1
45 <<< shift y units: "y" in pattern definition = normal to line direction
0.0
49 <<< 3. pattern group
-0.1
74
0
49 <<< 4. pattern group
1.0
74
0
Name References
LTYPE table entries are referenced by name:
• all graphical DXF entities
• LAYER table entry
• DIMSTYLE table entry
• DIMSTYLE override
• MLINESTYLE
STYLE Table
The STYLE table stores all text styles and shape-file definitions. The “STANDARD” entry must always
exist.
Shape-files are also defined by a STYLE table entry, the bit 0 of the flags-tag is set to 1 and the
name-tag is an empty string, the only important data is the font-tag with group code 3 which stores the
associated SHX font file.
SEE ALSO:
• DXF Reference: TABLES Section
• DXF Reference: STYLE Table
• Textstyle class
Table Structure DXF R12
0 <<< start of table
TABLE
2 <<< table type
STYLE
70 <<< count of table entries, AutoCAD ignores this value
1
0 <<< first table entry
STYLE
2 <<< text style name
Standard
70 <<< flags, see `STYLE`_ reference
0
40 <<< fixed text height; 0 if not fixed
0.0
41 <<< width factor
1.0
50 <<< oblique angle
0.0
71 <<< text generation flags; 2=backwards (mirror-x), 4=upside down (mirror-y)
0
42 <<< last height used
2.5
3 <<< font file name; SHX or TTF file name
txt
4 <<< big font name; SHX file with unicode symbols; empty if none
0 <<< next text style
STYLE
...
0 <<< end of STYLE table
ENDTAB
Table Structure DXF R2000+
0 <<< start of table
TABLE
2 <<< table type
STYLE
5 <<< table handle
5
330 <<< owner tag, tables have no owner
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries, AutoCAD ignores this value
1
0 <<< first table entry
STYLE
5 <<< handle of text style
29
330 <<< owner handle, handle of STYLE table
5
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbTextStyleTableRecord
2 <<< text style name
Standard
70 <<< flags, see `STYLE`_ reference
0
40 <<< fixed text height; 0 if not fixed
0.0
41 <<< width factor
1.0
50 <<< oblique angle
0.0
71 <<< text generation flags; 2=backwards (mirror-x), 4=upside down (mirror-y)
0
42 <<< last height used
2.5
3 <<< font file name; SHX or TTF file name
txt
4 <<< big font name; SHX file with unicode symbols; empty if none
0 <<< next text style
STYLE
...
0 <<< end of STYLE table
ENDTAB
Extended Font Data
Additional information of the font-family, italic and bold style flags are stored in the XDATA section of
the STYLE entity by the APPID “ACAD”:
0
STYLE
...
3
Arial.ttf
4
1001 <<< start of the XDATA section
ACAD <<< APPID
1000 <<< font family name
Arial
1071 <<< style flags, see table below
50331682
┌────────┬──────────┬───────────┐
│ Flag │ dec │ hex │
├────────┼──────────┼───────────┤
│ ITALIC │ 16777216 │ 0x1000000 │
├────────┼──────────┼───────────┤
│ BOLD │ 33554432 │ 0x2000000 │
└────────┴──────────┴───────────┘
Name References
STYLE table entries are referenced by name:
• TEXT entity
• MTEXT entity
• DIMSTYLE table entry
• DIMSTYLE override
UCS Table
TODO
VIEW Table
The VIEW entry stores a named view of the model or a paperspace layout. This stored views makes parts of
the drawing or some view points of the model in a CAD applications more accessible. This views have no
influence to the drawing content or to the generated output by exporting PDFs or plotting on paper
sheets, they are just for the convenience of CAD application users.
Using ezdxf you have access to the views table by the attribute Drawing.views. The views table itself is
not stored in the entity database, but the table entries are stored in entity database, and can be
accessed by its handle.
DXF R12
0
VIEW
2 <<< name of view
VIEWNAME
70 <<< flags bit-coded: 1st bit -> (0/1 = modelspace/paperspace)
0 <<< modelspace
40 <<< view width in Display Coordinate System (DCS)
20.01
10 <<< view center point in DCS
40.36 <<< x value
20 <<< group code for y value
15.86 <<< y value
41 <<< view height in DCS
17.91
11 <<< view direction from target point, 3D vector
0.0 <<< x value
21 <<< group code for y value
0.0 <<< y value
31 <<< group code for z value
1.0 <<< z value
12 <<< target point in WCS
0.0 <<< x value
22 <<< group code for y value
0.0 <<< y value
32 <<< group code for z value
0.0 <<< z value
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping plane, offset from target
0.0
44 <<< back clipping plane, offset from target
0.0
50 <<< twist angle
0.0
71 <<< view mode
0
SEE ALSO:
Coordinate Systems
DXF R2000+
Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers.
0 <<< adding the VIEW table head, just for information
TABLE
2 <<< table name
VIEW
5 <<< handle of table, see owner tag of VIEW table entry
37C
330 <<< owner tag of table, always #0
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< VIEW table (max.) count, not reliable (ignore)
9
0 <<< first VIEW table entry
VIEW
5 <<< handle
3EA
330 <<< owner, the VIEW table is the owner of the VIEW entry
37C <<< handle of the VIEW table
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbViewTableRecord
2 <<< view name, from here all the same as DXF R12
VIEWNAME
70
0
40
20.01
10
40.36
20
15.86
41
17.91
11
0.0
21
0.0
31
1.0
12
0.0
22
0.0
32
0.0
42
50.0
43
0.0
44
0.0
50
0.0
71
0
281 <<< render mode 0-6 (... too much options)
0 <<< 0= 2D optimized (classic 2D)
72 <<< UCS associated (0/1 = no/yes)
0 <<< 0 = no
DXF R2000+ supports additional features in the VIEW entry, see the VIEW table reference provided by
Autodesk.
VPORT Configuration Table
The VPORT table stores the modelspace viewport configurations. A viewport configuration is a tiled view
of multiple viewports or just one viewport. [image]
In contrast to other tables the VPORT table can have multiple entries with the same name, because all
VPORT entries of a multi-viewport configuration are having the same name - the viewport configuration
name. The name of the actual displayed viewport configuration is '*ACTIVE', as always table entry names
are case insensitive ('*ACTIVE' == '*Active').
The available display area in AutoCAD has normalized coordinates, the lower-left corner is (0, 0) and the
upper-right corner is (1, 1) regardless of the true aspect ratio and available display area in pixels. A
single viewport configuration has one VPORT entry '*ACTIVE' with the lower-left corner (0, 0) and the
upper-right corner (1, 1).
The following statements refer to a 2D plan view: the view-target-point defines the origin of the DCS
(Display Coordinate system), the view-direction vector defines the z-axis of the DCS, the
view-center-point (in DCS) defines the point in modelspace translated to the center point of the
viewport, the view height and the aspect-ratio defines how much of the modelspace is displayed. AutoCAD
tries to fit the modelspace area into the available viewport space e.g. view height is 15 units and
aspect-ratio is 2.0 the modelspace to display is 30 units wide and 15 units high, if the viewport has an
aspect ratio of 1.0, AutoCAD displays 30x30 units of the modelspace in the viewport. If the modelspace
aspect-ratio is 1.0 the modelspace to display is 15x15 units and fits properly into the viewport area.
But tests show that the translation of the view-center-point to the middle of the viewport not always
work as I expected. (still digging…)
NOTE:
All floating point values are rounded to 2 decimal places for better readability.
DXF R12
Multi-viewport configuration with three viewports.
0 <<< table start
TABLE
2 <<< table type
VPORT
70 <<< VPORT table (max.) count, not reliable (ignore)
3
0 <<< first VPORT entry
VPORT
2 <<< VPORT (configuration) name
*ACTIVE
70 <<< standard flags, bit-coded
0
10 <<< lower-left corner of viewport
0.45 <<< x value, virtual coordinates in range [0 - 1]
20 <<< group code for y value
0.0 <<< y value, virtual coordinates in range [0 - 1]
11 <<< upper-right corner of viewport
1.0 <<< x value, virtual coordinates in range [0 - 1]
21 <<< group code for y value
1.0 <<< y value, virtual coordinates in range [0 - 1]
12 <<< view center point (in DCS), ???
13.71 <<< x value
22 <<< group code for y value
0.02 <<< y value
13 <<< snap base point (in DCS)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing X and Y
1.0 <<< x value
24 <<< group code for y value
1.0 <<< y value
15 <<< grid spacing X and Y
0.0 <<< x value
25 <<< group code for y value
0.0 <<< y value
16 <<< view direction from target point (in WCS), defines the z-axis of the DCS
1.0 <<< x value
26 <<< group code for y value
-1.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point (in WCS), defines the origin of the DCS
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
40 <<< view height
35.22
41 <<< viewport aspect ratio
0.99
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping planes, offsets from target point
0.0
44 <<< back clipping planes, offsets from target point
0.0
50 <<< snap rotation angle
0.0
51 <<< view twist angle
0.0
71 <<< view mode
0
72 <<< circle zoom percent
1000
73 <<< fast zoom setting
1
74 <<< UCSICON setting
3
75 <<< snap on/off
0
76 <<< grid on/off
0
77 <<< snap style
0
78 <<< snap isopair
0
0 <<< next VPORT entry
VPORT
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.5
11
0.45
21
1.0
12
8.21
22
9.41
...
...
0 <<< next VPORT entry
VPORT
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.0
11
0.45
21
0.5
12
2.01
22
-9.33
...
...
0
ENDTAB
DXF R2000+
Mostly the same structure as DXF R12, but with handle, owner tag and subclass markers.
0 <<< table start
TABLE
2 <<< table type
VPORT
5 <<< table handle
151F
330 <<< owner, table has no owner - always #0
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< VPORT table (max.) count, not reliable (ignore)
3
0 <<< first VPORT entry
VPORT
5 <<< entry handle
158B
330 <<< owner, VPORT table is owner of VPORT entry
151F
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbViewportTableRecord
2 <<< VPORT (configuration) name
*ACTIVE
70 <<< standard flags, bit-coded
0
10 <<< lower-left corner of viewport
0.45 <<< x value, virtual coordinates in range [0 - 1]
20 <<< group code for y value
0.0 <<< y value, virtual coordinates in range [0 - 1]
11 <<< upper-right corner of viewport
1.0 <<< x value, virtual coordinates in range [0 - 1]
21 <<< group code for y value
1.0 <<< y value, virtual coordinates in range [0 - 1]
12 <<< view center point (in DCS)
13.71 <<< x value
22 <<< group code for y value
0.38 <<< y value
13 <<< snap base point (in DCS)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing X and Y
1.0 <<< x value
24 <<< group code for y value
1.0 <<< y value
15 <<< grid spacing X and Y
0.0 <<< x value
25 <<< group code for y value
0.0 <<< y value
16 <<< view direction from target point (in WCS)
1.0 <<< x value
26 <<< group code for y value
-1.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point (in WCS)
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
40 <<< view height
35.22
41 <<< viewport aspect ratio
0.99
42 <<< lens (focal) length
50.0 <<< 50mm
43 <<< front clipping planes, offsets from target point
0.0
44 <<< back clipping planes, offsets from target point
0.0
50 <<< snap rotation angle
0.0
51 <<< view twist angle
0.0
71 <<< view mode
0
72 <<< circle zoom percent
1000
73 <<< fast zoom setting
1
74 <<< UCSICON setting
3
75 <<< snap on/off
0
76 <<< grid on/off
0
77 <<< snap style
0
78 <<< snap isopair
0
281 <<< render mode 1-6 (... too many options)
0 <<< 0 = 2D optimized (classic 2D)
65 <<< Value of UCSVP for this viewport. (0 = UCS will not change when this viewport is activated)
1 <<< 1 = then viewport stores its own UCS which will become the current UCS whenever the viewport is activated.
110 <<< UCS origin (3D point)
0.0 <<< x value
120 <<< group code for y value
0.0 <<< y value
130 <<< group code for z value
0.0 <<< z value
111 <<< UCS X-axis (3D vector)
1.0 <<< x value
121 <<< group code for y value
0.0 <<< y value
131 <<< group code for z value
0.0 <<< z value
112 <<< UCS Y-axis (3D vector)
0.0 <<< x value
122 <<< group code for y value
1.0 <<< y value
132 <<< group code for z value
0.0 <<< z value
79 <<< Orthographic type of UCS 0-6 (... too many options)
0 <<< 0 = UCS is not orthographic
146 <<< elevation
0.0
1001 <<< extended data - undocumented
ACAD_NAV_VCDISPLAY
1070
3
0 <<< next VPORT entry
VPORT
5
158C
330
151F
100
AcDbSymbolTableRecord
100
AcDbViewportTableRecord
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.5
11
0.45
21
1.0
12
8.21
22
9.72
...
...
0 <<< next VPORT entry
VPORT
5
158D
330
151F
100
AcDbSymbolTableRecord
100
AcDbViewportTableRecord
2 <<< VPORT (configuration) name
*ACTIVE <<< same as first VPORT entry
70
0
10
0.0
20
0.0
11
0.45
21
0.5
12
2.01
22
-8.97
...
...
0
ENDTAB
The TABLES section of DXF R13 and later looks like this:
0
SECTION
2 <<< begin TABLES section
TABLES
0 <<< first TABLE
TABLE
2 <<< name of table "LTYPE"
LTYPE
5 <<< handle of the TABLE
8
330 <<< owner handle is always "0"
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries
4 <<< do not rely on this value!
0 <<< first table entry
LTYPE
...
0 <<< second table entry
LTYPE
...
0 <<< end of TABLE
ENDTAB
0 <<< next TABLE
TABLE
2 <<< name of table "LAYER"
LAYER
5 <<< handle of the TABLE
2
330 <<< owner handle is always "0"
0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries
1
0 <<< first table entry
LAYER
...
0 <<< end of TABLE
ENDTAB
0 <<< end of SECTION
ENDSEC
The TABLES section of DXF R12 and prior is a bit simpler and does not contain the BLOCK_RECORD table. The
handles in DXF R12 and prior are optional and only present if the HEADER variable $HANDLING is 1.
0
SECTION
2 <<< begin TABLES section
TABLES
0 <<< first TABLE
TABLE
2 <<< name of table "LTYPE"
LTYPE
5 <<< optional handle of the TABLE
8
70 <<< count of table entries
4
0 <<< first table entry
LTYPE
...
0 <<< second table entry
LTYPE
...
0 <<< end of TABLE
ENDTAB
0 <<< next TABLE
TABLE
2 <<< name of table "LAYER"
LAYER
5 <<< optional handle of the TABLE
2
70 <<< count of table entries
1
0 <<< first table entry
LAYER
...
0 <<< end of TABLE
ENDTAB
0 <<< end of SECTION
ENDSEC
BLOCKS Section
The BLOCKS section contains all BLOCK definitions, beside the normal reusable BLOCKS used by the INSERT
entity, all layouts, as there are the modelspace and all paperspace layouts, have at least a
corresponding BLOCK definition in the BLOCKS section. The name of the modelspace BLOCK is “*Model_Space”
(DXF R12: “$MODEL_SPACE”) and the name of the active paperspace BLOCK is “*Paper_Space” (DXF R12:
“$PAPER_SPACE”), the entities of these two layouts are stored in the ENTITIES section, the inactive
paperspace layouts are named by the scheme “*Paper_Spacennnn”, and the content of the inactive paperspace
layouts are stored in their BLOCK definition in the BLOCKS section.
The content entities of blocks are stored between the BLOCK and the ENDBLK entity.
BLOCKS section structure:
0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
0 <<< start of 1. BLOCK definition
BLOCK
... <<< Block content
...
0 <<< end of 1. Block definition
ENDBLK
0 <<< start of 2. BLOCK definition
BLOCK
... <<< Block content
...
0 <<< end of 2. Block definition
ENDBLK
0 <<< end of BLOCKS section
ENDSEC
SEE ALSO:
Block Management Structures Layout Management Structures
ENTITIES Section
TODO
OBJECTS Section
Objects in the OBJECTS section are organized in a hierarchical tree order, starting with the named
objects dictionary as the first entity in the OBJECTS section (Drawing.rootdict).
Not all entities in the OBJECTS section are included in this tree, Extension Dictionary and XRECORD data
of graphical entities are also stored in the OBJECTS section.
DXF Tables
DXF Entities
DIMENSION Internals
SEE ALSO:
• DXF Reference: DIMENSION
• DXFInternals: DIMSTYLE Table
[image]
MESH Internals
The MESH entity is the compact version of the PolyFaceMesh implemented by the Polyline entity . The
entity stores the vertices, edges and faces in a single entity and was introduced in DXF version R13/R14.
For more information about the top level stuff go to the Mesh class.
SEE ALSO:
• DXF Reference: MESH
• ezdxf.entities.Mesh class
The following DXF code represents this cube with subdivision level of 0: [image]
0
MESH <<< DXF type
5 <<< entity handle
2F
330 <<< block record handle of owner layout
17
100
AcDbEntity
8
0 <<< layer
62
6 <<< color
100
AcDbSubDMesh <<< subclass marker
71
2 <<< version
72
1 <<< blend crease, 1 is "on", 0 is "off"
91
0 <<< subdivision level is 0
92
8 <<< vertex count, 8 cube corners
10 <<< 1. vertex, x-axis
0.0
20 <<< y-axis
0.0
30 <<< z-axis
0.0
10 <<< 2. vertex
1.0
20
0.0
30
0.0
10 <<< 3. vertex
1.0
20
1.0
30
0.0
10 <<< 4. vertex
0.0
20
1.0
30
0.0
10 <<< 5. vertex
0.0
20
0.0
30
1.0
10 <<< 6. vertex
1.0
20
0.0
30
1.0
10 <<< 7. vertex
1.0
20
1.0
30
1.0
10 <<< 8. vertex
0.0
20
1.0
30
1.0
93 <<< size of face list
30 <<< size = count of group code 90 tags = 6 x 5
90 <<< vertex count of face 1
4 <<< MESH supports ngons, count = 3, 4, 5, 6 ...
90
0 <<< face 1, index of 1. vertex
90
3 <<< face 1, index of 2. vertex
90
2 <<< face 1, index of 3. vertex
90
1 <<< face 1, index of 4. vertex
90
4 <<< vertex count of face 2
90
4 <<< face 2, index of 1. vertex
90
5 <<< face 2, index of 2. vertex
90
6 <<< face 2, index of 3. vertex
90
7 <<< face 2, index of 4. vertex
90
4 <<< vertex count of face 3
90
0 <<< face 3, index of 1. vertex
90
1 <<< face 3, index of 2. vertex
90
5 <<< face 3, index of 3. vertex
90
4 <<< face 3, index of 4. vertex
90
4 <<< vertex count of face 4
90
1 <<< face 4, index of 1. vertex
90
2 <<< face 4, index of 2. vertex
90
6 <<< face 4, index of 3. vertex
90
5 <<< face 4, index of 4. vertex
90
4 <<< vertex count of face 5
90
3 <<< face 5, index of 1. vertex
90
7 <<< face 5, index of 2. vertex
90
6 <<< face 5, index of 3. vertex
90
2 <<< face 5, index of 4. vertex
90
4 <<< vertex count of face 6
90
0 <<< face 6, index of 1. vertex
90
4 <<< face 6, index of 2. vertex
90
7 <<< face 6, index of 3. vertex
90
3 <<< face 6, index of 4. vertex
94 <<< edge count, each edge has exact two group code 90 tags
4 <<< the real edge count not the group code 90 tags!
90
0 <<< edge 1, vertex 1
90
1 <<< edge 1, vertex 1
90
1 <<< edge 2, vertex 1
90
2 <<< edge 2, vertex 2
90
2 <<< edge 3, vertex 1
90
3 <<< edge 3, vertex 2
90
3 <<< edge 4, vertex 1
90
0 <<< edge 4, vertex 2
95 <<< edge crease count, has to match edge count!
4
140
3.0 <<< crease value for edge 1
140
3.0 <<< crease value for edge 2
140
3.0 <<< crease value for edge 3
140
3.0 <<< crease value for edge 4
90 <<< property overwrite???
0
The edge and crease data have only a meaning if subdivision of the geometry will be applied! A crease
value equal to the subdivision level prevents subdividing for the edge completely, a value between 0.0
and the subdivision level applies subdivision partially.
The cube with subdivision level of 3 and crease values of 3.0: [image]
Front view for better details: [image]
The cube with subdivision levels of 3 and crease values of 2.0: [image]
The cube with subdivision level of 3 and crease values of 1.0: [image]
The property overriding protocol is not documented in the DXF reference and currently I have no access to
a CAD application which can created property overriding.
MULTILEADER Internals
The MULTILEADER leader is a very complex entity and has also some weird and unique properties.
1. MULTILEADER has the alias name MLEADER which is accepted by any reliable CAD application, but all of
them create the entity as MULTILEADER
2. uses raw-color values to define colors
3. creates a complex context data structures beyond simple tags inside the subclass AcDbMLeader
SEE ALSO:
• ezdxf.entities.MultiLeader
• ezdxf.entities.MLeaderStyle
• ezdxf.render.MultiLeaderBuilder
• Tutorial for MultiLeader
• DXF Reference: MLEADER
Example for ezdxf.entities.MLeaderContext created by BricsCAD:
300 <str> CONTEXT_DATA{
40 <float> 1.0 <<< content scale
10 <point> (x, y, z) <<< content base point
41 <float> 4.0 <<< text height
140 <float> 4.0 <<< arrowhead size
145 <float> 2.0 <<< landing gap size
174 <int> 1 <<< doc missing
175 <int> 1 <<< doc missing
176 <int> 0 <<< doc missing
177 <int> 0 <<< doc missing
290 <int> 1 <<< has_mtext_content
<<< START MText Content tags:
304 <str> MTEXT content string
11 <point> (0.0, 0.0, 1.0) <<< extrusion vector
340 <hex> #A0 <<< text style as handle
12 <point> (x, y, z) <<< text location
13 <point> (1.0, 0.0, 0.0) <<< text direction
42 <float> 0.0 <<< text rotation
43 <float> 0.0 <<< text width
44 <float> 0.0 <<< text height
45 <float> 1.0 <<< text line space factor
170 <int> 1 <<< text line space style
90 <int> -1056964608 <<< text color (raw value)
171 <int> 1 <<< text attachment
172 <int> 1 <<< text flow direction
91 <int> -939524096 <<< text background color (raw value)
141 <float> 1.5 <<< text background scale factor
92 <int> 0 <<< text background transparency
291 <int> 0 <<< has_text_bg_color
292 <int> 0 <<< has_text_bg_fill
173 <int> 0 <<< text column type
293 <int> 0 <<< use text auto height
142 <float> 0.0 <<< text column width
143 <float> 0.0 <<< text column gutter width
294 <int> 0 <<< text column flow reversed
144 <float> missing <<< text column height (optional?)
295 <int> 0 <<< text use word break
<<< END MText Content tags:
296 <int> 0 <<< has_block_content
<<< START Block content tags
<<< END Block content tags
110 <point> (0.0, 0.0, 0.0) <<< MLEADER plane origin point
111 <point> (1.0, 0.0, 0.0) <<< MLEADER plane x-axis direction
112 <point> (0.0, 1.0, 0.0) <<< MLEADER plane y-axis direction
297 <int> 0 <<< MLEADER normal reversed
302 <str> LEADER{
...
303 <str> }
302 <str> LEADER{
...
303 <str> }
272 <int> 9 <<< doc missing
273 <int> 9 <<< doc missing
301 <str> }
<<< BricsCAD example for block content:
300 <str> CONTEXT_DATA{
40 <float> 1.0
10 <point> (x, y, z)
41 <float> 4.0
140 <float> 4.0
145 <float> 2.0
174 <int> 1
175 <int> 1
176 <int> 0
177 <int> 0
290 <int> 0 <<< has_mtext_content
296 <int> 1 <<< has_block_content
<<< START Block content tags
341 <hex> #94 <<< dxf.block_record_handle
14 <point> (0.0, 0.0, 1.0) <<< Block extrusion vector
15 <point> (x, y, z) <<< Block location
16 <point> (1.0, 1.0, 1.0) <<< Block scale vector, the x-, y- and z-axis scaling factors
46 <float> 0.0 <<< Block rotation in radians!
93 <int> -1056964608 <<< Block color (raw value)
47 <float> 1.0 <<< start of transformation matrix (16x47)
47 <float> 0.0
47 <float> 0.0
47 <float> 18.427396871473
47 <float> 0.0
47 <float> 1.0
47 <float> 0.0
47 <float> 0.702618780008
47 <float> 0.0
47 <float> 0.0
47 <float> 1.0
47 <float> 0.0
47 <float> 0.0
47 <float> 0.0
47 <float> 0.0
47 <float> 1.0 <<< end of transformation matrix
<<< END Block content tags
110 <point> (0.0, 0.0, 0.0) <<< MLEADER plane origin point
111 <point> (1.0, 0.0, 0.0) <<< MLEADER plane x-axis direction
112 <point> (0.0, 1.0, 0.0) <<< MLEADER plane y-axis direction
297 <int> 0 <<< MLEADER normal reversed
302 <str> LEADER{
...
303 <str> }
272 <int> 9
273 <int> 9
301 <str> }
<<< Attribute content and other redundant block data is stored in the AcDbMLeader
<<< subclass:
100 <ctrl> AcDbMLeader
270 <int> 2 <<< dxf.version
300 <str> CONTEXT_DATA{ <<< start context data
...
301 <str> } <<< end context data
340 <hex> #6D <<< dxf.style_handle
90 <int> 6816768 <<< dxf.property_override_flags
... <<< property overrides
292 <int> 0 <<< dxf.has_frame_text
<<< mostly redundant block data:
344 <hex> #94 <<< dxf.block_record_handle
93 <int> -1056964608 <<< dxf.block_color (raw value)
10 <point> (1.0, 1.0, 1.0) <<< dxf.block_scale_vector
43 <float> 0.0 <<< dxf.block_rotation in radians!
176 <int> 0 <<< dxf.block_connection_type
293 <int> 0 <<< dxf.is_annotative
<<< REPEAT: (optional)
94 <int> <<< arrow head index?
345 <hex> <<< arrow head handle
<<< REPEAT: (optional)
330 <hex> #A3 <<< ATTDEF handle
177 <int> 1 <<< ATTDEF index
44 <float> 0.0 <<< ATTDEF width
302 <str> B <<< ATTDEF text (reused group code)
... common group codes 294, 178, 179, ...
MTEXT Internals
The MTEXT entity stores multiline text in a single entity and was introduced in DXF version R13/R14. For
more information about the top level stuff go to the MText class.
SEE ALSO:
• DXF Reference: MTEXT
• ezdxf.entities.MText class
Orientation
The MTEXT entity does not establish an OCS. The entity has a text_direction attribute, which defines the
local x-axis, the extrusion attribute defines the normal vector and the y-axis = extrusion cross x-axis.
The MTEXT entity can have also a rotation attribute (in degrees), the x-axis attribute has higher
priority than the rotation attribute, but it is not clear how to convert the rotation attribute into a
text_direction vector, but for most common cases, where only the rotation attribute is present, the
extrusion is most likely the WCS z-axis and the rotation is the direction in the xy-plane.
Text Content
The content text is divided across multiple tags of group code 3 and 1, the last line has the group code
1, each line can have a maximum line length of 255 bytes, but BricsCAD (and AutoCAD?) store only 249
bytes in single line and one byte is not always one char.
Inline Code Specials
The text formatting is done by inline codes, see the MText class.
Information gathered by implementing the MTextEditor and the MTextParser classes:
•
caret encoded characters:
• “^I” tabulator
• “^J” (LF) is a valid line break like “\P”
• “^M” (CR) is ignored
• other characters render as empty square “▯”
• a space “ “ after the caret renders the caret glyph: “1^ 2” renders “1^2”
•
special encoded characters:
• “%%c” and “%%C” renders “Ø” (alt-0216)
• “%%d” and “%%D” renders “°” (alt-0176)
• “%%p” and “%%P” renders “±” (alt-0177)
•
Alignment command “\A”: argument “0”, “1” or “2” is expected
• the terminator symbol “;” is optional
• the arguments “3”, “4”, “5”, “6”, “7”, “8”, “9” and “-” default to 0
• other characters terminate the command and will be printed: “\AX”, renders “X”
•
ACI color command “\C”: int argument is expected
• the terminator symbol “;” is optional
• a leading “-” or “+” terminates the command, “\C+5” renders “\C+5”
• arguments > 255, are ignored but consumed “\C1000” renders nothing, not even a “0”
• a trailing “;” after integers is always consumed, even for much to big values, “\C10000;”
renders nothing
•
RGB color command “\c”: int argument is expected
• the terminator symbol “;” is optional
• a leading “-” or “+” terminates the command, “\c+255” renders “\c+255”
• arguments >= 16777216 are masked by: value & 0xFFFFFF
• a trailing “;” after integers is always consumed, even for much to big values, “\c9999999999;”
renders nothing and switches the color to yellow (255, 227, 11)
•
Height command “\H” and “\H…x”: float argument is expected
• the terminator symbol “;” is optional
• a leading “-” is valid, but negative values are ignored
• a leading “+” is valid
• a leading “.” is valid like “\H.5x” for height factor 0.5
• exponential format is valid like “\H1e2” for height factor 100 and “\H1e-2” for 0.01
• an invalid floating point value terminates the command, “\H1..5” renders “\H1..5”
•
Other commands with floating point arguments like the height command:
• Width commands “\W” and “\W…x”
• Character tracking commands “\T” and “\T…x”, negative values are used
• Slanting (oblique) command “\Q”
•
Stacking command “\S”:
• build fractions: “numerator (upr)” + “stacking type char (t)” + “denominator (lwr)” + “;”
• divider chars: “^”, “/” or “#”
• a space “ “ after the divider char “^” is mandatory to avoid caret decoding: “\S1^ 2;”
• the terminator symbol “;” is mandatory to end the command, all chars beyond the “\S” until the
next “;” or the end of the string are part of the fraction
• backslash escape “\;” to render the terminator char
• a space “ “ after the divider chars “/” and “#” is rendered as space “ ” in front of the
denominator
• the numerator and denominator can contain spaces
• backslashes “\” inside the stacking command are ignored (except “\;”) “\S\N^ \P” render “N”
over “P”, therefore property changes (color, text height, …) are not possible inside the
stacking command
• grouping chars “{” and “}” render as simple curly braces
• caret encoded chars are decoded “^I”, “^J”, “^M”, but render as a simple space “ “ or as the
replacement char “▯” plus a space
• a divider char after the first divider char, renders as the char itself: “\S1/2/3” renders the
horizontal fraction “1” / “2/3”
•
Font command “\f” and “\F”: export only “\f”, parse both, “\F” ignores some arguments
• the terminator symbol “;” is mandatory to end the command, all chars beyond the “\f” until the
next “;” or the end of the string are part of the command
• the command arguments are separated by the pipe char “|”
• arguments: “font family name” | “bold” | “italic” | “codepage” | “pitch”; example
“\fArial|b0|i0|c0|p0;”
• only the “font family name” argument is required, fonts which are not available on the system
are replaced by the “TXT.SHX” shape font
• the “font family name” is the font name shown in font selection widgets in desktop
applications
• “b1” to use the bold font style, any other second char is interpreted as “non bold”
• “i1” to use an italic font style, any other second char is interpreted as “non italic”
• “c???” change codepage, “c0” use the default codepage, because of the age of unicode no
further investigations, also seems to be ignored by AutoCAD and BricsCAD
• “p???” change pitch size, “p0” means don’t change, ignored by AutoCAD and BricsCAD, to change
the text height use the “\H” command
• the order is not important, but export always in the shown order: “\fArial|b0|i0;” the
arguments “c0” and “p0” are not required
•
Paragraph properties command “\p”
• the terminator symbol “;” is mandatory to end the command, all chars beyond the “\p” until the
next “;” or the end of the string are part of the command
• the command arguments are separated by commas “,”
• all values are factors for the initial char height of the MTEXT entity, example: char height =
2.5, “\pl1;” set the left paragraph indentation to 1 x 2.5 = 2.5 drawing units.
• all values are floating point values, see height command
• arguments are “i”, “l”, “r”, “q”, “t”
• a “*” as argument value, resets the argument to the initial value: “i0”, “l0”, “r0”, the “q”
argument most likely depends on the text direction; I haven’t seen “t*”. The sequence used by
BricsCAD to reset all values is "\pi*,l*,r*,q*,t;"
• “i” indentation of the first line relative to the “l” argument as floating point value,
“\pi1.5”
• “l” left paragraph indentation as floating point value, “\pl1.5”
• “r” right paragraph indentation as floating point value, “\pr1.5”
• “x” is required if a “q” or a “t” argument is present, the placement of the “x” has no obvious
rules
• “q” paragraph alignment
• “ql” left paragraph alignment
• “qr” right paragraph alignment
• “qc” center paragraph alignment
• “qj” justified paragraph alignment
• “qd” distributed paragraph alignment
• “t” tabulator stops as comma separated list, the default tabulator stops are located at 4, 8,
12, …, by defining at least one tabulator stop, the default tabulator stops will be ignored.
There 3 kind of tabulator stops: left, right and center adjusted stops, e.g. “pxt1,r5,c8”:
• a left adjusted stop has no leading char, two left adjusted stops “\pxt1,2;”
• a right adjusted stop has a preceding “r” char, “\pxtr1,r2;”
• a center adjusted stop has a preceding “c” char, “\pxtc1,c2;”
complex example to create a numbered list with two items: "pxi-3,l4t4;1.^Ifirst
item\P2.^Isecond item"
• a parser should be very flexible, I have seen several different orders of the arguments and
placing the sometimes required “x” has no obvious rules.
• exporting seems to be safe to follow these three rules:
1. the command starts with “\px”, the “x” does no harm, if not required
2. argument order “i”, “l”, “r”, “q”, “t”, any of the arguments can be left off
3. terminate the command with a “;”
Height Calculation
There is no reliable way to calculate the MTEXT height from the existing DXF attributes. The rect_height
(group code 43) attribute is not required and seldom present. DXF R2007 introduced the defined_height
attribute to store the defined column height of the MTEXT entity but only in column mode. MTEXT entities
without columns, except MTEXT entities created with column type “No Columns”, store always 0.0 as defined
column height. Which seems to mean: defined by the rendered text content.
The only way to calculate the MTEXT height is to replicate the rendering results of AutoCAD/BricsCAD by
implementing a rendering engine for MTEXT.
In column mode the MTEXT height is stored for every column for DXF version before R2018. In DXF R2018+
the column heights are only stored if MTextColumns.auto_height is False. If MTextColumns.auto_height is
True. But DXF R2018+ stores the MTEXT total width and height in explicit attributes.
Width Calculation
The situation for width calculation is better than for the height calculation, but the attributes width
and rect_width are not mandatory.
There is a difference between MTEXT entities with and without columns:
Without columns the attribute width (reference column width) contains the true entity width if present. A
long word can overshoot this width! The rect_width attribute is seldom present.
For MTEXT with columns, the width attribute is maybe wrong, the correct width for a column is stored in
the column_width attribute and the total_width attribute stores the total width of the MTEXT entity
overall columns, see also following section “Column Support”.
Background Filling
The background fill support is available for DXF R2007+. The group code 90 defines the kind of
background fill:
┌────┬───────────────────────────────────────┐
│ 0 │ off │
├────┼───────────────────────────────────────┤
│ 1 │ color defined by group code 63, 421 │
│ │ or 431 │
├────┼───────────────────────────────────────┤
│ 2 │ drawing window color │
├────┼───────────────────────────────────────┤
│ 3 │ background (canvas) color │
├────┼───────────────────────────────────────┤
│ 16 │ bit-flag text frame, see Open Design │
│ │ Alliance Specification 20.4.46 │
└────┴───────────────────────────────────────┘
Group codes to define background fill attributes:
┌─────┬───────────────────────────────────────┐
│ 45 │ scaling factor for the border around │
│ │ the text, the value should be in the │
│ │ range of [1, 5], where 1 fits exact │
│ │ the MText entity │
├─────┼───────────────────────────────────────┤
│ 63 │ set the background color by ACI. │
├─────┼───────────────────────────────────────┤
│ 421 │ set the background color as │
│ │ true-color value. │
├─────┼───────────────────────────────────────┤
│ 431 │ set the background color by color │
│ │ name - no idea how this works │
├─────┼───────────────────────────────────────┤
│ 441 │ set the transparency of the │
│ │ background fill, not supported by │
│ │ AutoCAD or BricsCAD. │
└─────┴───────────────────────────────────────┘
Group codes 45, 90 and 63 are required together if one of them is used. The group code 421 and 431 also
requires the group code 63, even this value is ignored.
... <snip>
1 <str> eu feugiat nulla facilisis at vero eros et accumsan et iusto ...
73 <int> 1
44 <float> 1.0
90 <int> 1, b00000001 <<< use a color
63 <int> 1 <<< ACI color (red)
45 <float> 1.5 <<< bg scaling factor, relative to the char height
441 <int> 0 <<< ignored (optional)
... <snip>
[image]
The background scaling does not alter the width, column_width or total_width attributes. The background
acquires additional space around the MTEXT entity.
Columns with background color: [image]
Text Frame
The MTEXT entity can have a text frame only, without a background filling, group code 90 has value 16. In
this case all other background related tags are removed (45, 63, 421, 431, 441) and the scaling factor is
1.5 by default.
XDATA for Text Frame
This XDATA exist only if the text frame flag in group code 90 is set and for DXF version < R2018!
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_TEXT_BORDERS_BEGIN
1070 <int> 80 <<< group code for repeated flags
1070 <int> 16 <<< repeated group code 90?
1070 <int> 46 <<< group code for scaling factor, which is fixed?
1040 <float> 1.5 <<< scaling factor
1070 <int> 81 <<< group code for repeated flow direction?
1070 <int> 1 <<< flow direction?
1070 <int> 5 <<< group code for a handle, multiple entries possible
1005 <hex> #A8 <<< handle to the LWPOLYLINE text frame
1070 <int> 5 <<< group code for next handle
1005 <hex> #A9 <<< next handle
...
1000 <str> ACAD_MTEXT_TEXT_BORDERS_END
Extra LWPOLYLINE Entity as Text Frame
The newer versions of AutoCAD and BricsCAD get all the information they need from the MTEXT entity, but
it seems that older versions could not handle the text frame property correct. Therefore AutoCAD and
BricsCAD create a separated LWPOLYLINE entity for the text frame for DXF versions < R2018. The handle to
this text frame entity is stored in the XDATA as group code 1005, see section above.
Because this LWPOLYLINE is not required ezdxf does not create such a text frame entity nor the associated
XDATA and ezdxf also removes this data from loaded DXF files at the second loading stage.
Column Support
CAD applications build multiple columns by linking 2 or more MTEXT entities together. In this case each
column is a self-sufficient entity in DXF version R13 until R2013. The additional columns specifications
are stored in the XDATA if the MTEXT which represents the first column.
DXF R2018 changed the implementation into a single MTEXT entity which contains all the content text at
once and stores the column specification in an embedded object.
HINT:
The width attribute for the linked MTEXT entities could be wrong. Always use the column_width and the
total_width attributes in column mode.
There are two column types, the static type has the same column height for all columns, the dynamic type
can have the same (auto) height or an individual height for each column.
Common facts about columns for all column types:
• all columns have the same column width
• all columns have the same gutter width
• the top of the column are at the same height
Column Type
The column type defines how a CAD application should create the columns, this is not important for the
file format, because the result of this calculation, the column count and the column height, is stored
the DXF file.
┌─────────────────────────┬───────────────────────────────────────┐
│ Column Type in BricsCAD │ Description │
├─────────────────────────┼───────────────────────────────────────┤
│ Static │ All columns have the same height. The │
│ │ “auto height” flag is 0. │
├─────────────────────────┼───────────────────────────────────────┤
│ Dynamic (auto height) │ Same as the static type, all columns │
│ │ have the same height. The “auto │
│ │ height” flag is 1. The difference to │
│ │ the static type is only important for │
│ │ interactive CAD applications. │
├─────────────────────────┼───────────────────────────────────────┤
│ Dynamic (manual height) │ same as the dynamic (auto height) │
│ │ type, but each column can have an │
│ │ individual height. │
├─────────────────────────┼───────────────────────────────────────┤
│ No column │ A regular MTEXT with “defined column │
│ │ height” attribute? │
└─────────────────────────┴───────────────────────────────────────┘
┌────────────────┬────────────────┬─────────────┬─────────────────┐
│ Column Type │ Defined Height │ Auto Height │ Column Heights │
├────────────────┼────────────────┼─────────────┼─────────────────┤
│ Static │ stored │ False │ not stored │
├────────────────┼────────────────┼─────────────┼─────────────────┤
│ Dynamic auto │ stored │ True │ not stored │
├────────────────┼────────────────┼─────────────┼─────────────────┤
│ Dynamic manual │ not stored │ False │ stored (last=0) │
└────────────────┴────────────────┴─────────────┴─────────────────┘
Column Count
For DXF versions < R2018 the column count is always given by the count of linked MTEXT columns. Caution:
the column count stored in the XDATA section by group code 76 may not match the count of linked MTEXT
entities and AutoCAD is OK with that! In DXF R2018+ this property is not available, because there are no
linked MTEXT entities anymore.
R2018+: For the column types “static” and “dynamic manual” the correct column count is stored as group
code 72. For the column type “dynamic auto” the stored column count is 0. It is possible to calculate the
column count from the total width and the column width if the total width is correct like in AutoCAD and
BricsCAD.
Static Columns R2000
Example for a static column specification:
• Column Type: Static
• Number of Columns: 3
• Height: 150.0, manual entered value and all columns have the same height
• Width: 50.0
• Gutter Width: 12.5
[image]
The column height is stored as the “defined column height” in XDATA (46) or the embedded object (41).
DXF R2000 example with a static column specification stored in XDATA:
0
MTEXT
5 <<< entity handle
9D
102
{ACAD_XDICTIONARY
360
9F
102
}
330 <<< block record handle of owner layout
1F
100
AcDbEntity
8 <<< layer
0
100 <<< begin of MTEXT specific data
AcDbMText
10 <<< (10, 20, 30) insert location in WCS
285.917876152751
20
276.101821192053
30
0.0
40 <<< character height in drawing units
2.5
41 <<< reference column width, if not in column mode
62.694... <<< in column mode: the real column is defined in XDATA (48)
71 <<< attachment point
1
72 <<< text flow direction
1
3 <<< begin of text
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam ...
3
kimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit ...
3
ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ...
3
At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd ...
3
ore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio ...
1 <<< last text line and end of text
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.
73 <<< line spacing style
1
44 <<< line spacing factor
1.0
1001
AcadAnnotative
1000
AnnotativeData
1002
{
1070
1
1070
0
1002
}
1001 <<< AppID "ACAD" contains the column specification
ACAD
1000
ACAD_MTEXT_COLUMN_INFO_BEGIN
1070
75 <<< group code column type
1070
1 <<< column type: 0=no column; 1=static columns; 2=dynamic columns
1070
79 <<< group code column auto height
1070
0 <<< flag column auto height
1070
76 <<< group code column count
1070
3 <<< column count
1070
78 <<< group code column flow reversed
1070
0 <<< flag column flow reversed
1070
48 <<< group code column width
1040
50.0 <<< column width in column mode
1070
49 <<< group code column gutter
1040
12.5 <<< column gutter width
1000
ACAD_MTEXT_COLUMN_INFO_END
1000 <<< linked MTEXT entities specification
ACAD_MTEXT_COLUMNS_BEGIN
1070
47 <<< group code for column count, incl. the 1st column - this entity
1070
3 <<< column count
1005
1B4 <<< handle to 2nd column as MTEXT entity
1005
1B5 <<< handle to 3rd column as MTEXT entity
1000
ACAD_MTEXT_COLUMNS_END
1000
ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070
46 <<< group code for defined column height
1040
150.0 <<< defined column height
1000
ACAD_MTEXT_DEFINED_HEIGHT_END
The linked column MTEXT #1B4 in a compressed representation:
0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (348.417876152751, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 150.0
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END
The linked MTEXT has no column specification except the “defined column height” in the XDATA. The
reference column width is not the real value of 50.0, see XDATA group code 48 in the main MTEXT #9D,
instead the total width of 175.0 is stored at group code 41. This is problem if a renderer try to render
this MTEXT as a standalone entity. The renderer has to fit the content into the column width by itself
and without the correct column width, this will produce an incorrect result.
There exist no back link to the main MTEXT #9D. The linked MTEXT entities appear after the main MTEXT in
the layout space, but there can be other entities located between these linked MTEXT entities.
The linked column MTEXT #1B5:
0 <ctrl> MTEXT
5 <hex> #1B5
... <snip>
100 <ctrl> AcDbMText
10 <point> (410.917876152751, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 150.0
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END
Static Columns R2018
The MTEXT entity in DXF R2018 contains all column information in a single entity. The text content of all
three columns are stored in a continuous text string, the separation into columns has to be done by the
renderer. The manual column break \N is not used to indicate automatic column breaks. The MTEXT renderer
has to replicate the AutoCAD/BricsCAD rendering as exact as possible to achieve the same results, which
is very hard without rendering guidelines or specifications.
The example from above in DXF R2018 with a static column specification stored in an embedded object:
0
MTEXT
5 <<< entity handle
9D
102
{ACAD_XDICTIONARY
360
9F
102
}
330 <<< block record handle of owner layout
1F
100
AcDbEntity
8 <<< layer
0
100
AcDbMText
10 <<< (10, 20, 30) insert location in WCS
285.917876152751
20
276.101821192053
30
0.0
40 <<< character height in drawing units
2.5
41 <<< reference column width, if not in column mode
62.694536423841
46 <<< defined column height
150.0
71 <<< attachment point
1
72 <<< text flow direction
1
3 <<< text content of all three columns
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam n...
3
imata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit...
3
a rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lor...
3
vero eos et accusam et justo duo dolores et ea rebum. Stet clita ka...
3
eu feugiat nulla facilisis at vero eros et accumsan et iusto odio s...
3
od tincidunt ut laoreet dolore magna aliquam erat volutpat. \P\PU...
3
e velit esse molestie consequat, vel illum dolore eu feugiat nulla ...
3
obis eleifend option congue nihil imperdiet doming id quod mazim pl...
3
m ad minim veniam, quis nostrud exerci tation ullamcorper suscipit ...
3
lisis. \P\PAt vero eos et accusam et justo duo dolores et ea rebu...
3
t labore et dolore magna aliquyam erat, sed diam voluptua. At vero ...
3
litr, At accusam aliquyam diam diam dolore dolores duo eirmod eos e...
1
ipsum dolor sit amet, consetetur
73 <<< line spacing style
1
44 <<< line spacing factor
1.0
101 <<< column specification as embedded object
Embedded Object
70 <<< ???
1
10 <<< (10, 20, 30) text direction vector (local x-axis)
1.0
20
0.0
30
0.0
11 <<< (11, 21, 31) repeated insert location of AcDbMText
285.917876152751
21
276.101821192053
31
0.0
40 <<< repeated reference column width
62.694536423841
41 <<< repeated defined column height
150.0
42 <<< extents (total) width
175.0
43 <<< extents (total) height, max. height if different column heights
150.0
71 <<< column type: 0=no column; 1=static columns; 2=dynamic columns
1
72 <<< column height count
3
44 <<< column width
50.0
45 <<< column gutter width
12.5
73 <<< flag column auto height
0
74 <<< flag reversed column flow
0
1001
AcadAnnotative
1000
AnnotativeData
1002
{
1070
1
1070
0
1002
}
Dynamic (auto height) Columns R2000
Example for a dynamic column specification:
• Column Type: Dynamic
• Number of Columns: 3
• Height: 158.189… adjusted by widget and all columns have the same height
• Width: 50.0
• Gutter Width: 12.5
0 <ctrl> MTEXT
5 <hex> #A2 <<< entity handle
... <snip>
330 <hex> #1F <<< block record handle of owner layout
100 <ctrl> AcDbEntity
8 <str> 0 <<< layer
100 <ctrl> AcDbMText
10 <point> (-133.714579865783, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed dia...
... <snip>
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
1001 <ctrl> AcadAnnotative
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_COLUMN_INFO_BEGIN
1070 <int> 75 <<< column type: 2=dynamic columns
1070 <int> 2
1070 <int> 79 <<< flag column auto height
1070 <int> 1
1070 <int> 76 <<< column count
1070 <int> 3
1070 <int> 78 <<< flag column flow reversed
1070 <int> 0
1070 <int> 48 <<< column width in column mode
1040 <float> 50.0
1070 <int> 49 <<< column gutter width
1040 <float> 12.5
1000 <str> ACAD_MTEXT_COLUMN_INFO_END
1000 <str> ACAD_MTEXT_COLUMNS_BEGIN
1070 <int> 47 <<< column count
1070 <int> 3
1005 <hex> #1B6 <<< handle to 2. column as MTEXT entity
1005 <hex> #1B7 <<< handle to 3. column as MTEXT entity
1000 <str> ACAD_MTEXT_COLUMNS_END
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END
The linked column MTEXT #1B6:
0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (-71.214579865783, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid column width
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END
The linked column MTEXT #1B7:
0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (-8.714579865783, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid column width
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END
Dynamic (auto height) Columns R2018
0 <ctrl> MTEXT
5 <hex> #A2 <<< entity handle
102 <ctrl> {ACAD_XDICTIONARY
360 <hex> #A3
102 <ctrl> }
330 <hex> #1F <<< block record handle of owner layout
100 <ctrl> AcDbEntity
8 <str> 0 <<< layer
100 <ctrl> AcDbMText
10 <point> (-133.714579865783, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode
46 <float> 158.189308131867 <<< defined column height
71 <int> 1 <<< attachment point
72 <int> 1 <<< text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam...
... <snip> text content of all three columns
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
101 <ctrl> Embedded Object
70 <int> 1, b00000001 <<< ???
10 <point> (1.0, 0.0, 0.0) <<< text direction vector (local x-axis)
11 <point> (-133.714579865783, 276.101821192053, 0.0) <<< repeated insert location
40 <float> 62.694536423841 <<< repeated reference column width
41 <float> 158.189308131867 <<< repeated defined column height
42 <float> 175.0 <<< extents (total) width
43 <float> 158.189308131867 <<< extents (total) height, max. height if different column heights
71 <int> 2 <<< column type: 2=dynamic columns
72 <int> 0 <<< column height count
44 <float> 50.0 <<< column width
45 <float> 12.5 <<< column gutter width
73 <int> 1 <<< flag column auto height
74 <int> 0 <<< flag reversed column flow
1001 <ctrl> AcadAnnotative
1000 <str> AnnotativeData
1002 <str> {
1070 <int> 1
1070 <int> 0
1002 <str> }
Dynamic (manual height) Columns R2000
Example for a dynamic column specification with manual height definition for three columns with different
column heights. None of the (linked) MTEXT entities does contain XDATA for the defined column height.
HINT:
If “content type” is 2 and flag “column auto height” is 0, no defined height in XDATA.
• Column Type: Dynamic
• Number of Columns: 3
• Height: 164.802450331126, max. column height
• Width: 50.0
• Gutter Width: 12.5
[image]
0 <ctrl> MTEXT
5 <hex> #9C <<< entity handle
330 <hex> #1F <<< block record handle of owner layout
100 <ctrl> AcDbEntity
8 <str> 0 <<< layer
100 <ctrl> AcDbMText
10 <point> (69.806121185863, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, ...
... <snip>
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_COLUMN_INFO_BEGIN
1070 <int> 75 <<< column type: 2=dynamic columns
1070 <int> 2
1070 <int> 79 <<< flag column auto height
1070 <int> 0
1070 <int> 76 <<< column count
1070 <int> 3
1070 <int> 78 <<< flag column flow reversed
1070 <int> 0
1070 <int> 48 <<< column width in column mode
1040 <float> 50.0
1070 <int> 49 <<< column gutter width
1040 <float> 12.5
1070 <int> 50 <<< column height count
1070 <int> 3
1040 <float> 164.802450331126 <<< column height 1. column
1040 <float> 154.311699779249 <<< column height 2. column
1040 <float> 0.0 <<< column height 3. column, takes the rest?
1000 <str> ACAD_MTEXT_COLUMN_INFO_END
1000 <str> ACAD_MTEXT_COLUMNS_BEGIN
1070 <int> 47 <<< column count
1070 <int> 3
1005 <hex> #1B2 <<< handle to 2. column as MTEXT entity
1005 <hex> #1B3 <<< handle to 3. column as MTEXT entity
1000 <str> ACAD_MTEXT_COLUMNS_END
The linked column MTEXT #1B2:
0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (132.306121185863, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
73 <int> 1
44 <float> 1.0
The linked column MTEXT #1B3:
0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (194.806121185863, 276.101821192053, 0.0)
40 <float> 2.5
41 <float> 175.0 <<< invalid reference column width
... <snip>
73 <int> 1
44 <float> 1.0
Dynamic (manual height) Columns R2018
HINT:
If “content type” is 2 and flag “column auto height” is 0, the “defined column height” is 0.0.
0 <ctrl> MTEXT
5 <hex> #9C <<< entity handle
330 <hex> #1F
100 <ctrl> AcDbEntity
8 <str> 0 <<< block record handle of owner layout
100 <ctrl> AcDbMText
10 <point> (69.806121185863, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 62.694536423841 <<< reference column width, if not in column mode
46 <float> 0.0 <<< defined column height
71 <int> 1 <<< attachment point
72 <int> 1 <<< text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam...
... <snip> text content of all three columns
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
101 <ctrl> Embedded Object
70 <int> 1, b00000001 <<< ???
10 <point> (1.0, 0.0, 0.0) <<< text direction vector (local x-axis)
11 <point> (69.806121185863, 276.101821192053, 0.0) <<< repeated insert location
40 <float> 62.694536423841 <<< repeated reference column width
41 <float> 0.0 <<< repeated defined column height
42 <float> 175.0 <<< extents (total) width
43 <float> 164.802450331126 <<< extents (total) height, max. height if different column heights
71 <int> 2 <<< column type: 2=dynamic columns
72 <int> 3 <<< column height count
44 <float> 50.0 <<< column width
45 <float> 12.5 <<< column gutter width
73 <int> 0 <<< flag column auto height
74 <int> 0 <<< flag reversed column flow
46 <float> 164.802450331126 <<< column height 1. column
46 <float> 154.311699779249 <<< column height 2. column
46 <float> 0.0 <<< column height 3. column, takes the rest?
No Columns R2000
I have no idea why this column type exist, but at least provides a reliable value for the MTEXT height by
the “defined column height” attribute. The column type is not stored in the MTEXT entity and is
therefore not detectable!
• Column Type: No columns
• Number of Columns: 1
• Height: 158.189308131867, defined column height
• Width: 175.0, reference column width
0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (-344.497343455795, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 175.0 <<< reference column width
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam...
... <snip> text content of all three columns
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
... <snip>
1001 <ctrl> ACAD
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_BEGIN
1070 <int> 46 <<< defined column height
1040 <float> 158.189308131867
1000 <str> ACAD_MTEXT_DEFINED_HEIGHT_END
No Columns R2018
Does not contain an embedded object.
0 <ctrl> MTEXT
... <snip>
100 <ctrl> AcDbMText
10 <point> (-334.691900433414, 276.101821192053, 0.0) <<< insert location in WCS
40 <float> 2.5 <<< character height in drawing units
41 <float> 175.0 <<< reference column width
46 <float> 158.189308131867 <<< defined column height
71 <int> 1 <<< attachment point
72 <int> 1 <<< flag text flow direction
3 <str> Lorem ipsum dolor sit amet, consetetur sadipscing elitr, ...
... <snip>
73 <int> 1 <<< line spacing style
44 <float> 1.0 <<< line spacing factor
1001 <ctrl> AcadAnnotative
... <snip>
DXF Objects
TODO
Management Structures
Block Management Structures
A BLOCK is a layout like the modelspace or a paperspace layout, with the similarity that all these
layouts are containers for graphical DXF entities. This block definition can be referenced in other
layouts by the INSERT entity. By using block references, the same set of graphical entities can be
located multiple times at different layouts, this block references can be stretched and rotated without
modifying the original entities. A block is referenced only by its name defined by the DXF tag (2, name),
there is a second DXF tag (3, name2) for the block name, which is not further documented by Autodesk,
just ignore it.
The (10, base_point) tag (in BLOCK defines a insertion point of the block, by ‘inserting’ a block by the
INSERT entity, this point of the block is placed at the location defined by the (10, insert) tag in the
INSERT entity, and it is also the base point for stretching and rotation.
A block definition can contain INSERT entities, and it is possible to create cyclic block definitions (a
BLOCK contains a INSERT of itself), but this should be avoided, CAD applications will not load the DXF
file at all or maybe just crash. This is also the case for all other kinds of cyclic definitions like:
BLOCK “A” -> INSERT BLOCK “B” and BLOCK “B” -> INSERT BLOCK “A”.
SEE ALSO:
• ezdxf DXF Internals: BLOCKS Section
• DXF Reference: BLOCKS Section
• DXF Reference: BLOCK Entity
• DXF Reference: ENDBLK Entity
• DXF Reference: INSERT Entity
Block Names
Block names has to be unique and they are case insensitive (“Test” == “TEST”). If there are two or more
block definitions with the same name, AutoCAD merges these blocks into a single block with unpredictable
properties of all these blocks. In my test with two blocks, the final block has the name of the first
block and the base-point of the second block, and contains all entities of both blocks.
Block Definitions in DXF R12
In DXF R12 the definition of a block is located in the BLOCKS section, no additional structures are
needed. The definition starts with a BLOCK entity and ends with a ENDBLK entity. All entities between
this two entities are the content of the block, the block is the owner of this entities like any layout.
As shown in the DXF file below (created by AutoCAD LT 2018), the BLOCK entity has no handle, but ezdxf
writes also handles for the BLOCK entity and AutoCAD doesn’t complain.
DXF R12 BLOCKS structure:
0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
... <<< modelspace and paperspace block definitions not shown,
... <<< see layout management
...
0 <<< start of a BLOCK definition
BLOCK
8 <<< layer
0
2 <<< block name
ArchTick
70 <<< flags
1
10 <<< base point, x
0.0
20 <<< base point, y
0.0
30 <<< base point, z
0.0
3 <<< second BLOCK name, same as (2, name)
ArchTick
1 <<< xref name, if block is an external reference
<<< empty string!
0 <<< start of the first entity of the BLOCK
LINE
5
28E
8
0
62
0
10
500.0
20
500.0
30
0.0
11
500.0
21
511.0
31
0.0
0 <<< start of the second entity of the BLOCK
LINE
...
0.0
0 <<< ENDBLK entity, marks the end of the BLOCK definition
ENDBLK
5 <<< ENDBLK gets a handle by AutoCAD, but BLOCK didn't
2F2
8 <<< as every entity, also ENDBLK requires a layer (same as BLOCK entity!)
0
0 <<< start of next BLOCK entity
BLOCK
...
0 <<< end BLOCK entity
ENDBLK
0 <<< end of BLOCKS section
ENDSEC
Block Definitions in DXF R2000+
The overall organization in the BLOCKS sections remains the same, but additional tags in the BLOCK
entity, have to be maintained.
Especially the concept of ownership is important. Since DXF R13 every graphic entity is associated to a
specific layout and a BLOCK definition is also a layout. So all entities in the BLOCK definition,
including the BLOCK and the ENDBLK entities, have an owner tag (330, ...), which points to a BLOCK_RECORD
entry in the BLOCK_RECORD table. This BLOCK_RECORD is the main management structure for all layouts and
is the real owner of the layout entities.
As you can see in the chapter about Layout Management Structures, this concept is also valid for
modelspace and paperspace layouts, because these layouts are also BLOCKS, with the special difference,
that the entities of the modelspace and the active paperspace layout are stored in the ENTITIES section.
[image]
SEE ALSO:
• DXF R13 and later tag structure
• ezdxf DXF Internals: TABLES Section
• DXF Reference: TABLES Section
• DXF Reference: BLOCK_RECORD Entity
DXF R13 BLOCKS structure:
0 <<< start of a SECTION
SECTION
2 <<< start of BLOCKS section
BLOCKS
... <<< modelspace and paperspace block definitions not shown,
... <<< see layout management
0 <<< start of BLOCK definition
BLOCK
5 <<< even BLOCK gets a handle now ;)
23A
330 <<< owner tag, the owner of a BLOCK is a BLOCK_RECORD in the
... BLOCK_RECORD table
238
100 <<< subclass marker
AcDbEntity
8 <<< layer of the BLOCK definition
0
100 <<< subclass marker
AcDbBlockBegin
2 <<< BLOCK name
ArchTick
70 <<< flags
0
10 <<< base point, x
0.0
20 <<< base point, y
0.0
30 <<< base point, z
0.0
3 <<< second BLOCK name, same as (2, name)
ArchTick
1 <<< xref name, if block is an external reference
<<< empty string!
0 <<< start of the first entity of the BLOCK
LWPOLYLINE
5
239
330 <<< owner tag of LWPOLYLINE
238 <<< handle of the BLOCK_RECORD!
100
AcDbEntity
8
0
6
ByBlock
62
0
100
AcDbPolyline
90
2
70
0
43
0.15
10
-0.5
20
-0.5
10
0.5
20
0.5
0 <<< ENDBLK entity, marks the end of the BLOCK definition
ENDBLK
5 <<< handle
23B
330 <<< owner tag, same BLOCK_RECORD as for the BLOCK entity
238
100 <<< subclass marker
AcDbEntity
8 <<< ENDBLK requires the same layer as the BLOCK entity!
0
100 <<< subclass marker
AcDbBlockEnd
0 <<< start of the next BLOCK
BLOCK
...
0
ENDBLK
...
0 <<< end of the BLOCKS section
ENDSEC
DXF R13 BLOCK_RECORD structure:
0 <<< start of a SECTION
SECTION
2 <<< start of TABLES section
TABLES
0 <<< start of a TABLE
TABLE
2 <<< start of the BLOCK_RECORD table
BLOCK_RECORD
5 <<< handle of the table
1
330 <<< owner tag of the table
0 <<< is always #0
100 <<< subclass marker
AcDbSymbolTable
70 <<< count of table entries, not reliable
4
0 <<< start of first BLOCK_RECORD entry
BLOCK_RECORD
5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key"
1F
330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table
1
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbBlockTableRecord
2 <<< name of the BLOCK or LAYOUT
*Model_Space
340 <<< pointer to the associated LAYOUT object
4AF
70 <<< AC1021 (R2007) block insertion units
0
280 <<< AC1021 (R2007) block explodability
1
281 <<< AC1021 (R2007) block scalability
0
... <<< paperspace not shown
...
0 <<< next BLOCK_RECORD
BLOCK_RECORD
5 <<< handle of BLOCK_RECORD, in ezdxf often referred to as "layout key"
238
330 <<< owner of the BLOCK_RECORD is the BLOCK_RECORD table
1
100 <<< subclass marker
AcDbSymbolTableRecord
100 <<< subclass marker
AcDbBlockTableRecord
2 <<< name of the BLOCK
ArchTick
340 <<< pointer to the associated LAYOUT object
0 <<< #0, because BLOCK doesn't have an associated LAYOUT object
70 <<< AC1021 (R2007) block insertion units
0
280 <<< AC1021 (R2007) block explodability
1
281 <<< AC1021 (R2007) block scalability
0
0 <<< end of BLOCK_RECORD table
ENDTAB
0 <<< next TABLE
TABLE
...
0
ENDTAB
0 <<< end of TABLES section
ENDESC
Layout Management Structures
Layouts are separated entity spaces, there are three different Layout types:
1. modelspace contains the ‘real’ world representation of the drawing subjects in real world units.
2. paperspace layouts are used to create different drawing sheets of the modelspace subjects for
printing or PDF export
3. Blocks are reusable sets of graphical entities, inserted/referenced by the INSERT entity.
All layouts have at least a BLOCK definition in the BLOCKS section and since DXF R13 exist the
BLOCK_RECORD table with an entry for every BLOCK in the BLOCKS section.
SEE ALSO:
Information about Block Management Structures
The name of the modelspace BLOCK is “*Model_Space” (DXF R12: “$MODEL_SPACE”) and the name of the active
paperspace BLOCK is “*Paper_Space” (DXF R12: “$PAPER_SPACE”), the entities of these two layouts are
stored in the ENTITIES section, DXF R12 supports just one paperspace layout.
DXF R13+ supports multiple paperspace layouts, the active layout is still called “*Paper_Space”, the
additional inactive paperspace layouts are named by the scheme “*Paper_Spacennnn”, where the first
inactive paper space is called “*Paper_Space0”, the second “*Paper_Space1” and so on. A none consecutive
numbering is tolerated by AutoCAD. The content of the inactive paperspace layouts are stored as BLOCK
content in the BLOCKS section. These names are just the DXF internal layout names, each layout has an
additional layout name which is displayed to the user by the CAD application.
A BLOCK definition and a BLOCK_RECORD is not enough for a proper layout setup, an LAYOUT entity in the
OBJECTS section is also required. All LAYOUT entities are managed by a DICTIONARY entity, which is
referenced as “ACAD_LAYOUT” entity in the root DICTIONARY of the DXF file.
NOTE:
All floating point values are rounded to 2 decimal places for better readability.
LAYOUT Entity
Since DXF R2000 modelspace and paperspace layouts require the DXF LAYOUT entity.
0
LAYOUT
5 <<< handle
59
102 <<< extension dictionary (ignore)
{ACAD_XDICTIONARY
360
1C3
102
}
102 <<< reactor (required?)
{ACAD_REACTORS
330
1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (layout management table)
102
}
330 <<< owner handle
1A <<< pointer to "ACAD_LAYOUT" DICTIONARY (same as reactor pointer)
100 <<< PLOTSETTINGS
AcDbPlotSettings
1 <<< page setup name
2 <<< name of system printer or plot configuration file
none_device
4 <<< paper size, part in braces should follow the schema
... (width_x_height_unit) unit is 'Inches' or 'MM'
... Letter\_(8.50_x_11.00_Inches) the part in front of the braces is
... ignored by AutoCAD
6 <<< plot view name
40 <<< size of unprintable margin on left side of paper in millimeters,
... defines also the plot origin-x
6.35
41 <<< size of unprintable margin on bottom of paper in millimeters,
... defines also the plot origin-y
6.35
42 <<< size of unprintable margin on right side of paper in millimeters
6.35
43 <<< size of unprintable margin on top of paper in millimeters
6.35
44 <<< plot paper size: physical paper width in millimeters
215.90
45 <<< plot paper size: physical paper height in millimeters
279.40
46 <<< X value of plot origin offset in millimeters, moves the plot origin-x
0.0
47 <<< Y value of plot origin offset in millimeters, moves the plot origin-y
0.0
48 <<< plot window area: X value of lower-left window corner
0.0
49 <<< plot window area: Y value of lower-left window corner
0.0
140 <<< plot window area: X value of upper-right window corner
0.0
141 <<< plot window area: Y value of upper-right window corner
0.0
142 <<< numerator of custom print scale: real world (paper) units, 1.0
... for scale 1:50
1.0
143 <<< denominator of custom print scale: drawing units, 50.0
... for scale 1:50
1.0
70 <<< plot layout flags, bit-coded (... too many options)
688 <<< b1010110000 = UseStandardScale(16)/PlotPlotStyle(32)
... PrintLineweights(128)/DrawViewportsFirst(512)
72 <<< plot paper units (0/1/2 for inches/millimeters/pixels), are
... pixels really supported?
0
73 <<< plot rotation (0/1/2/3 for 0deg/90deg counter-cw/upside-down/90deg cw)
1 <<< 90deg clockwise
74 <<< plot type 0-5 (... too many options)
5 <<< 5 = layout information
7 <<< current plot style name, e.g. 'acad.ctb' or 'acadlt.ctb'
75 <<< standard scale type 0-31 (... too many options)
16 <<< 16 = 1:1, also 16 if user scale type is used
147 <<< unit conversion factor
1.0 <<< for plot paper units in mm, else 0.03937... (1/25.4) for inches
... as plot paper units
76 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered)
0 <<< as displayed
77 <<< shade plot resolution level 1-5 (... too many options)
2 <<< normal
78 <<< shade plot custom DPI: 100-32767, Only applied when shade plot
... resolution level is set to 5 (Custom)
300
148 <<< paper image origin: X value
0.0
149 <<< paper image origin: Y value
0.0
100 <<< LAYOUT settings
AcDbLayout
1 <<< layout name
Layout1
70 <<< flags bit-coded
1 <<< 1 = Indicates the PSLTSCALE value for this layout when this
... layout is current
71 <<< Tab order ("Model" tab always appears as the first tab
... regardless of its tab order)
1
10 <<< minimum limits for this layout (defined by LIMMIN while this
... layout is current)
-0.25 <<< x value, distance of the left paper margin from the plot
... origin-x, in plot paper units and by scale (e.g. x50 for 1:50)
20 <<< group code for y value
-0.25 <<< y value, distance of the bottom paper margin from the plot
... origin-y, in plot paper units and by scale (e.g. x50 for 1:50)
11 <<< maximum limits for this layout (defined by LIMMAX while this
... layout is current)
10.75 <<< x value, distance of the right paper margin from the plot
... origin-x, in plot paper units and by scale (e.g. x50 for 1:50)
21 <<< group code for y value
8.25 <<< y value, distance of the top paper margin from the plot
... origin-y, in plot paper units and by scale (e.g. x50 for 1:50)
12 <<< insertion base point for this layout (defined by INSBASE while
... this layout is current)
0.0 <<< x value
22 <<< group code for y value
0.0 <<< y value
32 <<< group code for z value
0.0 <<< z value
14 <<< minimum extents for this layout (defined by EXTMIN while this
... layout is current), AutoCAD default is (1e20, 1e20, 1e20)
1.05 <<< x value
24 <<< group code for y value
0.80 <<< y value
34 <<< group code for z value
0.0 <<< z value
15 <<< maximum extents for this layout (defined by EXTMAX while this
... layout is current), AutoCAD default is (-1e20, -1e20, -1e20)
9.45 <<< x value
25 <<< group code for y value
7.20 <<< y value
35 <<< group code for z value
0.0 <<< z value
146 <<< elevation ???
0.0
13 <<< UCS origin (3D Point)
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
33 <<< group code for z value
0.0 <<< z value
16 <<< UCS X-axis (3D vector)
1.0 <<< x value
26 <<< group code for y value
0.0 <<< y value
36 <<< group code for z value
0.0 <<< z value
17 <<< UCS Y-axis (3D vector)
0.0 <<< x value
27 <<< group code for y value
1.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
76 <<< orthographic type of UCS 0-6 (... too many options)
0 <<< 0 = UCS is not orthographic ???
330 <<< ID/handle of required block table record
58
331 <<< ID/handle to the viewport that was last active in this layout
... when the layout was current
1B9
1001 <<< extended data (ignore)
...
And as it seems this is also not enough for a well defined LAYOUT, at least a “main” VIEWPORT entity with
ID=1 is required for paperspace layouts, located in the entity space of the layout.
The modelspace layout requires (?) a VPORT entity in the VPORT table (group code 331 in the AcDbLayout
subclass).
Main VIEWPORT Entity for LAYOUT
The “main” viewport for layout “Layout1” shown above. This viewport is located in the associated BLOCK
definition called “*Paper_Space0”. Group code 330 in subclass AcDbLayout points to the BLOCK_RECORD of
“*Paper_Space0”.
Remember: the entities of the active paperspace layout are located in the ENTITIES section, therefore
“Layout1” is not the active paperspace layout.
The “main” VIEWPORT describes, how the application shows the paperspace layout on the screen, and I guess
only AutoCAD needs this values. [image]
0
VIEWPORT
5 <<< handle
1B4
102 <<< extension dictionary (ignore)
{ACAD_XDICTIONARY
360
1B5
102
}
330 <<< owner handle
58 <<< points to BLOCK_RECORD (same as group code 330 in AcDbLayout of
... "Layout1")
100
AcDbEntity
67 <<< paperspace flag
1 <<< 0 = modelspace; 1 = paperspace
8 <<< layer,
0
100
AcDbViewport
10 <<< Center point (in WCS)
5.25 <<< x value
20 <<< group code for y value
4.00 <<< y value
30 <<< group code for z value
0.0 <<< z value
40 <<< width in paperspace units
23.55 <<< VIEW size in AutoCAD, depends on the workstation configuration
41 <<< height in paperspace units
9.00 <<< VIEW size in AutoCAD, depends on the workstation configuration
68 <<< viewport status field -1/0/n
2 <<< >0 On and active. The value indicates the order of stacking for
... the viewports, where 1 is the active viewport, 2 is the next, and so forth
69 <<< viewport ID
1 <<< "main" viewport has always ID=1
12 <<< view center point in Drawing Coordinate System (DCS), defines
... the center point of the VIEW in relation to the LAYOUT origin
5.25 <<< x value
22 <<< group code for y value
4.00 <<< y value
13 <<< snap base point in modelspace
0.0 <<< x value
23 <<< group code for y value
0.0 <<< y value
14 <<< snap spacing in modelspace units
0.5 <<< x value
24 <<< group code for y value
0.5 <<< y value
15 <<< grid spacing in modelspace units
0.5 <<< x value
25 <<< group code for y value
0.5 <<< y value
16 <<< view direction vector from target (in WCS)
0.0 <<< x value
26 <<< group code for y value
0.0 <<< y value
36 <<< group code for z value
1.0 <<< z value
17 <<< view target point
0.0 <<< x value
27 <<< group code for y value
0.0 <<< y value
37 <<< group code for z value
0.0 <<< z value
42 <<< perspective lens length, focal length?
50.0 <<< 50mm
43 <<< front clip plane z value
0.0 <<< z value
44 <<< back clip plane z value
0.0 <<< z value
45 <<< view height (in modelspace units)
9.00
50 <<< snap angle
0.0
51 <<< view twist angle
0.0
72 <<< circle zoom percent
1000
90 <<< Viewport status bit-coded flags (... too many options)
819232 <<< b11001000000000100000
1 <<< plot style sheet name assigned to this viewport
281 <<< render mode (... too many options)
0 <<< 0 = 2D optimized (classic 2D)
71 <<< UCS per viewport flag
1 <<< 1 = This viewport stores its own UCS which will become the
... current UCS whenever the viewport is activated
74 <<< Display UCS icon at UCS origin flag
0 <<< this field is currently being ignored and the icon always
... represents the viewport UCS
110 <<< UCS origin (3D point)
0.0 <<< x value
120 <<< group code for y value
0.0 <<< y value
130 <<< group code for z value
0.0 <<< z value
111 <<< UCS X-axis (3D vector)
1.0 <<< x value
121 <<< group code for y value
0.0 <<< y value
131 <<< group code for z value
0.0 <<< z value
112 <<< UCS Y-axis (3D vector)
0.0 <<< x value
122 <<< group code for y value
1.0 <<< y value
132 <<< group code for z value
0.0 <<< z value
79 <<< Orthographic type of UCS (... too many options)
0 <<< 0 = UCS is not orthographic
146 <<< elevation
0.0
170 <<< shade plot mode (0/1/2/3 for as displayed/wireframe/hidden/rendered)
0 <<< as displayed
61 <<< frequency of major grid lines compared to minor grid lines
5 <<< major grid subdivided by 5
348 <<< visual style ID/handle (optional)
9F
292 <<< default lighting flag, on when no user lights are specified.
1
282 <<< Default lighting type (0/1 = one distant light/two distant lights)
1 <<< one distant light
141 <<< view brightness
0.0
142 <<< view contrast
0.0
63 <<< ambient light color (ACI), write only if not black color
250
421 <<< ambient light color (RGB), write only if not black color
3355443
Miscellaneous
Notes on Rendering DXF Content
A collection of AutoCAD behaviors determined experimentally. There may be mistakes and misunderstandings
of the inner workings of the algorithms. Not all edge cases may have been considered.
Colors
• Most entities are colored contextually, based on the layer or block that they reside in.
• Usually entity colors are stored as AutoCAD Color Indices (ACI) as an index into a lookup table.
Different CAD applications may use different color palettes making consistent coloring difficult.
• If a block insert is placed on layer ‘A’, and the block contains an entity on layer ‘B’ with BYLAYER
color: the entity will be drawn with the color of layer ‘B’.
• If a block insert is placed on layer ‘A’, and the block contains an entity on layer ‘0’ with BYLAYER
color: the entity will be drawn with the color of layer ‘A’, it seems that layer ‘0’ is the only
special case for this.
• Ff an entity has BYBLOCK color set, and it exists outside a block: it will take on the layout default
color which is white in the modelspace and black in the paperspace.
Layers and Draw Order
• Layer names are case-insensitive, the document layer table keys are stored in lowercase, and in
original style in all other use cases (e.g. entity.dxf.layer).
• Layers do not play a role in entity draw order, only whether they appear at all based on the visibility
of the layer.
• It appears that Insert entities have a single element in terms of draw order
• Entities inside a block can overlap each other and so have a draw order inside the block, but two
Insert entities cannot interleave the contents of their blocks. One is completely drawn on top of
the other.
• For entities inside a block, the visibility of the layer that the block is inserted does not affect the
visibility of the entity unless the entity was created on layer 0 in which case the reverse is true:
• scenario: block created containing entity A (layer 0) and entity B (layer 1). The block is
inserted into layer 2
• entity B visible if and only if layer 1 is visible
• entity A visible if and only if layer 2 is visible
TEXT
• The anchor of single line TEXT entities (and ATTRIB entities) is always the left-baseline regardless of
what alignment parameters are stored in the DXF. Those are for re-adjusting the anchor when the text
is edited.
• Attrib entities can have formatting commands in them
MTEXT
• The char_height in DXF corresponds to the cap-height of the font.
• The default line spacing is 5/3 * cap-height between the previous baseline and the next baseline. The
line_space_factor is a factor applied directly to this value, so a factor of 3/5 results in 0 space
between lines, because each baseline is 1 * cap-height apart.
• The middle (vertical) justification of MTEXT entities seems to be midpoint between the x-height of the
first line to the baseline of the last line.
• MTEXT word wrapping seems to only break on spaces, not underscores or dashes.
• MTEXT word wrapping seems to treat multiple spaces between lines as if they were a single space.
• Alignment seems to ignore extra spaces at the start or end of lines except for the first line, where
spaces at the beginning of the string have an effect. Whitespace at the beginning of the text can
trigger word wrapping, which creates a single blank line at the start
• If a line ends with an explicit newline character and is shorter than the column width, only one
newline is inserted.
• If a line is a single word wider than the column width, it will not be broken but will instead spill
outside the text box. Placing a space before this word will create an empty line and push the word onto
the next line.
POINT
• All POINT entities have the same style defined by the HEADER variable $PDMODE.
• POINT entities can be drawn relative to the view scale or in absolute units.
Low Level Functions
Some handy tool functions used internally by ezdxf.
ezdxf.tools.juliandate(date: datetime) -> float
ezdxf.tools.calendardate(juliandate: float) -> datetime
ezdxf.tools.set_flag_state(flags: int, flag: int, state: bool = True) -> int
Set/clear binary flag in data flags.
Parameters
• flags – data value
• flag – flag to set/clear
• state – True for setting, False for clearing
ezdxf.tools.guid() -> str
Returns a general unique ID, based on uuid.uuid4().
This function creates a GUID for the header variables $VERSIONGUID and $FINGERPRINTGUID, which
matches the AutoCAD pattern {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}.
ezdxf.tools.bytes_to_hexstr(data: bytes) -> str
Returns data bytes as plain hex string.
ezdxf.tools.suppress_zeros(s: str, leading: bool = False, trailing: bool = True)
Suppress trailing and/or leading 0 of string s.
Parameters
• s – data string
• leading – suppress leading 0
• trailing – suppress trailing 0
ezdxf.tools.normalize_text_angle(angle: float, fix_upside_down=True) -> float
Normalizes text angle to the range from 0 to 360 degrees and fixes upside down text angles.
Parameters
• angle – text angle in degrees
• fix_upside_down – rotate upside down text angle about 180 degree
DXF Unicode Decoder
The DXF format uses a special form of unicode encoding: “\U+xxxx”.
To avoid a speed penalty such encoded characters are not decoded automatically by the regular loading
function:func:ezdxf.readfile, only the recover module does the decoding automatically, because this
loading mode is already slow.
This kind of encoding is most likely used only in older DXF versions, because since DXF R2007 the whole
DXF file is encoded in utf8 and a special unicode encoding is not necessary.
The ezdxf.has_dxf_unicode() and ezdxf.decode_dxf_unicode() are new support functions to decode unicode
characters “\U+xxxx” manually.
ezdxf.has_dxf_unicode(s: str) -> bool
Returns True if string s contains \U+xxxx encoded characters.
ezdxf.decode_dxf_unicode(s: str) -> str
Decode \U+xxxx encoded characters.
SAT Format “Encryption”
ezdxf.tools.crypt.encode(text_lines: Iterable[str]) -> Iterable[str]
Encode the Standard ACIS Text (SAT) format by AutoCAD “encryption” algorithm.
ezdxf.tools.crypt.decode(text_lines: Iterable[str]) -> Iterable[str]
Decode the Standard ACIS Text (SAT) format “encrypted” by AutoCAD.
Developer Guides
Information about ezdxf internals.
Source Code Formatting
Reformat code by Black with the default setting of 88 characters per line:
C:\> black <python-file>
Type Annotations
The use of type annotations is encouraged. New modules should pass mypy without errors in non-strict
mode. Using # type: ignore is fine in tricky situations - type annotations should be helpful in
understanding the code and not be a burden.
The following global options are required to pass mypy without error messages:
[mypy]
python_version = 3.7
ignore_missing_imports = True
Read this to learn where mypy searches for config files.
Use the mypy command line option --ignore-missing-imports and -p to check the whole package from any
location in the file system:
PS D:\Source\ezdxf.git> mypy --ignore-missing-imports -p ezdxf
Success: no issues found in 255 source files
Design
The Package Design for Developers section shows the structure of the ezdxf package for developers with
more experience, which want to have more insight into the package an maybe want to develop add-ons or
want contribute to the ezdxf package. !!! UNDER CONSTRUCTION !!!
Package Design for Developers
A DXF document is divided into several sections, this sections are managed by the Drawing object. For
each section exist a corresponding attribute in the Drawing object:
┌──────────┬──────────────────┐
│ Section │ Attribute │
├──────────┼──────────────────┤
│ HEADER │ Drawing.header │
├──────────┼──────────────────┤
│ CLASSES │ Drawing.classes │
├──────────┼──────────────────┤
│ TABLES │ Drawing.tables │
├──────────┼──────────────────┤
│ BLOCKS │ Drawing.blocks │
├──────────┼──────────────────┤
│ ENTITIES │ Drawing.entities │
├──────────┼──────────────────┤
│ OBJECTS │ Drawing.objects │
└──────────┴──────────────────┘
Resource entities (LAYER, STYLE, LTYPE, …) are stored in tables in the TABLES section. A table owns the
table entries, the owner handle of table entry is the handle of the table. Each table has a shortcut in
the Drawing object:
┌──────────────┬───────────────────────┐
│ Table │ Attribute │
├──────────────┼───────────────────────┤
│ APPID │ Drawing.appids │
├──────────────┼───────────────────────┤
│ BLOCK_RECORD │ Drawing.block_records │
├──────────────┼───────────────────────┤
│ DIMSTYLE │ Drawing.dimstyles │
├──────────────┼───────────────────────┤
│ LAYER │ Drawing.layers │
├──────────────┼───────────────────────┤
│ LTYPE │ Drawing.linetypes │
├──────────────┼───────────────────────┤
│ STYLE │ Drawing.styles │
├──────────────┼───────────────────────┤
│ UCS │ Drawing.ucs │
├──────────────┼───────────────────────┤
│ VIEW │ Drawing.views │
├──────────────┼───────────────────────┤
│ VPORT │ Drawing.viewports │
└──────────────┴───────────────────────┘
Graphical entities are stored in layouts: Modelspace, Paperspace layouts and BlockLayout. The core
management object of this layouts is the BLOCK_RECORD entity (BlockRecord), the BLOCK_RECORD is the real
owner of the entities, the owner handle of the entities is the handle of the BLOCK_RECORD and the
BLOCK_RECORD also owns and manages the entity space of the layout which contains all entities of the
layout.
For more information about layouts see also: Layout Management Structures
For more information about blocks see also: Block Management Structures
Non-graphical entities (objects) are stored in the OBJECTS section. Every object has a parent object in
the OBJECTS section, most likely a DICTIONARY object, and is stored in the entity space of the OBJECTS
section.
For more information about the OBJECTS section see also: OBJECTS Section
All table entries, DXF entities and DXF objects are stored in the entities database accessible as
Drawing.entitydb. The entity database is a simple key, value storage, key is the entity handle, value is
the DXF object.
For more information about the DXF data model see also: Data Model
Terminology
States
DXF entities and objects can have different states:
UNBOUND
Entity is not stored in the Drawing entity database and DXF attribute handle is None and attribute
doc can be None
BOUND Entity is stored in the Drawing entity database, attribute doc has a reference to Drawing and DXF
attribute handle is not None
UNLINKED
Entity is not linked to a layout/owner, DXF attribute owner is None
LINKED Entity is linked to a layout/owner, DXF attribute owner is not None
Virtual Entity
State: UNBOUND & UNLINKED
Unlinked Entity
State: BOUND & UNLINKED
Bound Entity
State: BOUND & LINKED
Actions
NEW Create a new DXF document
LOAD Load a DXF document from an external source
CREATE Create DXF structures from NEW or LOAD data
DESTROY
Delete DXF structures
BIND Bind an entity to a Drawing, set entity state to BOUND & UNLINKED and check or create required
resources
UNBIND unbind …
LINK Link an entity to an owner/layout. This makes an entity to a real DXF entity, which will be
exported at the saving process. Any DXF entity can only be linked to one parent entity like
DICTIONARY or BLOCK_RECORD.
UNLINK unlink …
Loading a DXF Document
Loading a DXF document from an external source, creates a new Drawing object. This loading process has
two stages:
First Loading Stage
• LOAD content from external source as SectionDict: loader.load_dxf_structure()
• LOAD tag structures as DXFEntity objects: loader.load_dxf_entities()
• BIND entities: loader.load_and_bind_dxf_content(); Special handling of the BIND process, because the
Drawing is not full initialized, a complete validation is not possible at this stage.
Second Loading Stage
Parse SectionDict:
• CREATE sections: HEADER, CLASSES, TABLES, BLOCKS and OBJECTS
• CREATE layouts: Blocks, Layouts
• LINK entities to a owner/layout
The ENTITIES section is a relict from older DXF versions and has to be exported including the modelspace
and active paperspace entities, but all entities reside in a BLOCK definition, even modelspace and
paperspace layouts are only BLOCK definitions and ezdxf has no explicit ENTITIES section.
Source Code: as developer start your journey at ezdxf.document.Drawing.read(), which has no public
documentation, because package-user should use ezdxf.read() and ezdxf.readfile().
New DXF Document
Creating New DXF Entities
The default constructor of each entity type creates a new virtual entity:
• DXF attribute owner is None
• DXF attribute handle is None
• Attribute doc is None
The DXFEntity.new() constructor creates entities with given owner, handle and doc attributes, if doc is
not None and entity is not already bound to a document, the new() constructor automatically bind the
entity to the given document doc.
There exist only two scenarios:
1. UNBOUND: doc is None and handle is None
2. BOUND: doc is not None and handle is not None
Factory functions
• new(), create a new virtual DXF object/entity
• load(), load (create) virtual DXF object/entity from DXF tags
• bind(), bind an entity to a document, create required resources if necessary (e.g. ImageDefReactor,
SEQEND) and raise exceptions for non-existing resources.
• Bind entity loaded from an external source to a document, all referenced resources must exist, but
try to repair as many flaws as possible because errors were created by another application and are
not the responsibility of the package-user.
• Bind an entity from another DXF document, all invalid resources will be removed silently or created
(e.g. SEQEND). This is a simple import from another document without resource import, for a more
advanced import including resources exist the importer add-on.
• Bootstrap problem for binding loaded table entries and objects in the OBJECTS section! Can’t use
Auditor to repair this objects, because the DXF document is not fully initialized.
• is_bound() returns True if entity is bound to document doc
• unbind() function to remove an entity from a document and set state to a virtual entity, which should
also UNLINK the entity from layout, because an layout can not store a virtual entity.
• cls(), returns the class
• register_entity(), registration decorator
• replace_entity(), registration decorator
Class Interfaces
DXF Entities
• NEW constructor to create an entity from scratch
• LOAD constructor to create an entity loaded from an external source
• DESTROY interface to kill an entity, set entity state to dead, which means entity.is_alive returns
False. All entity iterators like EntitySpace, EntityQuery, and EntityDB must filter (ignore) dead
entities. Calling DXFEntity.destroy() is a regular way to delete entities.
• LINK an entity to a layout by BlockRecord.link(), which set the owner handle to BLOCK_RECORD handle (=
layout key) and add the entity to the entity space of the BLOCK_RECORD and set/clear the paperspace
flag.
DXF Objects
• NEW, LOAD, DESTROY see DXF entities
• LINK: Linking an DXF object means adding the entity to a parent object in the OBJECTS section, most
likely a DICTIONARY object, and adding the object to the entity space of the OBJECTS section, the
root-dict is the only entity in the OBJECTS section which has an invalid owner handle “0”. Any other
object with an invalid or destroyed owner is an orphaned entity. The audit process destroys and
removes orphaned objects.
• Extension dictionaries (ACAD_XDICTIONARY) are DICTIONARY objects located in the OBJECTS sections and
can reference/own other entities of the OBJECTS section.
• The root-dictionary is the only entity in the OBJECTS section which has an invalid owner handle “0”.
Any other object with an invalid or destroyed owner is an orphaned entity.
Layouts
• LINK interface to link an entity to a layout
• UNLINK interface to remove an entity from a layout
Database
• BIND interface to add an entity to the database of a document
• delete_entity() interface, same as UNBIND and DESTROY an entity
Internal Data Structures
Entity Database
The EntityDB is a simple key/value database to store DXFEntity objects by it’s handle, every Drawing has
its own EntityDB, stored in the Drawing attribute entitydb.
Every DXF entity/object, except tables and sections, are represented as DXFEntity or inherited types,
this entities are stored in the EntityDB, database-key is the dxf.handle as plain hex string.
All iterators like keys(), values(), items() and __iter__() do not yield destroyed entities.
WARNING:
The get() method and the index operator [], return destroyed entities and entities from the trashcan.
class ezdxf.entitydb.EntityDB
__getitem__(handle: str) -> DXFEntity
Get entity by handle, does not filter destroyed entities nor entities in the trashcan.
__setitem__(handle: str, entity: DXFEntity) -> None
Set entity for handle.
__delitem__(handle: str) -> None
Delete entity by handle. Removes entity only from database, does not destroy the entity.
__contains__(item: str | DXFEntity) -> bool
True if database contains handle.
__len__() -> int
Count of database items.
__iter__() -> Iterator[str]
Iterable of all handles, does filter destroyed entities but not entities in the trashcan.
get(handle: str) -> DXFEntity | None
Returns entity for handle or None if no entry exist, does not filter destroyed entities.
next_handle() -> str
Returns next unique handle.
keys() -> Iterable[str]
Iterable of all handles, does filter destroyed entities.
values() -> Iterable[DXFEntity]
Iterable of all entities, does filter destroyed entities.
items() -> Iterable[Tuple[str, DXFEntity]]
Iterable of all (handle, entities) pairs, does filter destroyed entities.
add(entity: DXFEntity) -> None
Add entity to database, assigns a new handle to the entity if entity.dxf.handle is None.
Adding the same entity multiple times is possible and creates only a single database entry.
new_trashcan() -> Trashcan
Returns a new trashcan, empty trashcan manually by: : func:Trashcan.clear().
trashcan() -> Trashcan
Returns a new trashcan in context manager mode, trashcan will be emptied when leaving
context.
purge() -> None
Remove all destroyed entities from database, but does not empty the trashcan.
query(query: str = '*') -> EntityQuery
Entity query over all entities in the DXF document.
Parameters
query – query string
SEE ALSO:
Entity Query String and Retrieve entities by query language
Entity Space
class ezdxf.entitydb.EntitySpace(entities: Iterable[DXFEntity] | None = None)
An EntitySpace is a collection of DXFEntity objects, that stores only references to DXFEntity
objects.
The Modelspace, any Paperspace layout and BlockLayout objects have an EntitySpace container to
store their entities.
__iter__() -> Iterable[DXFEntity]
Iterable of all entities, filters destroyed entities.
__getitem__(index) -> DXFEntity
Get entity at index item
EntitySpace has a standard Python list like interface, therefore index can be any valid
list indexing or slicing term, like a single index layout[-1] to get the last entity, or an
index slice layout[:10] to get the first 10 or fewer entities as list[DXFEntity]. Does not
filter destroyed entities.
__len__() -> int
Count of entities including destroyed entities.
has_handle(handle: str) -> bool
True if handle is present, does filter destroyed entities.
purge()
Remove all destroyed entities from entity space.
add(entity: DXFEntity) -> None
Add entity.
extend(entities: Iterable[DXFEntity]) -> None
Add multiple entities.
remove(entity: DXFEntity) -> None
Remove entity.
clear() -> None
Remove all entities.
DXF Types
Required DXF tag interface:
• property code: group code as int
• property value: tag value of unspecific type
• dxfstr(): returns the DXF string
• clone(): returns a deep copy of tag
DXFTag Factory Functions
ezdxf.lldxf.types.dxftag(code: int, value: Any) -> DXFTag
DXF tag factory function.
Parameters
• code – group code
• value – tag value
Returns: DXFTag or inherited
ezdxf.lldxf.types.tuples_to_tags(iterable: Iterable[tuple[int, Any]]) -> Iterable[DXFTag]
Returns an iterable if DXFTag or inherited, accepts an iterable of (code, value) tuples as input.
DXFTag
class ezdxf.lldxf.types.DXFTag(code: int, value: Any)
Immutable DXFTag class.
Parameters
• code – group code as int
• value – tag value, type depends on group code
code group code as int (do not change)
value tag value (read-only property)
__eq__(other) -> bool
True if other and self has same content for code and value.
__getitem__(index: int)
Returns code for index 0 and value for index 1, emulates a tuple.
__hash__()
Hash support, DXFTag can be used in sets and as dict key.
__iter__()
Returns (code, value) tuples.
__repr__() -> str
Returns representation string 'DXFTag(code, value)'.
__str__() -> str
Returns content string '(code, value)'.
clone() -> DXFTag
Returns a clone of itself, this method is necessary for the more complex (and not
immutable) DXF tag types.
dxfstr() -> str
Returns the DXF string e.g. ' 0\nLINE\n'
DXFBinaryTag
class ezdxf.lldxf.types.DXFBinaryTag(DXFTag)
Immutable BinaryTags class - immutable by design, not by implementation.
dxfstr() -> str
Returns the DXF string for all vertex components.
tostring() -> str
Returns binary value as single hex-string.
DXFVertex
class ezdxf.lldxf.types.DXFVertex(DXFTag)
Represents a 2D or 3D vertex, stores only the group code of the x-component of the vertex, because
the y-group-code is x-group-code + 10 and z-group-code id x-group-code+20, this is a rule that
ALWAYS applies. This tag is immutable by design, not by implementation.
Parameters
• code – group code of x-component
• value – sequence of x, y and optional z values
dxfstr() -> str
Returns the DXF string for all vertex components.
dxftags() -> Iterable[DXFTag]
Returns all vertex components as single DXFTag objects.
NONE_TAG
ezdxf.lldxf.types.NONE_TAG
Special tag representing a none existing tag.
Tags
A list of DXFTag, inherits from Python standard list. Unlike the statement in the DXF Reference “Do not
write programs that rely on the order given here”, tag order is sometimes essential and some group codes
may appear multiples times in one entity. At the worst case (Material: normal map shares group codes with
diffuse map) using same group codes with different meanings.
class ezdxf.lldxf.tags.Tags
Subclass of list.
Collection of DXFTag as flat list. Low level tag container, only required for advanced stuff.
classmethod from_text(text: str) -> Tags
Constructor from DXF string.
dxftype() -> str
Returns DXF type of entity, e.g. 'LINE'.
get_handle() -> str
Get DXF handle. Raises DXFValueError if handle not exist.
Returns
handle as plain hex string like 'FF00'
Raises DXFValueError – no handle found
replace_handle(new_handle: str) -> None
Replace existing handle.
Parameters
new_handle – new handle as plain hex string e.g. 'FF00'
has_tag(code: int) -> bool
Returns True if a DXFTag with given group code is present.
Parameters
code – group code as int
has_embedded_objects() -> bool
get_first_tag(code: int, default=DXFValueError) -> DXFTag
Returns first DXFTag with given group code or default, if default != DXFValueError, else
raises DXFValueError.
Parameters
• code – group code as int
• default – return value for default case or raises DXFValueError
get_first_value(code: int, default=DXFValueError) -> Any
Returns value of first DXFTag with given group code or default if default != DXFValueError,
else raises DXFValueError.
Parameters
• code – group code as int
• default – return value for default case or raises DXFValueError
find_all(code: int) -> List[DXFTag]
Returns a list of DXFTag with given group code.
Parameters
code – group code as int
filter(codes: Iterable[int]) -> Iterable[DXFTag]
Iterate and filter tags by group codes.
Parameters
codes – group codes to filter
collect_consecutive_tags(codes: Iterable[int], start: int = 0, end: int = None) -> Tags
Collect all consecutive tags with group code in codes, start and end delimits the search
range. A tag code not in codes ends the process.
Parameters
• codes – iterable of group codes
• start – start index as int
• end – end index as int, None for end index = len(self)
Returns
collected tags as Tags
tag_index(code: int, start: int = 0, end: int | None = None) -> int
Return index of first DXFTag with given group code.
Parameters
• code – group code as int
• start – start index as int
• end – end index as int, None for end index = len(self)
update(tag: DXFTag)
Update first existing tag with same group code as tag, raises DXFValueError if tag not
exist.
set_first(tag: DXFTag)
Update first existing tag with group code tag.code or append tag.
remove_tags(codes: Iterable[int]) -> None
Remove all tags inplace with group codes specified in codes.
Parameters
codes – iterable of group codes as int
remove_tags_except(codes: Iterable[int]) -> None
Remove all tags inplace except those with group codes specified in codes.
Parameters
codes – iterable of group codes
pop_tags(codes: Iterable[int]) -> Iterable[DXFTag]
Pop tags with group codes specified in codes.
Parameters
codes – iterable of group codes
classmethod strip(tags: Tags, codes: Iterable[int]) -> Tags
Constructor from tags, strips all tags with group codes in codes from tags.
Parameters
• tags – iterable of DXFTag
• codes – iterable of group codes as int
ezdxf.lldxf.tags.group_tags(tags: Iterable[DXFTag], splitcode: int = 0) -> Iterable[Tags]
Group of tags starts with a SplitTag and ends before the next SplitTag. A SplitTag is a tag with
code == splitcode, like (0, ‘SECTION’) for splitcode == 0.
Parameters
• tags – iterable of DXFTag
• splitcode – group code of split tag
class ezdxf.lldxf.extendedtags.ExtendedTags(tags: Iterable[DXFTag] = None, legacy=False)
Represents the extended DXF tag structure introduced with DXF R13.
Args: tags: iterable of DXFTag legacy: flag for DXF R12 tags
appdata
Application defined data as list of Tags
subclasses
Subclasses as list of Tags
xdata XDATA as list of Tags
embedded_objects
embedded objects as list of Tags
noclass
Short cut to access first subclass.
get_handle() -> str
Returns handle as hex string.
dxftype() -> str
Returns DXF type as string like “LINE”.
replace_handle(handle: str) -> None
Replace the existing entity handle by a new value.
legacy_repair()
Legacy (DXF R12) tags handling and repair.
clone() -> ExtendedTags
Shallow copy.
flatten_subclasses()
Flatten subclasses in legacy mode (DXF R12).
There exists DXF R12 with subclass markers, technical incorrect but works if the reader
ignore subclass marker tags, unfortunately ezdxf tries to use this subclass markers and
therefore R12 parsing by ezdxf does not work without removing these subclass markers.
This method removes all subclass markers and flattens all subclasses into
ExtendedTags.noclass.
get_subclass(name: str, pos: int = 0) -> Tags
Get subclass name.
Parameters
• name – subclass name as string like “AcDbEntity”
• pos – start searching at subclass pos.
has_xdata(appid: str) -> bool
True if has XDATA for appid.
get_xdata(appid: str) -> Tags
Returns XDATA for appid as Tags.
set_xdata(appid: str, tags: IterableTags) -> None
Set tags as XDATA for appid.
new_xdata(appid: str, tags: 'IterableTags' = None) -> Tags
Append a new XDATA block.
Assumes that no XDATA block with the same appid already exist:
try:
xdata = tags.get_xdata('EZDXF')
except ValueError:
xdata = tags.new_xdata('EZDXF')
has_app_data(appid: str) -> bool
True if has application defined data for appid.
get_app_data(appid: str) -> Tags
Returns application defined data for appid as Tags including marker tags.
get_app_data_content(appid: str) -> Tags
Returns application defined data for appid as Tags without first and last marker tag.
set_app_data_content(appid: str, tags: IterableTags) -> None
Set application defined data for appid for already exiting data.
new_app_data(appid: str, tags: 'IterableTags' = None, subclass_name: str = None) -> Tags
Append a new application defined data to subclass subclass_name.
Assumes that no app data block with the same appid already exist:
try:
app_data = tags.get_app_data('{ACAD_REACTORS', tags)
except ValueError:
app_data = tags.new_app_data('{ACAD_REACTORS', tags)
classmethod from_text(text: str, legacy: bool = False) -> ExtendedTags
Create ExtendedTags from DXF text.
Packed DXF Tags
Store DXF tags in compact data structures as list or array.array to reduce memory usage.
class ezdxf.lldxf.packedtags.TagList(data: Iterable = None)
Store data in a standard Python list.
Args: data: iterable of DXF tag values.
values Data storage as list.
clone() -> TagList
Returns a deep copy.
classmethod from_tags(tags: Tags, code: int) -> TagList
Setup list from iterable tags.
Parameters
• tags – tag collection as Tags
• code – group code to collect
clear() -> None
Delete all data values.
class ezdxf.lldxf.packedtags.TagArray(data: Iterable = None)
TagArray is a subclass of TagList, which store data in an array.array. Array type is defined by
class variable DTYPE.
Args: data: iterable of DXF tag values.
DTYPE array.array type as string
values Data storage as array.array
set_values(values: Iterable) -> None
Replace data by values.
class ezdxf.lldxf.packedtags.VertexArray(data: Iterable = None)
Store vertices in an array.array('d'). Vertex size is defined by class variable VERTEX_SIZE.
Args: data: iterable of vertex values as linear list e.g. [x1, y1, x2, y2, x3, y3, ...].
VERTEX_SIZE
Size of vertex (2 or 3 axis).
__len__() -> int
Count of vertices.
__getitem__(index: int | slice)
Get vertex at index, extended slicing supported.
__setitem__(index: int, point: Sequence[float]) -> None
Set vertex point at index, extended slicing not supported.
__delitem__(index: int | slice) -> None
Delete vertex at index, extended slicing supported.
__iter__() -> Iterator[Sequence[float]]
Returns iterable of vertices.
__str__() -> str
String representation.
insert(pos: int, point: Sequence[float])
Insert point in front of vertex at index pos.
Parameters
• pos – insert position
• point – point as tuple
append(point: Sequence[float]) -> None
Append point.
extend(points: Iterable[Sequence[float]]) -> None
Extend array by points.
set(points: Iterable[Sequence[float]]) -> None
Replace all vertices by points.
clear() -> None
Delete all vertices.
clone() -> VertexArray
Returns a deep copy.
classmethod from_tags(tags: Iterable[DXFTag], code: int = 10) -> VertexArray
Setup point array from iterable tags.
Parameters
• tags – iterable of DXFVertex
• code – group code to collect
export_dxf(tagwriter: AbstractTagWriter, code=10)
XData
class ezdxf.entities.xdata.XData
Internal management class for XDATA.
SEE ALSO:
• XDATA user reference: Extended Data (XDATA)
• Wrapper class to store a list in XDATA: XDataUserList
• Wrapper class to store a dict in XDATA: XDataUserDict
• Tutorial: Storing Custom Data in DXF Files
• DXF Internals: Extended Data
• DXF R2018 Reference
__contains__(appid: str) -> bool
Returns True if DXF tags for appid exist.
add(appid: str, tags: Iterable[tuple[int, Any] | DXFTag]) -> None
Add a list of DXF tags for appid. The tags argument is an iterable of (group code, value)
tuples, where the group code has to be an integer value. The mandatory XDATA marker (1001,
appid) is added automatically if front of the tags if missing.
Each entity can contain only one list of tags for each appid. Adding a second list of tags
for the same appid replaces the existing list of tags.
The valid XDATA group codes are restricted to some specific values in the range from 1000
to 1071, for more information see also the internals about Extended Data.
get(appid: str) -> Tags
Returns the DXF tags as Tags list stored by appid.
Raises DXFValueError – no data for appid exist
discard(appid)
Delete DXF tags for appid. None existing appids are silently ignored.
has_xlist(appid: str, name: str) -> bool
Returns True if list name from XDATA appid exists.
Parameters
• appid – APPID
• name – list name
get_xlist(appid: str, name: str) -> list[tuple]
Get list name from XDATA appid.
Parameters
• appid – APPID
• name – list name
Returns: list of DXFTags including list name and curly braces ‘{’ ‘}’ tags
Raises
• DXFKeyError – XDATA appid does not exist
• DXFValueError – list name does not exist
set_xlist(appid: str, name: str, tags: Iterable) -> None
Create new list name of XDATA appid with xdata_tags and replaces list name if already
exists.
Parameters
• appid – APPID
• name – list name
• tags – list content as DXFTags or (code, value) tuples, list name and curly braces
‘{’ ‘}’ tags will be added
discard_xlist(appid: str, name: str) -> None
Deletes list name from XDATA appid. Ignores silently if XDATA appid or list name not exist.
Parameters
• appid – APPID
• name – list name
replace_xlist(appid: str, name: str, tags: Iterable) -> None
Replaces list name of existing XDATA appid by tags. Appends new list if list name do not
exist, but raises DXFValueError if XDATA appid do not exist.
Low level interface, if not sure use set_xdata_list() instead.
Parameters
• appid – APPID
• name – list name
• tags – list content as DXFTags or (code, value) tuples, list name and curly braces
‘{’ ‘}’ tags will be added
Raises DXFValueError – XDATA appid do not exist
transform(m: Matrix44) -> None
Transform XDATA tags with group codes 1011, 1012, 1013, 1041 and 1042 inplace. For more
information see Extended Data Internals.
Application-Defined Data (AppData)
Starting at DXF R13, DXF objects can contain application-defined codes (AppData) outside of XDATA.
All AppData is defined with a beginning (102, “{APPID”) tag and according to the DXF reference appear
should appear before the first subclass marker.
There are two known use cases of this data structure in Autodesk products:
• ACAD_REACTORS, store handles to persistent reactors in a DXF entity
• ACAD_XDICTIONARY, store handle to the extension dictionary of a DXF entity
Both AppIDs are not defined/stored in the AppID table!
class ezdxf.entities.appdata.AppData
Internal management class for Application defined data.
SEE ALSO:
• User reference: Application-Defined Data (AppData)
• Internals about Application-Defined Codes tags
__contains__(appid: str) -> bool
Returns True if application-defined data exist for appid.
__len__() -> int
Returns the count of AppData.
add(appid: str, data: Iterable[Sequence]) -> None
Add application-defined tags for appid. Adds first tag (102, “{APPID”) if not exist. Adds
last tag (102, “}” if not exist.
get(appid: str) -> Tags
Get application-defined data for appid as Tags container. The first tag is always (102,
“{APPID”). The last tag is always (102, “}”).
set(tags: Tags) -> None
Store raw application-defined data tags. The first tag has to be (102, “{APPID”). The
last tag has to be (102, “}”).
discard(appid: str)
Delete application-defined data for appid without raising and error if appid doesn’t exist.
Reactors
class ezdxf.entities.appdata.Reactors
Internal management class for persistent reactor handles. Handles are stored as hex strings like
"ABBA".
SEE ALSO:
• User reference: Reactors
• Internals about Persistent Reactors tags
__contains__(handle: str) -> bool
Returns True if handle is registered.
__len__() -> int
Returns count of registered handles.
__iter__() -> Iterator[str]
Returns an iterator for all registered handles.
add(handle: str) -> None
Add a single handle.
get() -> list[str]
Returns all registered handles as sorted list.
set(handles: Iterable[str] | None) -> None
Reset all handles.
discard(handle: str)
Discard a single handle.
Documentation Guide
Formatting Guide
This section is only for myself, because of the long pauses between develop iterations, I often forget to
be consistent in documentation formatting.
Documentation is written with Sphinx and reSturcturedText.
Started integration of documentation into source code and using autodoc features of Sphinx wherever
useful.
Sphinx theme provided by Read the Docs :
pip install sphinx-rtd-theme
guide — Example module
guide.example_func(a: int, b: str, test: str = None, flag: bool = True) -> None
Parameters a and b are positional arguments, argument test defaults to None and flag to True. Set
a to 70 and b to “x” as an example. Inline code examples example_func(70, 'x') or simple
example_func(70, "x")
• arguments: a, b, test and flags
• literal number values: 1, 2 … 999
• literal string values: “a String”
• literal tags: (5, “F000”)
• inline code: call a example_func(x)
• Python keywords: None, True, False, tuple, list, dict, str, int, float
• Exception classes: DXFAttributeError
class guide.ExampleCls(**kwargs)
The ExampleCls constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example
e = ExampleCls(flag=True)
flag This is the attribute flag.
set_axis(axis)
axis as (x, y, z) tuple
Args: axis: (x, y, z) tuple
example_method(flag: bool = False) -> None
Method example_method() of class ExampleCls
Text Formatting
DXF version
DXF R12 (AC1009), DXF R2004 (AC1018)
DXF Types
DXF types are always written in uppercase letters but without further formatting: DXF, LINE,
CIRCLE
(internal API)
Marks methods as internal API, gets no public documentation.
(internal class)
Marks classes only for internal usage, gets not public documentation.
Spatial Dimensions
2D and 3D with an uppercase letter D
Axis x-axis, y-axis and z-axis
Planes xy-plane, xz-plane, yz-plane
Layouts
modelspace, paperspace [layout], block [layout]
Extended Entity Data
AppData, XDATA, embedded object, APPID
LAUNCHER
The command line script ezdxf launches various sub-commands:
┌─────────────┬───────────────────────────────────────┐
│ audit │ Audit and repair DXF files │
├─────────────┼───────────────────────────────────────┤
│ draw │ Draw and convert DXF files by the │
│ │ Matplotlib backend │
├─────────────┼───────────────────────────────────────┤
│ view │ PyQt DXF file viewer │
├─────────────┼───────────────────────────────────────┤
│ browse │ PyQt DXF structure browser for DXF │
│ │ debugging and curious people │
├─────────────┼───────────────────────────────────────┤
│ browse-acis │ PyQt ACIS entity content browser for │
│ │ SAT/SAB debugging │
├─────────────┼───────────────────────────────────────┤
│ strip │ Strip comments and THUMBNAILIMAGE │
│ │ section from DXF files │
├─────────────┼───────────────────────────────────────┤
│ config │ Manage config files │
├─────────────┼───────────────────────────────────────┤
│ info │ Show information and optional stats │
│ │ of DXF files as loaded by ezdxf │
├─────────────┼───────────────────────────────────────┤
│ hpgl │ View and/or convert HPGL/2 plot files │
│ │ to DXF, SVG or PDF │
└─────────────┴───────────────────────────────────────┘
The help option -h is supported by the main script and all sub-commands:
C:\> ezdxf -h
usage: ezdxf [-h] [-V] [-v] [--config CONFIG] [--log LOG]
{pp,audit,draw,view,browse,browse-acis,strip,config} ...
Command launcher for the Python package "ezdxf":
https://pypi.org/project/ezdxf/
positional arguments:
{audit,draw,view,browse,strip}
audit audit and repair DXF files
draw draw and convert DXF files by Matplotlib
view view DXF files by the PyQt viewer
browse browse DXF file structure
browse-acis browse ACIS structures in DXF files
strip strip comments from DXF files
config manage config files
info show information and optional stats of DXF files loaded by ezdxf,
this may not represent the original content of the file, use the
browse command to see the original content
optional arguments:
-h, --help show this help message and exit
-V, --version show version and exit
-f, --fonts rebuild system font cache and print all fonts found
-v, --verbose give more output
--config CONFIG path to a config file
--log LOG path to a verbose appending log
NOTE:
The ezdxf script is the only executable script installed on the user system.
System
ezdxf -V shows the ezdxf and Python version your are running and if the C-extensions are used.
ezdxf 1.1.0b1 from c:\source\ezdxf.git\src\ezdxf
Python version: 3.11.2 (tags/v3.11.2:878ead1, Feb 7 2023, 16:38:35) [MSC v.1934 64 bit (AMD64)]
using C-extensions: yes
ezdxf -f rebuilds the system font cache and shows all fonts found.
Audit
Audit and recover the DXF file “gear.dxf” and save the recovered version as “gear.rec.dxf”:
C:\> ezdxf audit -s gear.dxf
auditing file: gear.dxf
No errors found.
Saved recovered file as: gear.rec.dxf
Print help:
C:\> ezdxf audit -h
usage: ezdxf audit [-h] [-s] FILE [FILE ...]
positional arguments:
FILE audit DXF files
optional arguments:
-h, --help show this help message and exit
-s, --save save recovered files with extension ".rec.dxf"
Draw
Convert the DXF file “gear.dxf” into a SVG file by the Matplotlib backend:
Added in version 1.2.0: support for more backends
C:\> ezdxf draw -o gear.svg gear.dxf
The “gear.svg” created by the Matplotlib backend: [image]
Show all output formats supported by the Matplotlib backend on your system. This output may vary:
C:\> ezdxf draw --formats
eps: Encapsulated Postscript
jpg: Joint Photographic Experts Group
jpeg: Joint Photographic Experts Group
pdf: Portable Document Format
pgf: PGF code for LaTeX
png: Portable Network Graphics
ps: Postscript
raw: Raw RGBA bitmap
rgba: Raw RGBA bitmap
svg: Scalable Vector Graphics
svgz: Scalable Vector Graphics
tif: Tagged Image File Format
tiff: Tagged Image File Format
Print help:
C:\> ezdxf draw -h
usage: ezdxf draw [-h] [--backend {matplotlib,qt,mupdf,custom_svg}] [--formats]
[-l LAYOUT]
[--background {DEFAULT,WHITE,BLACK,PAPERSPACE,MODELSPACE,OFF,CUSTOM}]
[--all-layers-visible] [--all-entities-visible] [-o OUT]
[--dpi DPI] [-f] [-v]
[FILE]
positional arguments:
FILE DXF file to view or convert
options:
-h, --help show this help message and exit
--backend {matplotlib,qt,mupdf,custom_svg}
choose the backend to use for rendering
--formats show all supported export formats and exit
-l LAYOUT, --layout LAYOUT
select the layout to draw, default is "Model"
--background {DEFAULT,WHITE,BLACK,PAPERSPACE,MODELSPACE,OFF,CUSTOM}
choose the background color to use
--all-layers-visible draw all layers including the ones marked as invisible
--all-entities-visible
draw all entities including the ones marked as invisible
(some entities are individually marked as invisible even if
the layer is visible)
-o OUT, --out OUT output filename for export
--dpi DPI target render resolution, default is 300
-f, --force overwrite the destination if it already exists
-v, --verbose give more output
View
View the DXF file “gear.dxf” by the PyQt backend:
C:\> ezdxf view gear.dxf
[image]
Print help:
C:\> ezdxf view -h
usage: ezdxf view [-h] [-l LAYOUT] [--lwscale LWSCALE] [FILE]
positional arguments:
FILE DXF file to view
optional arguments:
-h, --help show this help message and exit
-l LAYOUT, --layout LAYOUT
select the layout to draw, default is "Model"
--lwscale LWSCALE set custom line weight scaling, default is 0 to
disable line weights at all
Browse
Browse the internal structure of a DXF file like a file system:
C:\> ezdxf browse gear.dxf
[image]
C:\> ezdxf browse -h
usage: ezdxf browse [-h] [-l LINE] [-g HANDLE] [FILE]
positional arguments:
FILE DXF file to browse
optional arguments:
-h, --help show this help message and exit
-l LINE, --line LINE go to line number
-g HANDLE, --handle HANDLE
go to entity by HANDLE, HANDLE has to be a hex value without
any prefix like 'fefe'
The browse command stores options in the config file, e.g. for the Notepad++ on Windows:
[browse-command]
text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}
icon_size = 32
text_editor is a simple format string: text_editor.format(filename="test.dxf", num=100)
Quote commands including spaces and always quote the filename argument!
For xed on Linux Mint use (note: absolute path to executable):
[browse-command]
text_editor = /usr/bin/xed "{filename}" +{num}
icon_size = 32
For gedit on Linux use (untested):
[browse-command]
text_editor = /usr/bin/gedit +{num} "{filename}"
icon_size = 32
The browse command opens a DXF structure browser to investigate the internals of a DXF file without
interpreting the content. The intended usage is debugging invalid DXF files, which can not be loaded by
the ezdxf.readfile() or the ezdxf.recover.readfile() functions.
Line Numbers
The low level tag loader ignores DXF comments (group code 999). If there are comments in the DXF file the
line numbers displayed in the DXF browser are not synchronized, use the strip command beforehand to
remove all comments from the DXF file in order to keep the line numbers synchronized.
GUI Features
The tree view on the left shows the outline of the DXF file. The number in round brackets on the right
side of each item shows the count of structure entities within the structure layer, the value in angle
brackets on the left side is the entity handle.
The right list view shows the entity content as DXF tags. Structure tags (data type <ctrl>) are shown in
blue, a double click on a reference handle (datatype <ref>) jumps to the referenced entity, reference
handles of non-existent targets are shown in red.
Clicking on the first structure tag in the list opens the DXF reference provided by Autodesk in the
standard web browser.
Auto Reload
The browser automatically displays a dialog for reloading DXF files if they have been modified by an
external application.
Menus and Shortcuts
•
File Menu
• Open DXF file… Ctrl+O
• Reload DXF file Ctrl+R
• Open in Text Editor Ctrl+T, open the DXF file in the associated text editor at the current
location
• Export DXF Entity… Ctrl+E, export the current DXF entity shown in the list view as text file
• Copy selected DXF Tags to Clipboard Ctrl+C, copy the current selected DXF tags into the
clipboard
• Copy DXF Entity to Clipboard Ctrl+Shift+C, copy all DXF tags of the current DXF entity shown
in the list view into the clipboard
• Quit Ctrl+Q
•
Navigate Menu
• Go to Handle… Ctrl+G
• Go to Line… Ctrl+L
• Find Text… Ctrl+F, opens the find text dialog
• Next Entity Ctrl+Right, go to the next entity in the DXF structure
• Previous Entity Ctrl+Right, go to the previous entity in the DXF structure
• Show Entity in TreeView Ctrl+Down, expand the left tree view to the currently displayed entity
in the list view - this does not happen automatically for performance reasons
• Entity History Back Alt+Left
• Entity History Forward Alt+Right
• Go to HEADERS Section Shift+H
• Go to BLOCKS Section Shift+B
• Go to ENTITIES Section Shift+E
• Go to OBJECTS Section Shift+O
•
Bookmarks Menu
• Store Bookmark… Ctrl+Shift+B, store current location as named bookmark
• Go to Bookmark… Ctrl+B, go to stored location
Browse-ACIS
Show and export the SAT or SAB content of ACIS entities:
C:\> ezdxf browse-acis 3dsolid.dxf
[image]
The DXF format stores modern solid geometry as SAT data for DXF R2000 - R2010 and as SAB data for DXF
R2013 and later. This command shows the content of this entities and also let you export the raw data for
further processing.
Entity View
The entity view is a read-only text editor, it’s possible to select and copy parts of the text into the
clipboard. To improve the readability all ACIS entities get automatically an id because AutoCAD and
BricsCAD use relative references for ACIS data export and do not assign entity ids. The id is shown as
decimal number in parenthesis after the entity name. The ~ character is a shortcut for a null-pointer.
C:\>ezdxf browse-acis -h
usage: ezdxf browse-acis [-h] [-g HANDLE] [FILE]
positional arguments:
FILE DXF file to browse
options:
-h, --help show this help message and exit
-g HANDLE, --handle HANDLE
go to entity by HANDLE, HANDLE has to be a hex value
without any prefix like 'fefe'
Menus and Shortcuts
•
File Menu
• Open DXF file… Ctrl+O
• Reload DXF file Ctrl+R
• Export Current Entity View… Ctrl+E, Export the parsed content of the entity view as text file
• Export Raw SAT/SAB Data… Ctrl+W, export the raw SAT data as text file and the raw SAB data as
a binary file for further processing
• Quit Ctrl+Q
Strip
Strip comment tags (group code 999) from ASCII DXF files and can remove the THUMBNAILIMAGE section.
Binary DXF files are not supported.
Added in version 1.1.3: remove handles from DXF R12 and older
C:\> ezdxf strip -h
usage: ezdxf strip [-h] [-b] [-t] [--handles] [-v] FILE [FILE ...]
positional arguments:
FILE DXF file to process, wildcards "*" and "?" are supported
options:
-h, --help show this help message and exit
-b, --backup make a backup copy with extension ".bak" from the DXF file,
overwrites existing backup files
-t, --thumbnail strip THUMBNAILIMAGE section
--handles remove handles from DXF R12 or older files
-v, --verbose give more output
Config
Manage config files.
C:\> ezdxf config -h
usage: ezdxf config [-h] [-p] [-w FILE] [--home] [--reset]
optional arguments:
-h, --help show this help message and exit
-p, --print print configuration
-w FILE, --write FILE
write configuration
--home create config file 'ezdxf.ini' in the user home directory
'~/.config/ezdxf', $XDG_CONFIG_HOME is supported if set
--reset factory reset, delete default config files 'ezdxf.ini'
Info
Show information and optional stats of DXF files as loaded by ezdxf, this may not represent the original
content of the file, use the browse command to see the original content. The upgrade is necessary for
very old DXF versions prior to R12 and for the “special” versions R13 and R14. The -s option shows some
statistics about the DXF content like entity count or table count. Use the -v option show more of
everything.
C:\> ezdxf info -h
usage: ezdxf info [-h] [-v] [-s] FILE [FILE ...]
positional arguments:
FILE DXF file to process, wildcards "*" and "?" are supported
options:
-h, --help show this help message and exit
-v, --verbose give more output
-s, --stats show content stats
This is the verbose output for an old DXF R10 file and shows that the loading process created some
required structures which do not exist in DXF R10 files, like the BLOCK_RECORD table or the OBJECTS
section:
C:\> ezdxf info -v -s test_R10.dxf
Filename: "test_R10.dxf"
Loaded content was upgraded from DXF Version AC1006 (R10)
Release: R12
DXF Version: AC1009
Maintenance Version: <undefined>
Codepage: ANSI_1252
Encoding: cp1252
Unit system: Imperial
Modelspace units: Unitless
$LASTSAVEDBY: <undefined>
$HANDSEED: 0
$FINGERPRINTGUID: {9EADDC7C-5982-4C68-B770-8A62378C2B90}
$VERSIONGUID: {49336E63-D99B-45EC-803C-4D2BD03A7DE0}
$USERI1=0
$USERI2=0
$USERI3=0
$USERI4=0
$USERI5=0
$USERR1=0.0
$USERR2=0.0
$USERR3=0.0
$USERR4=0.0
$USERR5=0.0
File was not created by ezdxf >= 0.16.4
File was not written by ezdxf >= 0.16.4
Content stats:
LAYER table entries: 18
0
Defpoints
LYR_00
LYR_01
LYR_02
LYR_03
LYR_04
LYR_05
LYR_06
LYR_07
LYR_08
LYR_09
LYR_10
LYR_11
LYR_12
LYR_13
LYR_14
LYR_15
LTYPE table entries: 13
BORDER
ByBlock
ByLayer
CENTER
CONTINUOUS
CUTTING
DASHDOT
DASHED
DIVIDE
DOT
HIDDEN
PHANTOM
STITCH
STYLE table entries: 1
STANDARD
DIMSTYLE table entries: 1
Standard
APPID table entries: 1
ACAD
UCS table entries: 0
VIEW table entries: 0
VPORT table entries: 1
*Active
BLOCK_RECORD table entries: 2
*Model_Space
*Paper_Space
Entities in modelspace: 78
ARC (2)
CIRCLE (2)
LINE (74)
Entities in OBJECTS section: 20
ACDBDICTIONARYWDFLT (1)
ACDBPLACEHOLDER (1)
DICTIONARY (11)
LAYOUT (2)
MATERIAL (3)
MLEADERSTYLE (1)
MLINESTYLE (1)
Show Version & Configuration
Show the ezdxf version and configuration:
C:\> ezdxf -Vv
ezdxf v0.16.5b0 @ d:\source\ezdxf.git\src\ezdxf
Python version: 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21) [MSC v.1929 64 bit (AMD64)]
using C-extensions: yes
using Matplotlib: yes
Configuration:
[core]
default_dimension_text_style = OpenSansCondensed-Light
test_files = D:\Source\dxftest
font_cache_directory =
load_proxy_graphics = true
store_proxy_graphics = true
log_unprocessed_tags = false
filter_invalid_xdata_group_codes = true
write_fixed_meta_data_for_testing = false
disable_c_ext = false
[browse-command]
text_editor = "C:\Program Files\Notepad++\notepad++.exe" "{filename}" -n{num}
Environment Variables:
EZDXF_DISABLE_C_EXT=
EZDXF_TEST_FILES=D:\Source\dxftest
EZDXF_CONFIG_FILE=
Existing Configuration Files:
C:\Users\manfred\.config\ezdxf\ezdxf.ini
SEE ALSO:
Documentation of the ezdxf.options module and the Environment Variables.
HPGL/2 Viewer/Converter
Added in version 1.1.
The hpgl command shows and/or converts HPGL/2 plot files to DXF, SVG or PDF.
DXF
The page content is created at the origin of the modelspace and 1 drawing unit is 1 plot unit (1 plu =
0.025mm) unless scaling values are provided.
The content of HPGL files is intended to be plotted on white paper, so the appearance on a dark
background in modelspace is not very clear. To fix this, the --map_black_to_white option maps black
fillings and lines to white.
All entities are mapped to a layer named COLOR_<#> according to the pen number. In order to process the
content better, it is also possible to assign the DXF elements an ACI color value according to the pen
number through the --aci option, but then the RGB color is lost because the RGB color always has the
higher priority over the ACI value.
The first paperspace layout “Layout0” is set up to print the entire modelspace on one sheet, the size of
the page is the size of the original plot file in millimeters.
SVG
The plot units are mapped 1:1 to viewBox units and the size of image is the size of the original plot
file in millimeters.
PDF
The plot units are converted to PDF units (1/72 inch) so the size of image is the size of the original
plot file in millimeters.
All Formats
HPGL/2’s merge control works at the pixel level and cannot be replicated by DXF, but to prevent fillings
from obscuring text, the filled polygons are sorted by luminance - this can be forced or disabled by the
--merge_control option.
Some plot files that contain pure HPGL/2 code do not contain the escape sequence “Enter HPGL/2 mode”,
without this sequence the HPGL/2 parser cannot recognize the beginning of the HPGL/2 code. The --force
option inserts the “Enter HPGL/2 mode” escape sequence into the data stream, regardless of whether the
file is an HPGL/2 plot file or not, so be careful.
C:\> ezdxf hpgl -h
usage: ezdxf hpgl [-h] [-e FORMAT] [-r {0,90,180,270}] [-x SX] [-y SY] [-m {0,1,2}]
[-f] [--aci] [--map_black_to_white]
[FILE]
positional arguments:
FILE view and/or convert HPGL/2 plot files, wildcards (*, ?)
supported in command line mode
options:
-h, --help show this help message and exit
-e FORMAT, --export FORMAT
convert HPGL/2 plot file to SVG, PDF or DXF from the
command line (no gui)
-r {0,90,180,270}, --rotate {0,90,180,270}
rotate page about 90, 180 or 270 degrees (no gui)
-x SX, --scale_x SX scale page in x-axis direction, use negative values to
mirror page, (no gui)
-y SY, --scale_y SY scale page in y-axis direction, use negative values to
mirror page (no gui)
-m {0,1,2}, --merge_control {0,1,2}
provides control over the order of filled polygons, 0=off
(print order), 1=luminance (order by luminance), 2=auto
(default)
-f, --force inserts the mandatory 'enter HPGL/2 mode' escape sequence
into the data stream; use this flag when no HPGL/2 data was
found and you are sure the file is a HPGL/2 plot file
--aci use pen numbers as ACI colors (DXF only)
--map_black_to_white map black RGB plot colors to white RGB, does not affect ACI
colors (DXF only)
Note that plot files are intended to be plotted on white paper.
TUTORIALS
Tutorial for Getting Data from DXF Files
This tutorial shows how to get data from an existing DXF document. If you are a new user of ezdxf, read
also the tutorial Usage for Beginners.
Loading the DXF file:
import sys
import ezdxf
try:
doc = ezdxf.readfile("your_dxf_file.dxf")
except IOError:
print(f"Not a DXF file or a generic I/O error.")
sys.exit(1)
except ezdxf.DXFStructureError:
print(f"Invalid or corrupted DXF file.")
sys.exit(2)
This works well for DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with
minor or major flaws look at the ezdxf.recover module.
SEE ALSO:
• Document Management
• Usage for Beginners
Layouts
The term layout is used as a synonym for an arbitrary entity space which can contain DXF entities like
LINE, CIRCLE, TEXT and so on. Each DXF entity can only reside in exact one layout.
There are three different layout types:
• Modelspace: the common construction space
• Paperspace: used to to create print layouts
• BlockLayout: reusable elements, every block has its own entity space
A DXF document consist of exact one modelspace and at least one paperspace. DXF R12 has only one unnamed
paperspace the later DXF versions support more than one paperspace and each paperspace has a name.
Getting the modelspace layout
The modelspace contains the “real” world representation of the drawing subjects in real world units. The
modelspace has the fixed name “Model” and the DXF document has a special getter method modelspace().
msp = doc.modelspace()
Iterate over DXF entities of a layout
This code shows how to iterate over all DXF entities in modelspace:
# helper function
def print_entity(e):
print("LINE on layer: %s\n" % e.dxf.layer)
print("start point: %s\n" % e.dxf.start)
print("end point: %s\n" % e.dxf.end)
# iterate over all entities in modelspace
msp = doc.modelspace()
for e in msp:
if e.dxftype() == "LINE":
print_entity(e)
# entity query for all LINE entities in modelspace
for e in msp.query("LINE"):
print_entity(e)
All layout objects supports the standard Python iterator protocol and the in operator.
Access DXF attributes of an entity
The e.dxftype() method returns the DXF type, the DXF type is always an uppercase string like "LINE". All
DXF attributes of an entity are grouped in the namespace attribute dxf:
e.dxf.layer # layer of the entity as string
e.dxf.color # color of the entity as integer
See Common graphical DXF attributes
If a DXF attribute is not set (the DXF attribute does not exist), a DXFValueError will be raised. The
get() method returns a default value in this case or None if no default value is specified:
# If DXF attribute 'paperspace' does not exist, the entity defaults
# to modelspace:
p = e.dxf.get("paperspace", 0)
or check beforehand if the attribute exist:
if e.dxf.hasattr("paperspace"):
...
An unsupported DXF attribute raises a DXFAttributeError, to check if an attribute is supported by an
entity use:
if e.dxf.is_supported("paperspace"):
...
Getting a paperspace layout
paperspace = doc.paperspace("layout0")
The code above retrieves the paperspace named layout0, the usage of the Paperspace object is the same as
of the modelspace object. DXF R12 provides only one paperspace, therefore the paperspace name in the
method call doc.paperspace("layout0") is ignored or can be left off. For newer DXF versions you can get
a list of the available layout names by the methods layout_names() and layout_names_in_taborder().
Retrieve entities by query language
Ezdxf provides a flexible query language for DXF entities. All layout types have a query() method to
start an entity query or use the ezdxf.query.new() function.
The query string is the combination of two queries, first the required entity query and second the
optional attribute query, enclosed in square brackets: "EntityQuery[AttributeQuery]"
The entity query is a whitespace separated list of DXF entity names or the special name *. Where * means
all DXF entities, all DXF names have to be uppercase. The * search can exclude entity types by adding the
entity name with a preceding ! (e.g. * !LINE, search all entities except lines).
The attribute query is used to select DXF entities by its DXF attributes. The attribute query is an
addition to the entity query and matches only if the entity already match the entity query. The attribute
query is a boolean expression, supported operators: and, or, !.
SEE ALSO:
Entity Query String
Get all LINE entities from the modelspace:
msp = doc.modelspace()
lines = msp.query("LINE")
The result container EntityQuery also provides the query() method to further refine the query, such as
retrieving all LINE entities at layer construction:
construction_lines = lines.query('*[layer=="construction"]')
The * is a wildcard for all DXF types, in this case you could also use LINE instead of *, * works here
because the source just contains LINE entities.
This could be executed as a single query:
lines = msp.query('LINE[layer=="construction"]')
An advanced query for getting all modelspace entities at layer construction, but excluding entities with
linetype DASHED:
not_dashed_entities = msp.query('*[layer=="construction" and linetype!="DASHED"]')
Extended EntityQuery Features
The EntityQuery class has properties and overloaded operators to build extended queries by Python
features instead of a query string.
Same task as in the previous section but using features of the EntityQuery container:
# The overloaded rational operators return an EntityQuery object and not a bool value!
lines = msp.query("LINES").layer == "construction"
not_dashed_lines = lines.linetype != "DASHED"
SEE ALSO:
Extended EntityQuery Features
Retrieve entities by groupby() function
The groupby() function searches and group entities by a user defined criteria. As an example let’s group
all entities from modelspace by layer, the result will be a dict with layer names as dict-key and a list
of all entities from the modelspace matching this layer as dict-value:
from ezdxf.groupby import groupby
group = groupby(entities=msp, dxfattrib="layer")
The entities argument can be any container or generator which yields DXF entities:
group = msp.groupby(dxfattrib="layer")
for layer, entities in group.items():
print(f'Layer "{layer}" contains following entities:')
for entity in entities:
print(f" {entity}")
print("-"*40)
The previous example shows how to group entities by a single DXF attribute. For a more advanced query
create a custom key function, which accepts a DXF entity as argument and returns a hashable value as
dict-key or None to exclude the entity.
The following example shows how to group entities by layer and color, the dict-key is a (layer, color)
tuple and the dict-value is a list of entities with matching DXF attributes:
def layer_and_color_key(entity):
# return None to exclude entities from the result container
if entity.dxf.layer == "0": # exclude entities from default layer "0"
return None
else:
return entity.dxf.layer, entity.dxf.color
group = msp.groupby(key=layer_and_color_key)
for key, entities in group.items():
print(f'Grouping criteria "{key}" matches following entities:')
for entity in entities:
print(f" {entity}")
print("-"*40)
The groupby() function catches DXFAttributeError exceptions while processing entities and excludes this
entities from the result. There is no need to worry about DXF entities which do not support certain
attributes, they will be excluded automatically.
SEE ALSO:
groupby() documentation
Tutorial for Creating DXF Drawings
Create a new DXF document by the ezdxf.new() function:
import ezdxf
# create a new DXF R2010 document
doc = ezdxf.new("R2010")
# add new entities to the modelspace
msp = doc.modelspace()
# add a LINE entity
msp.add_line((0, 0), (10, 0))
# save the DXF document
doc.saveas("line.dxf")
New entities are always added to layouts, a layout can be the modelspace, a paperspace layout or a block
layout.
SEE ALSO:
Thematic Index of Layout Factory Methods
Predefined Resources
Ezdxf creates new DXF documents with as little content as possible, this means only the resources that
are absolutely necessary are created. The ezdxf.new() function can create some standard resources, such
as linetypes and text styles, by setting the argument setup to True.
import ezdxf
doc = ezdxf.new("R2010", setup=True)
msp = doc.modelspace()
msp.add_line((0, 0), (10, 0), dxfattribs={"linetype": "DASHED"})
The defined standard linetypes are shown in the basic concept section for Linetypes and the available
text styles are shown in the Tutorial for Text.
IMPORTANT:
To see the defined text styles in a DXF viewer or CAD application, the applications have to know where
the referenced TTF fonts can be found. This configuration is not possible by ezdxf and has to be done
for each application as described in their documentation.
See also: Font Resources
Simple DXF R12 drawings
The r12writer add-on creates simple DXF R12 drawings with a restricted set of DXF types: LINE, CIRCLE,
ARC, TEXT, POINT, SOLID, 3DFACE and POLYLINE.
The advantage of the r12writer is the speed and the small memory footprint, all entities are written
directly to a file or stream without creating a document structure in memory.
SEE ALSO:
r12writer
Tutorial for Common Graphical Attributes
The graphical attributes color, linetype, lineweight, true_color, transparency, ltscale and invisible are
available for all graphical DXF entities and are located in the DXF namespace attribute dxf of the DXF
entities. All these attributes are optional and all except for true_color and transparency have a
default value.
Not all of these attributes are supported by all DXF versions. This table shows the minimum required DXF
version for each attribute:
┌───────┬────────────────────────────────┐
│ R12 │ color, linetype │
├───────┼────────────────────────────────┤
│ R2000 │ lineweight, ltscale, invisible │
├───────┼────────────────────────────────┤
│ R2004 │ true_color, transparency │
└───────┴────────────────────────────────┘
Color
Please read the section about the AutoCAD Color Index (ACI) to understand the basics.
The usage of the color attribute is very straight forward. Setting the value is:
entity.dxf.color = 1
and getting the value looks like this:
value = entity.dxf.color
The color attribute has a default value of 256, which means take the color defined by the layer
associated to the entity. The ezdxf.colors module defines some constants for often used color values:
entity.dxf.color = ezdxf.colors.RED
The ezdxf.colors.aci2rgb() function converts the ACI value to the RGB value of the default modelspace
palette.
SEE ALSO:
• Basics about AutoCAD Color Index (ACI)
• ezdxf.colors module
True Color
Please read the section about True Color to understand the basics.
The easiest way is to use the rgb property to set and get the true color values as RGB tuples:
entity.rgb = (255, 128, 16)
The rgb property return None if the true_color attribute is not present:
rgb = entity.rgb
if rgb is not None:
r, g, b = rgb
Setting and getting the true_color DXF attribute directly is possible and the ezdxf.colors module has
helper function to convert RGB tuples to 24-bit value and back:
entity.dxf.true_color = ezdxf.colors.rgb2int(255, 128, 16)
The true_color attribute is optional does not have a default value and therefore it is not safe to use
the attribute directly, check if the attribute exists beforehand:
if entity.dxf.hasattr("true_color"):
r, g, b = ezdxf.colors.int2rgb(entity.dxf.true_color)
or use the get() method of the dxf namespace attribute to get a default value if the attribute does not
exist:
r, g, b = ezdxf.colors.int2rgb(entity.dxf.get("true_color", 0)
SEE ALSO:
• Basics about True Color
• ezdxf.colors module
Transparency
Please read the section about Transparency to understand the basics.
It’s recommended to use the transparency property of the DXFGraphic base class. The transparency
property is a float value in the range from 0.0 to 1.0 where 0.0 is opaque and 1.0 if fully transparent:
entity.transparency = 0.5
or set the values of the DXF attribute by constants defined in the ezdxf.colors module:
entity.dxf.transparency = ezdxf.colors.TRANSPARENCY_50
The default setting for transparency in CAD applications is always transparency by layer, but the
transparency property in ezdxf has a default value of 0.0 (opaque), so there are additional entity
properties to check if the transparency value should be taken from the associated entity layer or from
the parent block:
if entity.is_transparency_by_layer:
...
elif entity.is_transparency_by_block:
...
else:
...
The top level entity attribute transparency does not support setting transparency by layer or block:
from ezdxf import colors
...
# set transparency by layer by removing the DXF attribute "transparency":
entity.dxf.discard("transparency")
# set transparency by block:
entity.dxf.transparency = colors.TRANSPARENCY_BYBLOCK
# there are also some handy constants in the colors module:
# TRANSPARENCY_10 upto TRANSPARENCY_90 in steps of 10
entity.dxf.transparency = colors.TRANSPARENCY_30 # set 30% transparency
entity.dxf.transparency = colors.OPAQUE
SEE ALSO:
• Basics about Transparency
• ezdxf.colors module
Linetype
Please read the section about Linetypes to understand the basics.
The linetype attribute contains the name of the linetype as string and can be set by the dxf namespace
attribute directly:
entity.dxf.linetype = "DASHED" # linetype DASHED must exist!
The linetype attribute is optional and has a default value of “BYLAYER”, so the attribute can always be
used without any concerns:
name = entity.dxf.linetype
WARNING:
Make sure the linetype you assign to an entity is really defined in the linetype table otherwise
AutoCAD will not open the DXF file. There are no implicit checks for that by ezdxf but you can call
the audit() method of the DXF document explicitly to validate the document before exporting.
Ezdxf creates new DXF documents with as little content as possible, this means only the resources that
are absolutely necessary are created. The ezdxf.new() function can create some standard linetypes by
setting the argument setup to True:
doc = ezdxf.new("R2010", setup=True)
SEE ALSO:
• Basics about Linetypes
• Tutorial for Creating Linetype Pattern
Lineweight
Please read the section about Lineweights to understand the basics.
The lineweight attribute contains the lineweight as an integer value and can be set by the dxf namespace
attribute directly:
entity.dxf.lineweight = 25
The lineweight value is the line width in millimeters times 100 e.g. 0.25mm = 25, but only certain
values are valid for more information go to section: Lineweights.
Values < 0 have a special meaning and can be imported as constants from ezdxf.lldxf.const
┌────┬────────────────────┐
│ -1 │ LINEWEIGHT_BYLAYER │
├────┼────────────────────┤
│ -2 │ LINEWEIGHT_BYBLOCK │
├────┼────────────────────┤
│ -3 │ LINEWEIGHT_DEFAULT │
└────┴────────────────────┘
The lineweight attribute is optional and has a default value of -1, so the attribute can always be used
without any concerns:
lineweight = entity.dxf.lineweight
IMPORTANT:
You have to enable the option to show lineweights in your CAD application or viewer to see the effect
on screen, which is disabled by default, the same has to be done in the page setup options for
plotting lineweights.
# activate on screen lineweight display
doc.header["$LWDISPLAY"] = 1
SEE ALSO:
• Basics about Lineweights
Linetype Scale
The ltscale attribute scales the linetype pattern by a float value and can be set by the dxf namespace
attribute directly:
entity.dxf.ltscale = 2.0
The ltscale attribute is optional and has a default value of 1.0, so the attribute can always be used
without any concerns:
scale = entity.dxf.ltscale
SEE ALSO:
• Basics about Linetypes
Invisible
The invisible attribute an boolean value (0/1) which defines if an entity is invisible or visible and can
be set by the dxf namespace attribute directly:
entity.dxf.invisible = 1
The invisible attribute is optional and has a default value of 0, so the attribute can always be used
without any concerns:
is_invisible = bool(entity.dxf.invisible)
GfxAttribs
When adding new entities to an entity space like the modelspace or a block definition, the factory
methods expect the graphical DXF attributes by the argument dxfattribs. This object can be a Python dict
where the key is the DXF attribute name and the value is the attribute value, or better use the
GfxAttribs object which has some additional validation checks and support for code completions by IDEs:
import ezdxf
from ezdxf.gfxattribs import GfxAttribs
doc = ezdxf.new()
msp = doc.modelspace()
line = msp.add_line(
(0, 0), (10, 10), dxfattribs=GfxAttribs(layer="0", rgb=(25, 128, 16))
)
SEE ALSO:
• ezdxf.gfxattribs module
Tutorial for Layers
If you are not familiar with the concept of layers, please read this first: Concept of Layers
Reminder: a layer definition is not required for using a layer!
Create a Layer Definition
import ezdxf
doc = ezdxf.new(setup=True) # setup required line types
msp = doc.modelspace()
doc.layers.add(name="MyLines", color=7, linetype="DASHED")
The advantage of assigning a linetype and a color to a layer is that entities on this layer can inherit
this properties by using "BYLAYER" as linetype string and 256 as color, both values are default values
for new entities so you can leave off these assignments:
msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"})
The new created line will be drawn with color 7 and linetype "DASHED".
Moving an Entity to a Different Layer
Moving an entity to a different layer is a simple assignment of the new layer name to the layer attribute
of the entity.
line = msp.add_line((0, 0), (10, 0), dxfattribs={"layer": "MyLines"})
# move the entity to layer "OtherLayer"
line.dxf.layer = "OtherLayer"
Changing Layer State
Get the layer definition object from the layer table:
my_lines = doc.layers.get('MyLines')
Check the state of the layer:
my_lines.is_off() # True if layer is off
my_lines.is_on() # True if layer is on
my_lines.is_locked() # True if layer is locked
layer_name = my_lines.dxf.name # get the layer name
Change the state of the layer:
# switch layer off, entities at this layer will not shown in CAD applications/viewers
my_lines.off()
# lock layer, entities at this layer are not editable in CAD applications
my_lines.lock()
Get/set the color of a layer by property Layer.color, because the DXF attribute Layer.dxf.color is
misused for switching the layer on and off, the layer is off if the color value is negative.
Changing the layer properties:
my_lines.dxf.linetype = "DOTTED"
my_lines.color = 13 # preserves on/off state of layer
SEE ALSO:
For all methods and attributes see class Layer.
Check Available Layers
The LayerTable object supports some standard Python protocols:
# iteration
for layer in doc.layers:
if layer.dxf.name != "0":
layer.off() # switch all layers off except layer "0"
# check for existing layer definition
if "MyLines" in doc.layers:
layer = doc.layers.get("MyLines")
layer_count = len(doc.layers) # total count of layer definitions
Renaming a Layer
The Layer class has a method for renaming the layer, but has same limitations, not all places where layer
references can occur are documented, third-party entities are black-boxes with unknown content and layer
references could be stored in the extended data section of any DXF entity or in a XRECORD entity, so some
references may reference a non-existing layer definition after the renaming, at least these references
are still valid, because a layer definition is not required for using a layer.
my_lines = doc.layers.get("MyLines")
my_lines.rename("YourLines")
Deleting a Layer Definition
Delete a layer definition:
doc.layers.remove("MyLines")
This just deletes the layer definition, all DXF entities referencing this layer still exist, if they
inherit any properties from the deleted layer they will now get the default layer properties.
WARNING:
The behavior of entities referencing the layer by handle is unknown and may break the DXF document.
Deleting All Entities From a Layer
Because of all these uncertainties about layer references mentioned above, deleting all entities
referencing a certain layer from a DXF document is not implemented as an API call!
Nonetheless deleting all graphical entities from the DXF document which do reference a certain layer by
the layer attribute is a safe procedure:
key_func = doc.layers.key
layer_key = key_func("MyLines")
# The trashcan context-manager is a safe way to delete entities from the
# entities database while iterating.
with doc.entitydb.trashcan() as trash:
for entity in doc.entitydb.values():
if not entity.dxf.hasattr("layer"):
continue
if layer_key == key_func(entity.dxf.layer):
# safe destruction while iterating
trash.add(entity.dxf.handle)
Tutorial for Creating Linetype Pattern
Simple line type example: [image]
You can define your own linetypes. A linetype definition has a name, a description and line pattern
elements:
elements = [total_pattern_length, elem1, elem2, ...]
total_pattern_length
Sum of all linetype elements (absolute values)
elem if elem > 0 it is a line, if elem < 0 it is gap, if elem == 0.0 it is a dot
Create a new linetype definition:
import ezdxf
from ezdxf.tools.standards import linetypes # some predefined linetypes
doc = ezdxf.new()
msp = doc.modelspace()
my_line_types = [
(
"DOTTED",
"Dotted . . . . . . . . . . . . . . . .",
[0.2, 0.0, -0.2],
),
(
"DOTTEDX2",
"Dotted (2x) . . . . . . . . ",
[0.4, 0.0, -0.4],
),
(
"DOTTED2",
"Dotted (.5) . . . . . . . . . . . . . . . . . . . ",
[0.1, 0.0, -0.1],
),
]
for name, desc, pattern in my_line_types:
if name not in doc.linetypes:
doc.linetypes.add(
name=name,
pattern=pattern,
description=desc,
)
Setup some predefined linetypes:
for name, desc, pattern in linetypes():
if name not in doc.linetypes:
doc.linetypes.add(
name=name,
pattern= pattern,
description=desc,
)
Check Available Linetypes
The linetypes object supports some standard Python protocols:
# iteration
print("available linetypes:")
for lt in doc.linetypes:
print(f"{lt.dxf.name}: {lt.dxf.description}")
# check for existing linetype
if "DOTTED" in doc.linetypes:
pass
count = len(doc.linetypes) # total count of linetypes
Removing Linetypes
WARNING:
Ezdxf does not check if a linetype is still in use and deleting a linetype which is still in use
generates an invalid DXF file. The audit process audit() of the DXF document removes linetype
attributes referencing non existing linetypes.
You can delete a linetype:
doc.layers.remove("DASHED")
This just removes the linetype definition, the linetype attribute of DXF entities may still refer the
removed linetype definition “DASHED” and AutoCAD will not open DXF files including undefined linetypes.
Tutorial for Creating Complex Linetype Pattern
In DXF R13 Autodesk introduced complex linetypes, containing TEXT or SHAPES in line types.
Complex linetype example with text: [image]
Complex line type example with shapes: [image]
For easy usage the pattern string for complex line types is mostly the same string as the pattern
definition strings in AutoCAD “.lin” files.
Example for complex line type TEXT:
doc = ezdxf.new("R2018") # DXF R13 or later is required
doc.linetypes.add(
name="GASLEITUNG2",
# linetype definition string from acad.lin:
pattern='A,.5,-.2,["GAS",STANDARD,S=.1,U=0.0,X=-0.1,Y=-.05],-.25',
description= "Gasleitung2 ----GAS----GAS----GAS----GAS----GAS----",
length=1, # required for complex line types
})
The pattern always starts with an “A”, the following float values have the same meaning as for simple
linetypes, a value > 0 is a line, a value < 0 is a gap, and a 0 is a point, the opening square bracket
“[” starts the complex part of the linetype pattern.
The text after the “[” defines the complex linetype:
• A text in quotes (e.g. “GAS”) defines a complex TEXT linetype and represents the pattern text itself.
• A text without quotes is a SHAPE name (in “.lin” files) and defines a complex SHAPE linetype. Ezdxf can
not translate this SHAPE name from the “.lin” file into the required shape file index, so *YOU have to
translate this SHAPE name into the shape file index, e.g. saving the file with AutoCAD as DXF and
searching for the DXF linetype definition, see example below and the DXF Internals: LTYPE Table.
For complex TEXT linetypes the second parameter is the text style, for complex SHAPE linetypes the second
parameter is the shape file name, the shape file has to be in the same directory as the DXF file or in
one of the CAD application support paths.
The meaning of the following comple linetype parameters are shown in the table below:
┌────────┬───────────────────────────────────────┐
│ S │ scaling factor, always > 0, if S=0 │
│ │ the TEXT or SHAPE is not visible │
├────────┼───────────────────────────────────────┤
│ R or U │ rotation relative to the line │
│ │ direction │
├────────┼───────────────────────────────────────┤
│ X │ x-direction offset (along the line) │
├────────┼───────────────────────────────────────┤
│ Y │ y-direction offset (perpendicular to │
│ │ the line) │
└────────┴───────────────────────────────────────┘
These parameters are case insensitive and the closing square bracket “]” ends the complex part of the
linetype pattern.
The fine tuning of this parameters is a try an error process, for complex TEXT linetypes the scaling
factor (e.g. the STANDARD text style) sets the text height (e.g. “S=0.1” sets the text height to 0.1
units), by shifting in y-direction by half of the scaling factor, the text is vertically centered to the
line. For the x-direction it seems to be a good practice to place a gap in front of the text and after
the text, find x shifting value and gap sizes by try and error. The overall length is at least the sum of
all line and gap definitions (absolute values).
Example for complex line type SHAPE:
doc.linetypes.add("GRENZE2",
# linetype definition in acad.lin:
# A,.25,-.1,[BOX,ltypeshp.shx,x=-.1,s=.1],-.1,1
# replacing BOX by shape index 132 (got index from an AutoCAD file),
# ezdxf can't get shape index from ltypeshp.shx
pattern="A,.25,-.1,[132,ltypeshp.shx,x=-.1,s=.1],-.1,1",
description="Grenze eckig ----[]-----[]----[]-----[]----[]--",
length= 1.45, # required for complex line types
})
Complex line types with shapes only work if the associated shape file (e. g. ltypeshp.shx) and the DXF
file are in the same directory or the shape file is placed in one of the CAD application support folders.
Tutorial for Simple DXF Entities
These are basic graphical entities located in an entity space like the modelspace or a block definition
and only support the common graphical attributes.
The entities in the following examples are always placed in the xy-plane of the WCS aka the 2D drawing
space. Some of these entities can only be placed outside the xy-plane in 3D space by utilizing the OCS,
but this feature is beyond the scope of this tutorial, for more information about that go to: Tutorial
for OCS/UCS Usage.
Prelude to all following examples:
import ezdxf
from ezdxf.gfxattribs import GfxAttribs
doc = ezdxf.new()
doc.layers.new("ENTITY", color=1)
msp = doc.modelspace()
attribs = GfxAttribs(layer="ENTITY")
SEE ALSO:
• Tutorial for Creating DXF Drawings
• Tutorial for Layers
• ezdxf.gfxattribs module
Point
The Point entity marks a 3D point in the WCS:
point = msp.add_point((10, 10), dxfattribs=attribs)
All Point entities have the same styling stored in the header variable $PDMODE, for more information read
the reference of class Point.
SEE ALSO:
• Reference of class Point
• Tutorial for Common Graphical Attributes
Line
The Line entity is a 3D line with a start- and an end point in the WCS:
line = msp.add_line((0, 0), (10, 10), dxfattribs=attribs)
SEE ALSO:
• Reference of class Line
• Tutorial for Common Graphical Attributes
• ezdxf.math.ConstructionLine
Circle
The Circle entity is an OCS entity defined by a center point and a radius:
circle = msp.add_circle((10, 10), radius=3, dxfattribs=attribs)
SEE ALSO:
• Reference of class Circle
• Tutorial for Common Graphical Attributes
• ezdxf.math.ConstructionCircle
Arc
The Arc entity is an OCS entity defined by a center point, a radius a start- and an end angle in
degrees:
arc = msp.add_arc((10, 10), radius=3, start_angle=30, end_angle=120, dxfattribs=attribs)
The arc goes always in counter-clockwise orientation around the z-axis more precisely the extrusion
vector of OCS, but this is beyond the scope of this tutorial.
The helper class ezdxf.math.ConstructionArc provides constructors to create arcs from different
scenarios:
• from_2p_angle: arc from 2 points and an angle
• from_2p_radius: arc from 2 points and a radius
• from_3p: arc from 3 points
This example creates an arc from point (10, 0) to point (0, 0) passing the point (5, 3):
from ezdxf.math import ConstructionArc
# -x-x-x- snip -x-x-x-
arc = ConstructionArc.from_3p(
start_point=(10, 0), end_point=(0, 0), def_point=(5, 3)
)
arc.add_to_layout(msp, dxfattribs=attribs)
SEE ALSO:
• Reference of class Arc
• Tutorial for Common Graphical Attributes
• ezdxf.math.ConstructionArc
Ellipse
The Ellipse entity requires DXF R2000 or newer and is a true WCS entity. The ellipse is defined by a
center point, a vector for the major axis, the ratio between major- and minor axis and the start- and end
parameter in radians:
ellipse = msp.add_ellipse(
(10, 10), major_axis=(5, 0), ratio=0.5, start_param=0, end_param=math.pi, dxfattribs=attribs
)
When placed in 3D space the extrusion vector defines the normal vector of the ellipse plane and the minor
axis is the extrusion vector cross the major axis.
SEE ALSO:
• Reference of class Ellipse
• Tutorial for Common Graphical Attributes
• ezdxf.math.ConstructionEllipse
Further Tutorials
• Tutorial for LWPolyline
• Tutorial for Spline
• Tutorial for Text
• Tutorial for MText and MTextEditor
• Tutorial for Hatch
• Tutorial for MultiLeader
• Tutorial for Mesh
Tutorial for Entity Selection
This tutorial shows how to use the ezdxf.select module, which provides functions to select entities based
on various shapes. These selection functions offer a way to filter entities based on their spatial
location.
This is the base document for this tutorial:
[image]
Why Bounding Boxes?
The select module primarily relies on bounding boxes to perform selections. Bounding boxes offer a fast
way to identify potential overlaps between entities and the selection shape. This approach prioritizes
performance over absolute accuracy.
NOTE:
The bounding boxes for text-based entities and entities containing curves are not accurate! For more
information read the docs for the ezdxf.bbox module.
Source of Entities
The source of the selection can be any iterable of DXF entities, like the modelspace, any paperspace
layout or a block layout, also the result of an entity query as an EntityQuery container, or any
collection of DXF entities that implements the __iter__() method.
Selection Shapes
• Window: Defines a rectangular selection area.
• Circle: Selects entities within a circular area.
• Polygon: Selects entities based on the shape of a closed polygon.
Using Selection Functions
These selection functions utilize the selection shapes:
• bbox_inside(): Selects entities whose bounding box lies withing the selection shape.
• bbox_outside(): Selects entities whose bounding box is completely outside the selection shape.
• bbox_overlap(): Selects entities whose bounding box overlaps the selection shape.
Additional selection functions:
• bbox_chained(): Selects entities that are linked together by overlapping bounding boxes.
• bbox_crosses_fence(): Selects entities whose bounding box overlaps an open polyline.
• point_in_bbox(): Selects entities where the selection point lies within the bounding box.
The functions return an EntityQuery object, which provides access to the selected entities. You can
iterate over the EntityQuery to access each selected entity.
Bounding Box Inside Selection
Selects entities which bounding boxes are completely within the selection shape.
Example to select entities inside a window:
[image]
import ezdxf
from ezdxf import select
doc = ezdxf.readfile("base.dxf")
msp 0 doc.modelspace()
window = select.Window((150, 105), (280, 240))
for entity in select.bbox_inside(window, msp):
print(str(entity))
output:
CIRCLE(#9D)
LWPOLYLINE(#9E)
Bounding Box Outside Selection
Selects entities whose bounding box is completely outside the selection shape.
[image]
window = select.Window((185, 105), (245, 240))
for entity in select.bbox_outside(window, msp):
print(str(entity))
output:
TEXT(#9F)
SPLINE(#A0)
LINE(#A1)
Bounding Box Overlap Selection
Selects entities whose bounding box overlaps the selection shape.
This function works similar to the crossing selection in CAD applications, but not exactly the same. The
function selects entities whose bounding boxes overlap the selection shape. This will also select
elements where all of the entity geometry is outside the selection shape, but the bounding box overlaps
the selection shape, e.g. border polylines.
[image]
window = select.Window((150, 105), (280, 240))
for entity in select.bbox_overlap(window, msp):
print(str(entity))
output:
CIRCLE(#9D)
LWPOLYLINE(#9E)
TEXT(#9F)
SPLINE(#A0)
LINE(#A1)
LWPOLYLINE(#A2)
Bounding Box Chained Selection
Selects elements that are directly or indirectly connected to each other by overlapping bounding boxes.
The selection begins at the specified starting element.
[image]
# choose entity for the beginning of the chain:
line = msp.query("LINE").first
for entity in select.bbox_chained(line, msp):
print(str(entity))
output:
LINE(#A1)
CIRCLE(#9D)
LWPOLYLINE(#9E)
SPLINE(#A0)
Bounding Box Crosses Fence
Selects entities whose bounding box intersects an open polyline.
[image]
for entity in select.bbox_crosses_fence([(83, 101), (186, 193), (300, 107)], msp):
print(str(entity))
output:
CIRCLE(#9D)
LWPOLYLINE(#9E)
SPLINE(#A0)
LINE(#A1)
NOTE:
The polyline does not cross the entity geometry itself!
Point In Bounding Box Selection
Selects entities where the selection point lies within the bounding box.
[image]
for entity in select.bbox_point((264, 140), msp):
print(str(entity))
output:
LWPOLYLINE(#9E)
SPLINE(#A0)
Circle Selection
For the circle shape, the selection tests are carried out on the real circlar area.
This example selects all entities around the CIRCLE entity within a 60 unit radius whose bounding box
overlaps the circle selection:
[image]
entity = msp.query("CIRCLE").first
circle = select.Circle(entity.dxf.center, radius=60)
for entity in select.bbox_overlap(circle, msp):
print(str(entity))
output:
CIRCLE(#9D)
LWPOLYLINE(#9E)
TEXT(#9F)
SPLINE(#A0)
Polygon Selection
As for the circle shape, the polygon selection tests are carried out on the real polygon area.
NOTE:
This may not work 100% correctly if the selection polygon has a complex concave shape!
This example selects all entities whose bounding box lies entirely within the selection polygon:
[image]
polygon = select.Polygon([(110, 168), (110, 107), (316, 107), (316, 243), (236, 243)])
for entity in select.bbox_inside(polygon, msp):
print(str(entity))
output:
LWPOLYLINE(#9E)
SPLINE(#A0)
LINE(#A1)
Tutorial for Blocks
If you are not familiar with the concept of blocks, please read this first: Concept of Blocks
Create a Block
Blocks are managed as BlockLayout objects by the BlocksSection object, every drawing has only one blocks
section referenced by attribute Drawing.blocks.
import ezdxf
import random # needed for random placing points
def get_random_point():
"""Returns random x, y coordinates."""
x = random.randint(-100, 100)
y = random.randint(-100, 100)
return x, y
# Create a new drawing in the DXF format of AutoCAD 2010
doc = ezdxf.new('R2010')
# Create a block with the name 'FLAG'
flag = doc.blocks.new(name='FLAG')
# Add DXF entities to the block 'FLAG'.
# The default base point (= insertion point) of the block is (0, 0).
flag.add_lwpolyline([(0, 0), (0, 5), (4, 3), (0, 3)]) # the flag symbol as 2D polyline
flag.add_circle((0, 0), .4, dxfattribs={'color': 2}) # mark the base point with a circle
Block References (Insert)
A block reference can be created by adding an Insert entity to any of these layout types:
• Modelspace
• Paperspace
• BlockLayout
A block reference can be scaled and rotated individually. Lets add some random flags to the modelspace:
# Get the modelspace of the drawing.
msp = doc.modelspace()
# Get 50 random placing points.
placing_points = [get_random_point() for _ in range(50)]
for point in placing_points:
# Every flag has a different scaling and a rotation of -15 deg.
random_scale = 0.5 + random.random() * 2.0
# Add a block reference to the block named 'FLAG' at the coordinates 'point'.
msp.add_blockref('FLAG', point, dxfattribs={
'xscale': random_scale,
'yscale': random_scale,
'rotation': -15
})
# Save the drawing.
doc.saveas("blockref_tutorial.dxf")
Query all block references of block FLAG:
for flag_ref in msp.query('INSERT[name=="FLAG"]'):
print(str(flag_ref))
When adding a block reference to a layout with different units, the scaling factor between these units
should be applied as scaling attributes (xscale, …) e.g. modelspace in meters and block in centimeters,
xscale has to be 0.01.
Block Attributes
A block attribute (Attrib) is a text annotation attached to a block reference with an associated tag.
Attributes are often used to add information to blocks which can be evaluated and exported by CAD
applications. An attribute can be added to a block reference by the Insert.add_attrib() method, the
ATTRIB entity is geometrically not related to the block reference, so insertion point, rotation and
scaling of the attribute have to be calculated by the user, but helper tools for that do exist.
Using Attribute Definitions
Another way to add attributes to block references is using attribute templates (AttDef). First create the
attribute definition in the block definition, then add the block reference by add_blockref() and attach
and fill attributes automatically by the add_auto_attribs() method to the block reference. This method
has the advantage that all attributes are placed relative to the block base point with the same rotation
and scaling as the block reference, but non-uniform scaling is not handled very well.
The add_auto_blockref() method handles non-uniform scaling better by wrapping the block reference and its
attributes into an anonymous block and let the CAD application do the transformation work. This method
has the disadvantage of a more complex evaluation of attached attributes
Using attribute definitions (AttDef templates):
# Define some attributes for the block 'FLAG', placed relative
# to the base point, (0, 0) in this case.
flag.add_attdef('NAME', (0.5, -0.5), dxfattribs={'height': 0.5, 'color': 3})
flag.add_attdef('XPOS', (0.5, -1.0), dxfattribs={'height': 0.25, 'color': 4})
flag.add_attdef('YPOS', (0.5, -1.5), dxfattribs={'height': 0.25, 'color': 4})
# Get another 50 random placing points.
placing_points = [get_random_point() for _ in range(50)]
for number, point in enumerate(placing_points):
# values is a dict with the attribute tag as item-key and
# the attribute text content as item-value.
values = {
'NAME': "P(%d)" % (number + 1),
'XPOS': "x = %.3f" % point[0],
'YPOS': "y = %.3f" % point[1]
}
# Every flag has a different scaling and a rotation of +15 deg.
random_scale = 0.5 + random.random() * 2.0
blockref = msp.add_blockref('FLAG', point, dxfattribs={
'rotation': 15
}).set_scale(random_scale)
blockref.add_auto_attribs(values)
# Save the drawing.
doc.saveas("auto_blockref_tutorial.dxf")
Get/Set Attributes of Existing Block References
See the howto: Get/Set Block Reference Attributes
Evaluate Wrapped Block References
As mentioned above the evaluation of block references wrapped into anonymous blocks is complex:
# Collect all anonymous block references starting with '*U'
anonymous_block_refs = modelspace.query('INSERT[name ? "^\*U.+"]')
# Collect the references of the 'FLAG' block
flag_refs = []
for block_ref in anonymous_block_refs:
# Get the block layout of the anonymous block
block = doc.blocks.get(block_ref.dxf.name)
# Find all block references to 'FLAG' in the anonymous block
flag_refs.extend(block.query('INSERT[name=="FLAG"]'))
# Evaluation example: collect all flag names.
flag_numbers = [
flag.get_attrib_text("NAME")
for flag in flag_refs
if flag.has_attrib("NAME")
]
print(flag_numbers)
Exploding Block References
This is an advanced feature and the results may not be perfect. A non-uniform scaling lead to incorrect
results for text entities (TEXT, MTEXT, ATTRIB) and some other entities like HATCH with circular- or
elliptic path segments. The “exploded” entities are added to the same layout as the block reference by
default.
for flag_ref in msp.query('INSERT[name=="FLAG"]'):
flag_ref.explode()
Examine Entities of Block References
To just examine the content entities of a block reference use the virtual_entities() method. This
methods yields “virtual” entities with properties identical to “exploded” entities but they are not
stored in the entity database, have no handle and are not assigned to any layout.
for flag_ref in msp.query('INSERT[name=="FLAG"]'):
for entity in flag_ref.virtual_entities():
if entity.dxftype() == "LWPOLYLINE":
print(f"Found {str(entity)}.")
Tutorial for LWPolyline
The LWPolyline (lightweight polyline) was introduced in DXF R13/14 and it is defined as a single graphic
entity, which differs from the old-style Polyline entity, which is defined as a group of sub-entities. It
is recommended to prefer the LWPOLYLINE over the 2D POLYLINE entity because it requires less space in
memory and in DXF files and displays faster in AutoCAD.
IMPORTANT:
The LWPOLYLINE is a planar element, therefore the (x, y) point coordinates are located in the OCS and
the z-axis is stored in the LWPolyline.dxf.elevation attribute. The method vertices_in_wcs returns
the polyline vertices as WCS coordinates.
Create a simple polyline:
import ezdxf
doc = ezdxf.new("R2000")
msp = doc.modelspace()
points = [(0, 0), (3, 0), (6, 3), (6, 6)]
msp.add_lwpolyline(points)
doc.saveas("lwpolyline1.dxf")
Append multiple points to a polyline:
doc = ezdxf.readfile("lwpolyline1.dxf")
msp = doc.modelspace()
line = msp.query("LWPOLYLINE").first
if line is not None:
line.append_points([(8, 7), (10, 7)])
doc.saveas("lwpolyline2.dxf")
The index operator [] always returns polyline points as 5-tuple (x, y, start_width, end_width, bulge),
the start_width, end_width and bulge values are 0 if not present:
first_point = line[0]
x, y, start_width, end_width, bulge = first_point
The context manager points() can be used to edit polyline points, this method was introduced because
accessing individual points was very slow in early versions of ezdxf, in current versions of ezdxf the
direct access by the index operator [] is very fast and using the context manager is not required
anymore, but the context manager still exist and has the advantage of supporting an user defined point
format:
doc = ezdxf.readfile("lwpolyline2.dxf")
msp = doc.modelspace()
line = msp.query("LWPOLYLINE").first
with line.points("xyseb") as points:
# points is a standard Python list
# existing points are 5-tuples, but new points can be
# set as (x, y, [start_width, [end_width, [bulge]]]) tuple
# set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).
# delete last 2 points
del points[-2:]
# adding two points
points.extend([(4, 7), (0, 7)])
doc.saveas("lwpolyline3.dxf")
Each line segment can have a different start- and end width, if omitted start- and end width is 0:
doc = ezdxf.new("R2000")
msp = doc.modelspace()
# point format = (x, y, [start_width, [end_width, [bulge]]])
# set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).
points = [(0, 0, .1, .15), (3, 0, .2, .25), (6, 3, .3, .35), (6, 6)]
msp.add_lwpolyline(points)
doc.saveas("lwpolyline4.dxf")
The first point carries the start- and end-width of the first segment, the second point of the second
segment and so on, the start- and end width value of the last point is used for the closing segment if
the polyline is closed else these values are ignored. Start- and end width only works if the DXF
attribute dxf.const_width is unset, delete it to be sure it’s unset:
# no exception will be raised if const_width is already unset:
del line.dxf.const_width
LWPolyline can also have curved elements, they are defined by the Bulge value:
doc = ezdxf.new("R2000")
msp = doc.modelspace()
# point format = (x, y, [start_width, [end_width, [bulge]]])
# set start_width, end_width to 0 to be ignored (x, y, 0, 0, bulge).
points = [(0, 0, 0, .05), (3, 0, .1, .2, -.5), (6, 0, .1, .05), (9, 0)]
msp.add_lwpolyline(points)
doc.saveas("lwpolyline5.dxf")
[image]
The curved segment is drawn from the point which defines the bulge value to the following point, the
curved segment is always an arc. The bulge value defines the ratio of the arc sagitta (segment height h)
to half line segment length (point distance), a bulge value of 1 defines a semicircle. The curve is on
the right side of the line for a bulge value > 0, and on the left side of the line for a bulge value < 0.
Helper functions to handle bulge values: Bulge Related Functions
The user defined point format, default is xyseb:
• x = x coordinate
• y = y coordinate
• s = start width
• e = end width
• b = bulge value
• v = (x, y) as tuple
msp.add_lwpolyline([(0, 0, 0), (10, 0, 1), (20, 0, 0)], format="xyb")
msp.add_lwpolyline([(0, 10, 0), (10, 10, .5), (20, 10, 0)], format="xyb")
[image]
Tutorial for Text
Add a simple one line text entity by factory function add_text().
import ezdxf
from ezdxf.enums import TextEntityAlignment
# The TEXT entity is a DXF primitive and is supported in all DXF versions.
# The argument setup=True creates standard linetypes and text styles in the
# new DXF document.
doc = ezdxf.new("R12", setup=True)
msp = doc.modelspace()
# Use method set_placement() to define the TEXT alignment, because the
# relations between the DXF attributes 'halign', 'valign', 'insert' and
# 'align_point' are tricky.
msp.add_text("A Simple Text").set_placement(
(2, 3),
align=TextEntityAlignment.MIDDLE_RIGHT
)
# Using a predefined text style:
msp.add_text(
"Text Style Example: Liberation Serif",
height=0.35,
dxfattribs={"style": "LiberationSerif"}
).set_placement((2, 6), align=TextEntityAlignment.LEFT)
doc.saveas("simple_text.dxf")
Alignments defined by the enum TextEntityAlignment:
┌────────────┬─────────────┬───────────────┬──────────────┐
│ Vert/Horiz │ Left │ Center │ Right │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Top │ TOP_LEFT │ TOP_CENTER │ TOP_RIGHT │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Middle │ MIDDLE_LEFT │ MIDDLE_CENTER │ MIDDLE_RIGHT │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Bottom │ BOTTOM_LEFT │ BOTTOM_CENTER │ BOTTOM_RIGHT │
├────────────┼─────────────┼───────────────┼──────────────┤
│ Baseline │ LEFT │ CENTER │ RIGHT │
└────────────┴─────────────┴───────────────┴──────────────┘
Special alignments are ALIGNED and FIT, they require a second alignment point, the text is justified with
the vertical alignment Baseline on the virtual line between these two points.
┌───────────┬───────────────────────────────────────┐
│ Alignment │ Description │
├───────────┼───────────────────────────────────────┤
│ ALIGNED │ Text is stretched or compressed to │
│ │ fit exactly between p1 and p2 and the │
│ │ text height is also adjusted to │
│ │ preserve height/width ratio. │
├───────────┼───────────────────────────────────────┤
│ FIT │ Text is stretched or compressed to │
│ │ fit exactly between p1 and p2 but │
│ │ only the text width is adjusted, the │
│ │ text height is fixed by the height │
│ │ attribute. │
├───────────┼───────────────────────────────────────┤
│ MIDDLE │ also a special adjustment, but the │
│ │ result is the same as for │
│ │ MIDDLE_CENTER. │
└───────────┴───────────────────────────────────────┘
Standard Text Styles
Setup some standard text styles and linetypes by argument setup=True:
doc = ezdxf.new('R12', setup=True)
Replaced all proprietary font declarations in setup_styles() (ARIAL, ARIAL_NARROW, ISOCPEUR and TIMES) by
open source fonts, this is also the style name (e.g. {'style': 'OpenSans-Italic'}): [image]
IMPORTANT:
To see the defined text styles in a DXF viewer or CAD application, the applications have to know where
the referenced TTF fonts can be found. This configuration is not possible by ezdxf and has to be done
for each application as described in their documentation.
See also: Font Resources
New Text Style
Creating a new text style is simple:
doc.styles.new("myStandard", dxfattribs={"font" : "OpenSans-Regular.ttf"})
Getting the correct font name is often not that simple, especially on Windows. This shows the required
steps to get the font name for Open Sans:
• open font folder c:\windows\fonts
• select and open the font-family Open Sans
• right-click on Open Sans Standard and select Properties
• on top of the first tab you see the font name: 'OpenSans-Regular.ttf'
The style name has to be unique in the DXF document, otherwise ezdxf will raise an DXFTableEntryError
exception. To replace an existing entry, delete the existing entry by doc.styles.remove(name), and add
the replacement entry.
3D Text
It is possible to place the 2D Text entity into 3D space by using the OCS, for further information see:
Tutorial for OCS/UCS Usage and Tutorial for UCS Based Transformations.
Tutorial for MText and MTextEditor
The MText entity is a multi line entity with extended formatting possibilities and requires at least DXF
version R2000, to use all features (e.g. background fill) DXF R2007 is required.
IMPORTANT:
The rendering result of the MTEXT entity depends on the DXF viewer or CAD application and can differ
between different applications. These differences have the greatest impact on line wrapping, which can
cause columns of text to have different heights in different applications!
In order for the text to look similar in different programs, the formatting should be as simple as
possible or omitted altogether.
Prolog code:
import ezdxf
doc = ezdxf.new("R2007", setup=True)
msp = doc.modelspace()
lorem_ipsum = """
Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.
"""
Adding a MTEXT entity
The MTEXT entity can be added to any layout (modelspace, paperspace or block) by the add_mtext()
function.
# store MTEXT entity for additional manipulations
mtext = msp.add_mtext(lorem_ipsum, dxfattribs={"style": "OpenSans"})
This adds a MTEXT entity with text style “OpenSans”. The MTEXT content can be accessed by the text
attribute, this attribute can be edited like any Python string:
mtext.text += "Append additional text to the MTEXT entity."
# even shorter with __iadd__() support:
mtext += "Append additional text to the MTEXT entity."
[image]
The MText entity has an alias MText.dxf.text for the MText.text attribute for compatibility to the Text
entity.
IMPORTANT:
Line endings “\n” will be replaced by the MTEXT line endings “\P” at DXF export, but not vice versa
“\P” by “\n” at DXF file loading.
Text placement
The location of the MTEXT entity is defined by the MText.dxf.insert and the MText.dxf.attachment_point
attributes in WCS coordinates. The attachment_point defines the text alignment relative to the insert
location, default value is 1.
Attachment point constants defined in ezdxf.lldxf.const:
┌────────────────────────────┬───────┐
│ MText.dxf.attachment_point │ Value │
├────────────────────────────┼───────┤
│ MTEXT_TOP_LEFT │ 1 │
├────────────────────────────┼───────┤
│ MTEXT_TOP_CENTER │ 2 │
├────────────────────────────┼───────┤
│ MTEXT_TOP_RIGHT │ 3 │
├────────────────────────────┼───────┤
│ MTEXT_MIDDLE_LEFT │ 4 │
├────────────────────────────┼───────┤
│ MTEXT_MIDDLE_CENTER │ 5 │
├────────────────────────────┼───────┤
│ MTEXT_MIDDLE_RIGHT │ 6 │
├────────────────────────────┼───────┤
│ MTEXT_BOTTOM_LEFT │ 7 │
├────────────────────────────┼───────┤
│ MTEXT_BOTTOM_CENTER │ 8 │
├────────────────────────────┼───────┤
│ MTEXT_BOTTOM_RIGHT │ 9 │
└────────────────────────────┴───────┘
The MTEXT entity has a method for setting insert, attachment_point and rotation attributes by one call:
set_location()
Character height
The character height is defined by the DXF attribute MText.dxf.char_height in drawing units, which has
also consequences for the line spacing of the MTEXT entity:
mtext.dxf.char_height = 0.5
The character height can be changed inline, see also MTEXT formatting and MText Inline Codes.
Text rotation (direction)
The MText.dxf.rotation attribute defines the text rotation as angle between the x-axis and the horizontal
direction of the text in degrees. The MText.dxf.text_direction attribute defines the horizontal
direction of MTEXT as vector in WCS. Both attributes can be present at the same entity, in this case the
MText.dxf.text_direction attribute has the higher priority.
The MTEXT entity has two methods to get/set rotation: get_rotation() returns the rotation angle in
degrees independent from definition as angle or direction, and set_rotation() set the rotation attribute
and removes the text_direction attribute if present.
Defining a wrapping border
The wrapping border limits the text width and forces a line break for text beyond this border. Without
attribute dxf.width (or setting 0) the lines are wrapped only at the regular line endings “ \P” or “\n”,
setting the reference column width forces additional line wrappings at the given width. The text height
can not be limited, the text always occupies as much space as needed.
mtext.dxf.width = 60
[image]
MTEXT formatting
MTEXT supports inline formatting by special codes: MText Inline Codes
mtext.text = "{\\C1;red text} - {\\C3;green text} - {\\C5;blue text}"
[image]
See also the support class MTextEditor.
Stacked text
MTEXT supports stacked text:
# the space ' ' in front of 'Lower' and the ';' behind 'Lower' are necessary
# combined with vertical center alignment
mtext.text = "\\A1;\\SUpper^ Lower; - \\SUpper/ Lower;} - \\SUpper# Lower;"
[image]
See also the support class MTextEditor.
Background color (filling)
The MTEXT entity can have a background filling:
• AutoCAD Color Index (ACI)
• true color value as (r, g, b) tuple
• color name as string, use special name 'canvas' to use the canvas background color
Because of the complex dependencies ezdxf provides a method to set all required DXF attributes at once:
mtext.set_bg_color(2, scale=1.5)
The parameter scale determines how much border there is around the text, the value is based on the text
height, and should be in the range of 1 - 5, where 1 fits exact the MTEXT entity. [image]
MTextEditor
WARNING:
The MTextEditor assembles just the inline code, which has to be parsed and rendered by the target CAD
application, ezdxf has no influence to that result.
Keep inline formatting as simple as possible, don’t test the limits of its capabilities, this will not
work across different CAD applications and keep the formatting in a logic manner like, do not change
paragraph properties in the middle of a paragraph.
There is no official documentation for the inline codes!
The MTextEditor class provides a floating interface to build MText content in an easy way.
This example only shows the connection between MText and the MTextEditor, and shows no additional
features to the first example of this tutorial:
Init Editor
import ezdxf
from ezdxf.tools.text import MTextEditor
doc = ezdxf.new("R2007", setup=True)
msp = doc.modelspace()
lorem_ipsum = """
Lorem ipsum dolor sit amet, consectetur adipiscing elit, ... see prolog code
"""
# create a new editor object with an initial text:
editor = MTextEditor(lorem_ipsum)
# get the MTEXT content string from the editor by the str() function:
mtext = msp.add_mtext(str(editor), dxfattribs={"style": "OpenSans"})
Tutorial Prolog:
# use constants defined in MTextEditor:
NP = MTextEditor.NEW_PARAGRAPH
ATTRIBS = {
"char_height": 0.7,
"style": "OpenSans",
"width": 10,
}
editor = MTextEditor("using colors:" + NP)
Set Text Color
There are three ways to change the color inline:
• by color name “red”, “green”, “blue”, “yellow”, “cyan”, “magenta”, “white”
• by AutoCAD Color Index (ACI)
• by RGB values
# RED: set color by name - red, green, blue, yellow, cyan, magenta, white
editor.color("red").append("RED" + NP)
# RED: the color stays the same until the next change
editor.append("also RED" + NP)
# GREEN: change color by ACI (AutoCAD Color Index)
editor.aci(3).append("GREEN" + NP)
# BLUE: change color by RGB tuples
editor.rgb((0, 0, 255)).append("BLUE" + NP)
# add the MTEXT entity to the model space:
msp.add_mtext(str(editor), attribs)
[image]
Changing Text Height
The MtextEditor.height() method set the text height as absolute value in drawing units (text height = cap
height):
attribs = dict(ATTRIBS)
attribs["width"] = 40.0
editor = MTextEditor("changing text height absolute: default height is 0.7" + NP)
# doubling the default height = 1.4
editor.height(1.4)
editor.append("text height: 1.4" + NP)
editor.height(3.5).append("text height: 3.5" + NP)
editor.height(0.7).append("back to default height: 0.7" + NP)
msp.add_mtext(str(editor), attribs)
[image]
The MtextEditor.scale_height() method set the text height by a relative factor, the MtextEditor object
does not keep track of current text height, you have to do this by yourself. The initial text height is
MText.dxf.char_height:
attribs = dict(ATTRIBS)
attribs["width"] = 40.0
editor = MTextEditor("changing text height relative: default height is 0.7" + NP)
# this is the default text height in the beginning:
current_height = attribs["char_height"]
# The text height can only be changed by a factor:
editor.scale_height(2) # scale by 2 = 1.4
# keep track of the actual height:
current_height *= 2
editor.append("text height: 1.4" + NP)
# to set an absolute height, calculate the required factor:
desired_height = 3.5
factor = desired_height / current_height
editor.scale_height(factor).append("text height: 3.5" + NP)
current_height = desired_height
# and back to 0.7
editor.scale_height(0.7 / current_height).append("back to default height: 0.7" + NP)
msp.add_mtext(str(editor), attribs).set_location(insert=location)
Changing Font
The font name for changing MText fonts inline is the font family name! The font family name is the name
shown in font selection widgets in desktop applications: “Arial”, “Times New Roman”, “Comic Sans MS”.
The font has to be installed at the target system, else then CAD default font will be used, in
AutoCAD/BricsCAD is this the font defined for the text style “Standard”.
IMPORTANT:
The DXF/DWG format is not optimal for preserving text layouts across multiple systems, and it’s
getting really bad across different CAD applications.
attribs = dict(ATTRIBS)
attribs["width"] = 15.0
editor = MTextEditor("changing fonts:" + NP)
editor.append("Default: Hello World!" + NP)
editor.append("SimSun: ")
# change font in a group to revert back to the default font at the end:
simsun_editor = MTextEditor().font("SimSun").append("你好,世界" + NP)
# reverts the font back at the end of the group:
editor.group(str(simsun_editor))
# back to default font OpenSans:
editor.append("Times New Roman: ")
# change font outside of a group until next font change:
editor.font("Times New Roman").append("Привет мир!" + NP)
# If the font does not exist, a replacement font will be used:
editor.font("Does not exist").append("This is the replacement font!")
msp.add_mtext(str(editor), attribs)
[image]
Set Paragraph Properties
The paragraph properties are set by the paragraph() method and a ParagraphProperties object, which
bundles all paragraph properties in a named tuple.
Each paragraph can have its own properties for:
• indentation arguments:
• indent is the left indentation of the first line
• left is the left side indentation of the paragraph
• right is the right side indentation of the paragraph
• text adjustment: align, by enum MTextParagraphAlignment
• MTextParagraphAlignment.LEFT
• MTextParagraphAlignment.RIGHT
• MTextParagraphAlignment.CENTER
• MTextParagraphAlignment.JUSTIFIED
• MTextParagraphAlignment.DISTRIBUTED
• tabulator stops: tab_stops, a tuple of tabulator stops
Indentation and tabulator stops are multiples of the default MText text height stored in
MText.dxf.char_height. Calculate the drawing units for indentation and tabulator stops, by multiplying
the indentation value by the char_height value.
Mtext paragraphs are separated by new paragraph “\P” characters.
# import support classes:
from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment
attribs = dict(ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor("Indent the first line:" + NP)
props = ParagraphProperties(
indent=1, # indent first line = 1x0.25 drawing units
align=MTextParagraphAlignment.JUSTIFIED
)
editor.paragraph(props)
editor.append(lorem_ipsum)
msp.add_mtext(str(editor), attribs)
[image]
The first line indentation “indent” is relative to the “left” indentation.
# import support classes:
from ezdxf.tools.text import ParagraphProperties, MTextParagraphAlignment
attribs = dict(ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor("Indent left paragraph side:" + NP)
indent = 0.7 # 0.7 * 0.25 = 0.175 drawing units
props = ParagraphProperties(
# first line indentation is relative to "left", this reverses the
# left indentation:
indent=-indent, # first line
# indent left paragraph side:
left=indent,
align=MTextParagraphAlignment.JUSTIFIED
)
editor.paragraph(props)
editor.append(" ".join(lorem_ipsum(100)))
msp.add_mtext(str(editor), attribs).set_location(insert=location)
[image]
Bullet List
There are no special commands to build bullet list, the list is build of indentation and a tabulator
stop. Each list item needs a marker as an arbitrary string. For more information about paragraph
indentation and tabulator stops see also chapter Set Paragraph Properties.
attribs = dict(ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
bullet = "•" # alt + numpad 7
editor = MTextEditor("Bullet List:" + NP)
editor.bullet_list(
indent=1,
bullets=[bullet] * 3, # each list item needs a marker
content=[
"First item",
"Second item",
" ".join(lorem_ipsum(30)),
])
msp.add_mtext(str(editor), attribs)
[image]
Numbered List
There are no special commands to build numbered list, the list is build of indentation and a tabulator
stop. There is no automatic numbering, but therefore the absolute freedom for using any string as list
marker. For more information about paragraph indentation and tabulator stops see also chapter Set
Paragraph Properties.
attribs = dict(ATTRIBS)
attribs["char_height"] = 0.25
attribs["width"] = 7.5
editor = MTextEditor("Numbered List:" + NP)
editor.bullet_list(
indent=1,
bullets=["1.", "2.", "3."],
content=[
"First item",
"Second item",
" ".join(lorem_ipsum(30)),
])
msp.add_mtext(str(editor), attribs)
[image]
Stacked Text
MText supports stacked text (fractions) as a single inline code, which means it is not possible to change
any property inside the fraction. This example shows a fraction with scaled down text height, placed in
a group to revert the text height afterwards:
editor = MTextEditor("Stacked text:" + NP)
stack = MTextEditor().scale_height(0.6).stack("1", "2", "^")
editor.append("over: ").group(str(stack)).append(NP)
stack = MTextEditor().scale_height(0.6).stack("1", "2", "/")
editor.append("fraction: ").group(str(stack)).append(NP)
stack = MTextEditor().scale_height(0.6).stack("1", "2", "#")
editor.append("slanted: ").group(str(stack)).append(NP)
# Additional formatting in numerator and denominator is not supported
# by AutoCAD or BricsCAD, switching the color inside the stacked text
# to red does not work:
numerator = MTextEditor().color("red").append("1")
stack = MTextEditor().scale_height(0.6).stack(str(numerator), "2", "#")
editor.append("color red: ").group(str(stack)).append(NP)
msp.add_mtext(str(editor), attribs)
[image]
SEE ALSO:
• MTextEditor example code on github.
• Documentation of MTextEditor
Tutorial for Spline
Background information about B-spline at Wikipedia.
Splines from fit points
Splines can be defined by fit points only, this means the curve passes all given fit points. AutoCAD and
BricsCAD generates required control points and knot values by itself, if only fit points are present.
Create a simple spline:
doc = ezdxf.new("R2000")
fit_points = [(0, 0, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)]
msp = doc.modelspace()
spline = msp.add_spline(fit_points)
[image]
Append a fit point to a spline:
# fit_points, control_points, knots and weights are list-like containers:
spline.fit_points.append((2250, 2500, 0))
[image]
You can set additional control points, but if they do not fit the auto-generated AutoCAD values, they
will be ignored and don’t mess around with knot values.
doc = ezdxf.readfile("AutoCAD_generated.dxf")
msp = doc.modelspace()
spline = msp.query("SPLINE").first
# fit_points, control_points, knots and weights are list-like objects:
spline.fit_points.append((2250, 2500, 0))
As far as I have tested, this approach works without complaints from AutoCAD, but for the case of
problems remove invalid data from the SPLINE entity:
# current control points do not match spline defined by fit points
spline.control_points = []
# count of knots is not correct:
# count of knots = count of control points + degree + 1
spline.knots = []
# same for weights, count of weights == count of control points
spline.weights = []
Splines by control points
Creating splines from fit points is the easiest way, but this method is also the least accurate, because
a spline is defined by control points and knot values, which are generated for the case of a definition
by fit points, and the worst fact is that for every given set of fit points exist an infinite number of
possible splines as solution.
To ensure the same spline geometry for all CAD applications, the spline has to be defined by control
points. The method add_spline_control_frame() adds a spline passing the given fit points by calculating
the control points by the Global Curve Interpolation algorithm. There is also a low level function
ezdxf.math.global_bspline_interpolation() which calculates the control points from fit points.
msp.add_spline_control_frame(fit_points, method='uniform', dxfattribs={'color': 1})
msp.add_spline_control_frame(fit_points, method='chord', dxfattribs={'color': 3})
msp.add_spline_control_frame(fit_points, method='centripetal', dxfattribs={'color': 5})
• black curve: AutoCAD/BricsCAD spline generated from fit points
• red curve: spline curve interpolation, “uniform” method
• green curve: spline curve interpolation, “chord” method
• blue curve: spline curve interpolation, “centripetal” method
[image]
Since ezdxf v1.1 the method add_cad_spline_control_frame() calculates the same control points from fit
points as AutoCAD and BricsCAD.
Open Spline
Add and open (clamped) spline defined by control points with the method add_open_spline(). If no knot
values are given, an open uniform knot vector will be generated. A clamped B-spline starts at the first
control point and ends at the last control point.
control_points = [(0, 0, 0), (1250, 1560, 0), (3130, 610, 0), (2250, 1250, 0)]
msp.add_open_spline(control_points)
[image]
Rational Spline
Rational B-splines have a weight for every control point, which can raise or lower the influence of the
control point, default weight = 1, to lower the influence set a weight < 1 to raise the influence set a
weight > 1. The count of weights has to be always equal to the count of control points.
Example to raise the influence of the first control point:
msp.add_rational_spline(control_points, weights=[3, 1, 1, 1])
[image]
Spline Tangents
The tangents of a spline are the directions of the first derivative of the curve:
# additional required imports:
from ezdxf.math import Vec3, estimate_tangents
import numpy as np
# snip -x-x-x-
fit_points = Vec3.list(
[
(0, 0, 0),
(1000, 600, 0),
(1500, 1200, 0),
(500, 1250, 0),
(0, 0, 0),
]
)
spline = msp.add_spline(fit_points)
# draw the curve tangents as red lines:
ct = spline.construction_tool()
for t in np.linspace(0, ct.max_t, 30):
point, derivative = ct.derivative(t, 1)
msp.add_line(point, point + derivative.normalize(200), dxfattribs={"color": 1})
[image]
To get a smooth closed curve the start- and end tangents have to be set manually when the control points
are calculated and they have to point in the same direction:
t0= Vec3(1, -1, 0) # the length (magnitude) of the tangent is not relevant!
spline = msp.add_cad_spline_control_frame(fit_points, tangents=[t0, t0])
[image]
To avoid guess work the function ezdxf.math.estimate_tangents() can be used to estimate the start- and
end tangents of the curve:
tangents = estimate_tangents(fit_points)
# linear interpolation of the first and the last tangent:
t0 = tangents[0].lerp(tangents[-1], 0.5)
msp.add_cad_spline_control_frame(fit_points, tangents=[t0, t0])
[image]
It is also possible to add the SPLINE by fit-points and setting the tangents as DXF attributes:
spline = msp.add_spline(fit_points)
spline.dxf.flags = spline.PERIODIC | spline.CLOSED
spline.dxf.start_tangent = t0
spline.dxf.end_tangent = t0
Spline properties
Check if spline is a closed curve or close/open spline, for a closed spline the last point is connected
to the first point:
if spline.closed:
# this spline is closed
pass
# close spline
spline.closed = True
# open spline
spline.closed = False
Set start- and end tangent for splines defined by fit points:
spline.dxf.start_tangent = (0, 1, 0)
spline.dxf.end_tangent = (0, 1, 0)
Get data count as stored in DXF attributes:
count = spline.dxf.n_fit_points
count = spline.dxf.n_control_points
count = spline.dxf.n_knots
Get data count from existing data:
count = spline.fit_point_count
count = spline.control_point_count
count = spline.knot_count
Tutorial for Polyface
The Polyface entity represents a 3D mesh build of vertices and faces and is just an extended POLYLINE
entity with a complex VERTEX structure. The Polyface entity was used in DXF R12 and older DXF versions
and is still supported by newer DXF versions. The new Mesh entity stores the same data much more
efficient but requires DXF R2000 or newer. The Polyface entity supports only triangles and quadrilaterals
as faces, the Mesh entity supports also n-gons.
Its recommended to use the MeshBuilder objects to create 3D meshes and render them as POLYFACE entities
by the render_polymesh() method into a layout:
import ezdxf
from ezdxf import colors
from ezdxf.gfxattribs import GfxAttribs
from ezdxf.render import forms
cube = forms.cube().scale_uniform(10).subdivide(2)
red = GfxAttribs(color=colors.RED)
green = GfxAttribs(color=colors.GREEN)
blue = GfxAttribs(color=colors.BLUE)
doc = ezdxf.new()
msp = doc.modelspace()
# render as MESH entity
cube.render_mesh(msp, dxfattribs=red)
cube.translate(20)
# render as POLYFACE a.k.a. POLYLINE entity
cube.render_polyface(msp, dxfattribs=green)
cube.translate(20)
# render as a bunch of 3DFACE entities
cube.render_3dfaces(msp, dxfattribs=blue)
doc.saveas("meshes.dxf")
[image]
WARNING:
If the mesh contains n-gons the render methods for POLYFACE and 3DFACES subdivides the n-gons into
triangles, which does not work for concave faces.
The usage of the MeshBuilder object is also recommended for inspecting Polyface entities:
• MeshBuilder.vertices is a sequence of 3D points as ezdxf.math.Vec3 objects
• a face in MeshBuilder.faces is a sequence of indices into the MeshBuilder.vertices sequence
import ezdxf
from ezdxf.render import MeshBuilder
def process(mesh):
# vertices is a sequence of 3D points
vertices = mses.vertices
# a face is a sequence of indices into the vertices sequence
faces = mesh.faces
...
doc = ezdxf.readfile("meshes.dxf")
msp = doc.modelspace()
for polyline in msp.query("POLYLINE"):
if polyline.is_poly_face_mesh:
mesh = MeshBuilder.from_polyface(polyline)
process(mesh)
SEE ALSO:
Tutorial for Mesh
Tutorial for Mesh
The Mesh entity is a 3D object in WCS build up from vertices and faces.
Create a cube mesh by directly accessing the base data structures:
import ezdxf
# 8 corner vertices
cube_vertices = [
(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),
]
# 6 cube faces
cube_faces = [
[0, 1, 2, 3],
[4, 5, 6, 7],
[0, 1, 5, 4],
[1, 2, 6, 5],
[3, 2, 6, 7],
[0, 3, 7, 4]
]
# MESH requires DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()
mesh = msp.add_mesh()
# do not subdivide cube, 0 is the default value
mesh.dxf.subdivision_levels = 0
with mesh.edit_data() as mesh_data:
mesh_data.vertices = cube_vertices
mesh_data.faces = cube_faces
doc.saveas("cube_mesh_1.dxf")
Create a cube mesh by assembling single faces using the edit_data() context manager of the Mesh class and
the helper class MeshData:
import ezdxf
# 8 corner vertices
p = [
(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),
]
# MESH requires DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()
mesh = msp.add_mesh()
with mesh.edit_data() as mesh_data:
mesh_data.add_face([p[0], p[1], p[2], p[3]])
mesh_data.add_face([p[4], p[5], p[6], p[7]])
mesh_data.add_face([p[0], p[1], p[5], p[4]])
mesh_data.add_face([p[1], p[2], p[6], p[5]])
mesh_data.add_face([p[3], p[2], p[6], p[7]])
mesh_data.add_face([p[0], p[3], p[7], p[4]])
# optional call optimize(): minimizes the vertex count
mesh_data.optimize()
doc.saveas("cube_mesh_2.dxf")
Its recommended to use the MeshBuilder objects to create 3D meshes and render them as MESH entities by
the render_mesh() method into a layout:
import ezdxf
from ezdxf import colors
from ezdxf.gfxattribs import GfxAttribs
from ezdxf.render import forms
cube = forms.cube().scale_uniform(10).subdivide(2)
red = GfxAttribs(color=colors.RED)
green = GfxAttribs(color=colors.GREEN)
blue = GfxAttribs(color=colors.BLUE)
doc = ezdxf.new()
msp = doc.modelspace()
# render as MESH entity
cube.render_mesh(msp, dxfattribs=red)
cube.translate(20)
# render as POLYFACE a.k.a. POLYLINE entity
cube.render_polyface(msp, dxfattribs=green)
cube.translate(20)
# render as a bunch of 3DFACE entities
cube.render_3dfaces(msp, dxfattribs=blue)
doc.saveas("meshes.dxf")
[image]
There exist some tools to manage meshes:
• ezdxf.render.MeshBuilder: The MeshBuilder classes are helper tools to manage meshes buildup by vertices
and faces.
• ezdxf.render.MeshTransformer: Same functionality as MeshBuilder but supports inplace transformation.
• ezdxf.render.MeshDiagnose: A diagnose tool which can be used to analyze and detect errors of
MeshBuilder objects like topology errors for closed surfaces.
• ezdxf.render.FaceOrientationDetector: A helper class for face orientation and face normal vector
detection
The ezdxf.render.forms module provides function to create basic geometries like cube, cone, sphere and so
on and functions to create meshes from profiles by extrusion, rotation or sweeping.
This example shows how to sweep a gear profile along a helix:
import ezdxf
from ezdxf.render import forms
doc = ezdxf.new()
doc.layers.add("MESH", color=ezdxf.colors.YELLOW)
msp = doc.modelspace()
# sweeping a gear-profile
gear = forms.gear(
8, top_width=0.01, bottom_width=0.02, height=0.02, outside_radius=0.1
)
helix = path.helix(radius=2, pitch=1, turns=6)
# along a helix spine
sweeping_path = helix.flattening(0.1)
mesh = forms.sweep(gear, sweeping_path, close=True, caps=True)
# and render as MESH entity
mesh.render_mesh(msp, dxfattribs={"layer": "MESH"})
doc.saveas("gear_along_helix.dxf")
[image]
Tutorial for Hatch
Create hatches with one boundary path
The simplest form of the Hatch entity has one polyline path with only straight lines as boundary path:
import ezdxf
# hatch requires DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()
# by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)
# every boundary path is a 2D element
# vertex format for the polyline path is: (x, y[, bulge])
# there are no bulge values in this example
hatch.paths.add_polyline_path(
[(0, 0), (10, 0), (10, 10), (0, 10)], is_closed=True
)
doc.saveas("solid_hatch_polyline_path.dxf")
But like all polyline entities the polyline path can also have bulge values:
import ezdxf
# hatch requires the DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()
# by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)
# every boundary path is a 2D element
# vertex format for the polyline path is: (x, y[, bulge])
# bulge value 1 = an arc with diameter=10 (= distance to next vertex * bulge value)
# bulge value > 0 ... arc is right of line
# bulge value < 0 ... arc is left of line
hatch.paths.add_polyline_path(
[(0, 0, 1), (10, 0), (10, 10, -0.5), (0, 10)], is_closed=True
)
doc.saveas("solid_hatch_polyline_path_with_bulge.dxf")
The most flexible way to define a boundary path is the edge path. An edge path can have multiple edges
and each edge can be one of the following elements:
• line EdgePath.add_line()
• arc EdgePath.add_arc()
• ellipse EdgePath.add_ellipse()
• spline EdgePath.add_spline()
Create a solid hatch with an edge path (ellipse) as boundary path:
import ezdxf
# hatch requires the DXF R2000 or later
doc = ezdxf.new("R2000")
msp = doc.modelspace()
# important: major axis >= minor axis (ratio <= 1.)
# minor axis length = major axis length * ratio
msp.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)
# by default a solid fill hatch with fill color=7 (white/black)
hatch = msp.add_hatch(color=2)
# every boundary path is a 2D element
edge_path = hatch.paths.add_edge_path()
# each edge path can contain line, arc, ellipse and spline elements
# important: major axis >= minor axis (ratio <= 1.)
edge_path.add_ellipse((0, 0), major_axis=(0, 10), ratio=0.5)
doc.saveas("solid_hatch_ellipse.dxf")
Create hatches with multiple boundary paths (islands)
The DXF attribute hatch_style defines the island detection style:
┌───┬───────────────────────────────────────┐
│ 0 │ nested - altering filled and unfilled │
│ │ areas │
├───┼───────────────────────────────────────┤
│ 1 │ outer - area between external and │
│ │ outermost path is filled │
├───┼───────────────────────────────────────┤
│ 2 │ ignore - external path is filled │
└───┴───────────────────────────────────────┘
hatch = msp.add_hatch(
color=1,
dxfattribs={
"hatch_style": ezdxf.const.HATCH_STYLE_NESTED,
# 0 = nested: ezdxf.const.HATCH_STYLE_NESTED
# 1 = outer: ezdxf.const.HATCH_STYLE_OUTERMOST
# 2 = ignore: ezdxf.const.HATCH_STYLE_IGNORE
},
)
# The first path has to set flag: 1 = external
# flag const.BOUNDARY_PATH_POLYLINE is added (OR) automatically
hatch.paths.add_polyline_path(
[(0, 0), (10, 0), (10, 10), (0, 10)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,
)
This is also the result for all 4 paths and hatch_style set to 2 (ignore). [image]
# The second path has to set flag: 16 = outermost
hatch.paths.add_polyline_path(
[(1, 1), (9, 1), (9, 9), (1, 9)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST,
)
This is also the result for all 4 paths and hatch_style set to 1 (outer). [image]
# The third path has to set flag: 0 = default
hatch.paths.add_polyline_path(
[(2, 2), (8, 2), (8, 8), (2, 8)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_DEFAULT,
)
[image]
# The forth path has to set flag: 0 = default, and so on
hatch.paths.add_polyline_path(
[(3, 3), (7, 3), (7, 7), (3, 7)],
is_closed=True,
flags=ezdxf.const.BOUNDARY_PATH_DEFAULT,
)
doc.saveas(OUTDIR / "solid_hatch_islands_04.dxf")
[image]
The expected result of combinations of various hatch_style values and paths flags, or the handling of
overlapping paths is not documented by the DXF reference, so don’t ask me, ask Autodesk or just try it by
yourself and post your experience in the forum.
Example for Edge Path Boundary
hatch = msp.add_hatch(color=1)
# 1. polyline path
hatch.paths.add_polyline_path(
[
(240, 210, 0),
(0, 210, 0),
(0, 0, 0.0),
(240, 0, 0),
],
is_closed=1,
flags=ezdxf.const.BOUNDARY_PATH_EXTERNAL,
)
# 2. edge path
edge_path = hatch.paths.add_edge_path(flags=ezdxf.const.BOUNDARY_PATH_OUTERMOST)
edge_path.add_spline(
control_points=[
(126.658105895725, 177.0823706957212),
(141.5497003747484, 187.8907860433995),
(205.8997365206943, 154.7946313459515),
(113.0168862297068, 117.8189380884978),
(202.9816918983783, 63.17222935389572),
(157.363511042264, 26.4621294342132),
(144.8204003260554, 28.4383294369643),
],
knot_values=[
0.0,
0.0,
0.0,
0.0,
55.20174685732758,
98.33239645153571,
175.1126541251052,
213.2061566683142,
213.2061566683142,
213.2061566683142,
213.2061566683142,
],
)
edge_path.add_arc(
center=(152.6378550678883, 128.3209356351659),
radius=100.1880612627354,
start_angle=94.4752130054052,
end_angle=177.1345242028005,
)
edge_path.add_line(
(52.57506282464041, 123.3124200796114),
(126.658105895725, 177.0823706957212),
)
[image]
Associative Boundary Paths
A HATCH entity can be associative to a base geometry, which means if the base geometry is edited in a CAD
application the HATCH get the same modification. Because ezdxf is not a CAD application, this
association is not maintained nor verified by ezdxf, so if you modify the base geometry afterwards the
geometry of the boundary path is not updated and no verification is done to check if the associated
geometry matches the boundary path, this opens many possibilities to create invalid DXF files: USE WITH
CARE.
This example associates a LWPOLYLINE entity to the hatch created from the LWPOLYLINE vertices:
# Create base geometry
lwpolyline = msp.add_lwpolyline(
[(0, 0, 0), (10, 0, 0.5), (10, 10, 0), (0, 10, 0)],
format="xyb",
close=True,
)
hatch = msp.add_hatch(color=1)
path = hatch.paths.add_polyline_path(
# get path vertices from associated LWPOLYLINE entity
lwpolyline.get_points(format="xyb"),
# get closed state also from associated LWPOLYLINE entity
is_closed=lwpolyline.closed,
)
# Set association between boundary path and LWPOLYLINE
hatch.associate(path, [lwpolyline])
An EdgePath needs associations to all geometry entities forming the boundary path.
Predefined Hatch Pattern
Use predefined hatch pattern by name:
hatch.set_pattern_fill("ANSI31", scale=0.5)
[image]
Load Hatch Patterns From File
CAD applications store the hatch patterns in pattern files with the file extension .pat. The following
script shows how to load and use these pattern files:
from ezdxf.tools import pattern
EXAMPLE = """; a pattern file
*SOLID, Solid fill
45, 0,0, 0,.125
*ANSI31, ANSI Iron, Brick, Stone masonry
45, 0,0, 0,.125
*ANSI32, ANSI Steel
45, 0,0, 0,.375
45, .176776695,0, 0,.375
*ANSI33, ANSI Bronze, Brass, Copper
45, 0,0, 0,.25
45, .176776695,0, 0,.25, .125,-.0625
*ANSI34, ANSI Plastic, Rubber
45, 0,0, 0,.75
45, .176776695,0, 0,.75
45, .353553391,0, 0,.75
45, .530330086,0, 0,.75
"""
hatch = msp.add_hatch()
# load your pattern file from the file system as string:
# with open("pattern_file.pat", "rt") as fp:
# EXAMPLE = fp.read()
patterns = pattern.parse(EXAMPLE)
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0, # the overall rotation of the pattern in degrees
scale=1.0, # overall scaling of the pattern
style=0, # normal hatching style
pattern_type=0, # user-defined
# pattern name without the preceding asterisk
definition=patterns["ANSI34"],
)
points = [(0, 0), (10, 0), (10, 10), (0, 10)]
hatch.paths.add_polyline_path(points)
msp.add_lwpolyline(points, close=True, dxfattribs={"color": 1})
SEE ALSO:
Tutorial for Hatch Pattern Definition
Tutorial for Hatch Pattern Definition
A hatch pattern consist of one or more hatch lines. A hatch line defines a set of lines which have the
same orientation an the same line pattern. All the lines defined by a hatch line are parallel and have a
constant distance to each other. The origin defines the start point of the hatch line and also the
starting point of the line pattern. The direction defines the angle between the WCS x-axis and the hatch
line. The offset is a 2D vector which will be added consecutively the the origin for each new hatch line.
The line pattern has the same format as as the simple linetype pattern (Tutorial for Creating Linetype
Pattern).
IMPORTANT:
The hatch pattern must be defined for a hatch scaling factor of 1.0 and a hatch rotation angle of 0
degrees!
The first example creates a simple pattern of horizontal solid lines with a vertical distance of 0.5
drawing units.
import ezdxf
doc = ezdxf.new("R2010")
msp = doc.modelspace()
hatch = msp.add_hatch()
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
# pattern definition as list of:
# [angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
# line pattern is a solid line
definition=[[0, (0, 0), (0, 0.5), []]],
)
points = [(0, 0), (10, 0), (10, 10), (0, 10)]
hatch.paths.add_polyline_path(points)
msp.add_lwpolyline(points, close=True, dxfattribs={"color": 1})
doc.saveas("user_defined_hatch_pattern.dxf")
[image]
The next example shows how the offset value works:
# -x-x-x- snip -x-x-x-
hatch = msp.add_hatch()
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
# the line pattern is a dashed line: - - - -
# the offset is 1 unit vertical and 0.3 units horizontal
# [angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
definition=[[0, (0, 0), (0.3, 1), [1, -1]]],
)
# -x-x-x- snip -x-x-x-
[image]
The next example combines two parallel hatch lines, the origin defines how the hatch lines are offset
from each other:
# -x-x-x- snip -x-x-x-
hatch = msp.add_hatch()
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
# [angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
definition=[
[0, (0, 0), (0.3, 1), [1, -1]], # dashed line
[0, (0, 0.5), (0, 1), []], # solid line
],
)
# -x-x-x- snip -x-x-x-
[image]
The next example combines two hatch lines with different angles. The origins can be the same for this
example. The Vec2 class is used to calculate the offset value for a normal distance of 0.7 drawing units
between the slanted lines:
from ezdxf.math import Vec2
# -x-x-x- snip -x-x-x-
hatch = msp.add_hatch()
# offset vector for a normal distance of 0.7 for a 45 deg slanted hatch line
offset = Vec2.from_deg_angle(45 + 90, length=0.7)
hatch.set_pattern_fill(
"MyPattern",
color=7,
angle=0,
scale=1.0,
style=0, # normal hatching style
pattern_type=0, # user-defined
# [angle in degree, origin as 2d vector, offset as 2d vector, line pattern]
definition=[
[0, (0, 0), (0, 1), [1, -1]], # horizontal dashed line
[45, (0, 0), offset, []], # slanted solid line
],
)
# -x-x-x- snip -x-x-x-
[image]
Tutorial for Image and ImageDef
This example shows how to use a raster image in a DXF document. Each IMAGE entity requires an associated
IMAGEDEF entity in the objects section, which stores the filename of the linked image and the size in
pixels. Multiple IMAGE entities can share the same IMAGEDEF entity.
IMPORTANT:
The raster image is NOT embedded in the DXF file!
import ezdxf
# The IMAGE entity requires the DXF R2000 format or later.
doc = ezdxf.new("R2000")
# The IMAGEDEF entity is like a block definition, it just defines the image.
my_image_def = doc.add_image_def(
filename="mycat.jpg", size_in_pixel=(640, 360)
)
msp = doc.modelspace()
# The IMAGE entity is like the INSERT entity, it's just an image reference,
# and there can be multiple references to the same picture in a DXF document.
# 1st image reference
msp.add_image(
insert=(2, 1),
size_in_units=(6.4, 3.6),
image_def=my_image_def,
rotation=0
)
# 2nd image reference
msp.add_image(
insert=(4, 5),
size_in_units=(3.2, 1.8),
image_def=my_image_def,
rotation=30
)
# Get existing image definitions from the OBJECTS section:
image_defs = doc.objects.query("IMAGEDEF")
doc.saveas("dxf_with_cat.dxf")
Tutorial for Underlay and UnderlayDefinition
This example shows hot to insert a a PDF, DWF, DWFx or DGN file as drawing underlay. Each UNDERLAY entity
requires an associated UNDERLAYDEF entity in the objects section, which stores the filename of the linked
document and the parameters of the underlay. Multiple UNDERLAY entities can share the same UNDERLAYDEF
entity.
IMPORTANT:
The underlay file is NOT embedded into the DXF file:
import ezdxf
doc = ezdxf.new('AC1015') # underlay requires the DXF R2000 format or later
my_underlay_def = doc.add_underlay_def(filename='my_underlay.pdf', name='1')
# The (PDF)DEFINITION entity is like a block definition, it just defines the underlay
# 'name' is misleading, because it defines the page/sheet to be displayed
# PDF: name is the page number to display
# DGN: name='default' ???
# DWF: ????
msp = doc.modelspace()
# add first underlay
msp.add_underlay(my_underlay_def, insert=(2, 1, 0), scale=0.05)
# The (PDF)UNDERLAY entity is like the INSERT entity, it creates an underlay reference,
# and there can be multiple references to the same underlay in a drawing.
msp.add_underlay(my_underlay_def, insert=(4, 5, 0), scale=.5, rotation=30)
# get existing underlay definitions, Important: UNDERLAYDEFs resides in the objects section
pdf_defs = doc.objects.query('PDFDEFINITION') # get all pdf underlay defs in drawing
doc.saveas("dxf_with_underlay.dxf")
Tutorial for MultiLeader
A multileader object typically consists of an arrowhead, a horizontal landing (a.k.a. “dogleg”), a leader
line or curve, and either a MTEXT object or a BLOCK.
Factory methods of the BaseLayout class to create new MultiLeader entities:
• add_multileader_mtext()
• add_multileader_block()
Because of the complexity of the MULTILEADER entity, the factory method add_multileader_mtext() returns a
MultiLeaderMTextBuilder instance to build a new entity and the factory method add_multileader_block()
returns a MultiLeaderBlockBuilder instance.
Due of the lack of good documentation it’s not possible to support all combinations of MULTILEADER
properties with decent quality, so stick to recipes and hints shown in this tutorial to get usable
results otherwise, you will enter uncharted territory.
The rendering result of the MULTILEADER entity is highly dependent on the CAD application. The
MULTILEADER entity does not have a pre-rendered anonymous block of DXF primitives like all DIMENSION
entities, so results may vary from CAD application to CAD application. The general support for this
entity is only good in Autodesk products other CAD applications often struggle when rendering
MULTILEADERS, even my preferred testing application BricsCAD has rendering issues.
IMPORTANT:
MULTILEADER support has flaws in many CAD applications except Autodesk products!
SEE ALSO:
• ezdxf.render.MultiLeaderBuilder classes
• ezdxf.entities.MultiLeader class
• ezdxf.entities.MLeaderStyle class
• ezdxf.tools.text.MTextEditor class
• MULTILEADER Internals
MTEXT Quick Draw
Full Python script: mtext_quick_leader.py
The quick_leader() method of a MTEXT - MULTILEADER entity constructs the geometry parameters in reverse
manner, starting from a given target point:
DXF document setup:
doc = ezdxf.new(setup=True)
# Create a new custom MLEADERSTYLE:
mleaderstyle = doc.mleader_styles.duplicate_entry("Standard", "EZDXF")
# The required TEXT style "OpenSans" was created by ezdxf.new() because setup is True:
mleaderstyle.set_mtext_style("OpenSans")
msp = doc.modelspace()
Draw a red circle to mark the target point:
target_point = Vec2(40, 15)
msp.add_circle(
target_point, radius=0.5, dxfattribs=GfxAttribs(color=colors.RED)
)
Create four horizontal placed MULTILEADER entities pointing at the target point, the first segment of the
leader line is determined by an angle in this example pointing away from the target point:
for angle in [45, 135, 225, -45]:
ml_builder = msp.add_multileader_mtext("EZDXF")
ml_builder.quick_leader(
f"angle={angle}°\n2nd text line",
target=target_point,
segment1=Vec2.from_deg_angle(angle, 14),
)
[image]
The content is automatically aligned to the end of the leader line. The first segment is a relative
vector to the target point and the optional second segment vector is relative to the end of the first
segment. The default connection type is horizontal but can be changed to vertical:
A smaller text size is required:
mleaderstyle = doc.mleader_styles.duplicate_entry("Standard", "EZDXF")
mleaderstyle.set_mtext_style("OpenSans")
mleaderstyle.dxf.char_height = 2.0 # set the default char height of MTEXT
Adding vertical placed MULTILEADER entities:
for angle in [45, 135, 225, -45]:
ml_builder = msp.add_multileader_mtext("EZDXF")
ml_builder.quick_leader(
f"angle={angle}°\n2nd text line",
target=target_point,
segment1=Vec2.from_deg_angle(angle, 14),
connection_type=mleader.VerticalConnection.center_overline,
)
This example already shows the limitation caused by different text renderings in various CAD
applications. The ezdxf text measurement by matplotlib is different to AutoCAD and BricsCAD and the
result is a misalignment of the overline and the leader line.
The DXF file shown in BricsCAD: [image]
The same DXF file shown with the ezdxf view command (drawing add-on): [image]
My advice is to avoid vertical placed MULTILEADER entities at all and for horizontal placed MULTILEADER
entities avoid styles including an “underline” or an “overline”.
The quick_leader() method is not very customizable for ease of use, but follows the settings of the
associated MLeaderStyle.
The following sections show how to have more control when adding MULTILEADER entities.
Create MTEXT Content
Full Python script: mtext_content.py
This section shows how to create a MULTILEADER entity with MTEXT content the manual way with full control
over all settings.
For good results the MTEXT alignment should match the leader connection side, e.g. if you attach leaders
to the left side also align the MTEXT to the left side, for leaders attached at the right side, align the
MTEXT to the right side and if you attach leaders at both sides one side will fit better than the other
or maybe a center aligned MTEXT is a good solution, for further details see section MTEXT Alignment.
The first example uses the default connection type of the MLEADERSTYLE “Standard” which is “middle of the
top line” for left and right attached leaders. The render UCS for this example is the WCS to keep things
simple.
Create a new MULTILEADER entity.
ml_builder = msp.add_multileader_mtext("Standard")
Set MTEXT content, text style and alignment.
ml_builder.set_content(
"Line1\nLine2",
style="OpenSans",
alignment=mleader.TextAlignment.left, # set MTEXT alignment!
)
Add the first leader on the left side. The leader points always to the first given vertex and all
vertices are given in render UCS coordinates (= WCS in this example).
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)])
More than one vertex per leader can be used:
ml_builder.add_leader_line(
mleader.ConnectionSide.left,
[Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)],
)
The insert point of the build() method is the alignment point for the MTEXT content.
ml_builder.build(insert=Vec2(5, 0))
The “dogleg” settings are defined by the MLEADERSTYLE “Standard”. [image]
This example shows a leader attached to the right side and the MTEXT aligned to the right side.
ml_builder = msp.add_multileader_mtext("Standard")
ml_builder.set_content(
"Line1\nLine2",
style="OpenSans",
alignment=mleader.TextAlignment.right, # set MTEXT alignment!
)
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)])
ml_builder.build(insert=Vec2(15, 0))
[image]
This example shows two leaders attached to both sides and the MTEXT aligned to the left side, which shows
that the right landing gap (space between text and start of vertex) is bigger than the gap on the left
size. This is due to the different text size calculations from AutoCAD/BricsCAD and Matplotlib. The
longer the text, the greater the error.
ml_builder = msp.add_multileader_mtext("Standard")
ml_builder.set_content(
"Line1\nLine1",
style="OpenSans",
alignment=mleader.TextAlignment.left, # set MTEXT alignment!
)
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)])
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)])
ml_builder.build(insert=Vec2(5, 0))
[image]
A centered MTEXT alignment gives a more even result.
ml_builder = msp.add_multileader_mtext("Standard")
ml_builder.set_content(
"First Line\n2. Line",
style="OpenSans",
alignment=mleader.TextAlignment.center, # set MTEXT alignment!
)
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(-20, -15)])
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(40, -15)])
ml_builder.build(insert=Vec2(10, 0))
[image]
But even this has its disadvantages, the attachment calculation is always based on the bounding box of
the MTEXT content. [image]
MTEXT Connection Types
There are four connection sides defined by the enum ezdxf.render.ConnectionSide:
• left
• right
• top
• bottom
The MultiLeader entity supports as the name says multiple leader lines, but all have to have a horizontal
(left/right) connection side or a vertical (top/bottom) connection side, it’s not possible to mix
left/right and top/bottom connection sides. This is determined by the DXF format.
There are different connection types available for the horizontal and the vertical connection sides. All
leaders connecting to the same side have the same connection type. The horizontal connection sides
support following connection types, defined by the enum ezdxf.render.HorizontalConnection:
• by_style
• top_of_top_line
• middle_of_top_line
• middle_of_text
• middle_of_bottom_line
• bottom_of_bottom_line
• bottom_of_bottom_line_underline (not recommended)
• bottom_of_top_line_underline (not recommended)
• bottom_of_top_line
• bottom_of_top_line_underline_all (not recommended)
The vertical connection sides support following connection types, defined by the enum
ezdxf.render.VerticalConnection:
• by_style
• center
• center_overline (not recommended)
The connection type for each side can be set by the method set_connection_types(), the default for all
sides is by_style:
ml_builder.set_connection_types(
left=mleader.HorizontalConnection.middle_of_top_line,
right=mleader.HorizontalConnection.middle_of_bottom_line,
)
[image]
HINT:
As shown in the quick draw section using connection types including underlines or overlines do not
render well in AutoCAD/BricsCAD because of the different text measurement of matplotlib, therefore
it’s not recommended to use any of these connection types when creating MULTILEADERS by ezdxf.
MTEXT Alignment
In contrast to the standalone MTEXT entity supports the MTEXT content entity only three text alignments
defined by the enum ezdxf.render.TextAlignment.
• left
• center
• right
The MTEXT alignment is set as argument alignment of the set_content() method and the alignment point is
the insert point of the build() method.
Create BLOCK Content
Full Python script: block_content.py
This section shows how to create a MULTILEADER entity with BLOCK content the manual way with full control
over all settings.
The BLOCK content consist of a BLOCK layout and optional ATTDEF entities which defines the location and
DXF attributes of dynamically created ATTRIB entities.
Create the BLOCK content, the full create_square_block() function can be found in the block_content.py
script.
block = create_square_block(
doc, size=8.0, margin=0.25, base_point=base_point
)
Create the MULTILEADER and set the content:
ml_builder = msp.add_multileader_block(style="Standard")
ml_builder.set_content(
name=block.name, alignment=mleader.BlockAlignment.insertion_point
)
Set the BLOCK attribute content as text:
ml_builder.set_attribute("ONE", "Data1")
ml_builder.set_attribute("TWO", "Data2")
Add some leader lines to the left and right side of the BLOCK:
Construction plane of the entity is defined by a render UCS. The leader lines vertices are expected in
render UCS coordinates, which means relative to the UCS origin and this example shows the simple case
where the UCS is the WCS which is also the default setting.
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(x2, y1)])
ml_builder.add_leader_line(mleader.ConnectionSide.right, [Vec2(x2, y2)])
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(x1, y1)])
ml_builder.add_leader_line(mleader.ConnectionSide.left, [Vec2(x1, y2)])
Last step is to build the final MULTILEADER entity. This example uses the alignment type insertion_point
where the insert point of the build() method is the base point of the BLOCK:
ml_builder.build(insert=Vec2(5, 2), rotation=30)
[image]
The result is shown in BricsCAD as expected, although BricsCAD shows “Center extents” as attachment type
in the properties dialog instead of the correct attachment type “Insertion point”.
BLOCK Connection Types
There are four connection sides defined by the enum ezdxf.render.ConnectionSide:
• left
• right
• top
• bottom
The connection point for leader lines is always the center of the side of the block bounding box the
leader is connected to and has the same limitation as for the MTEXT content, it’s not possible to mix the
connection sides left/right and top/bottom.
The connection side is set when adding the leader line by the add_leader_line() method.
Unfortunately BricsCAD has an error in version 22.2.03 and renders all connection types as left/right,
this is top/bottom connection shown in Autodesk TrueView 2022: [image]
The top/bottom connection type does not support the “dogleg” feature.
BLOCK Alignment
There are two alignments types, defined by the enum ezdxf.render.BlockAlignment
• center_extents
• insertion_point
The alignment is set by the set_content() method.
The alignment type center_extent inserts the BLOCK with the center of the bounding box at the insert
point of the build() method. The insert point is (5, 2) in this example: [image]
The same MULTILEADER with alignment type insert_point: [image]
BLOCK Scaling
The BLOCK content can be scaled independently from the overall scaling of the MULTILEADER entity:
The block scaling factor is set by the set_content() method:
ml_builder.set_content(
name=block.name, scale=2.0, alignment=mleader.BlockAlignment.center_extents
)
This is the first example with a block scaling factor of 2. The BLOCK and the attached ATTRIB entities
are scaled but not the arrows. [image]
BLOCK Rotation
The rotation around the render UCS z-axis in degrees is applied by the build() method:
ml_builder.build(insert=Vec2(5, 2), rotation=30)
This is the first example with a rotation of 30 degrees. The BLOCK, the attached ATTRIB entities and the
last connection lines (“dogleg”) are rotated. [image]
BLOCK Attributes
BLOCK attributes are defined as ATTDEF entities in the BLOCK layout. This ATTDEF entities will be
replaced by ATTRIB entities at the rendering process of the CAD application. Only the text content and
the text width factor can be changed for each MULTILEADER entity individually by the set_attribute()
method. The ATTDEF is addressed by it’s DXF tag attribute:
ml_builder.set_attribute("ONE", "Data1")
ml_builder.set_attribute("TWO", "Data2")
Leader Properties
“Dogleg” Properties
The “dogleg” is the last line segment from the last leader vertex to the MULTILEADER content for polyline
leaders. [image]
The length of the dogleg and the landing gap size is set by the set_connection_properties().
Polyline Leader
A polygon leader line has only straight line segments and is added by the add_leader_line():
ml_builder.add_leader_line(
mleader.ConnectionSide.left,
[Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)],
)
[image]
All leader line vertices have render UCS coordinates and the start- and end-vertex of the “dogleg” is
calculated automatically.
Spline Leader
A spline leader line has a single curved line as leader line and is also added by the add_leader_line().
This is spline leader has the same vertices as the previous created polyline leader:
ml_builder.set_leader_properties(leader_type=mleader.LeaderType.splines)
ml_builder.add_leader_line(
mleader.ConnectionSide.left,
[Vec2(-20, 15), Vec2(-10, 15), Vec2(-15, 11), Vec2(-10, 7)],
)
[image]
The spline leader has no “dogleg” and spline leaders and polyline leaders can not be mixed in a single
MULTILEADER entity.
The leader type is set by the set_leader_properties() method.
The LeaderType enum:
• none
• straight_lines
• splines
Line Styling
The leader color, linetype and lineweight is set by the set_leader_properties() method:
ml_builder.set_leader_properties(
color=colors.MAGENTA,
linetype="DASHEDX2",
lineweight=70,
)
[image]
All leader lines have the same properties.
Arrowheads
The arrow head is set by the set_arrow_properties() method:
from ezdxf.render import ARROWS
ml_builder.set_arrow_properties(name=ARROWS.closed_blank, size=8.0)
[image]
All leader lines have the same arrow head and size. The available arrow heads are defined in the ARROWS
object.
Overall Scaling
The overall scaling has to be applied by the set_overall_scaling() method and scales the MTEXT or BLOCK
content and the arrows.
Setup MLEADERSTYLE
The MLeaderStyle stores many of the MULTILEADER settings but most of them are copied to the MULTILINE
entity at initialization. So changing the MLEADERSTYLE style afterwards has little to no effect for
existing MULTILEADER entities.
Create a new MLEADERSTYLE called “MY_STYLE” and set the MTEXT style to “OpenSans”:
my_style = doc.mleader_styles.duplicate_entry("Standard", "MY_STYLE")
my_style.set_mtext_style("OpenSans")
The style for a MULTILEADER is set at the add_multileader_mtext() and add_multileader_block() factory
methods.
Tutorial for Viewports in Paperspace
This tutorial is based on the example script viewports_in_paperspace.py. The script creates DXF files
for the version R12 and for R2000+, but the export for DXF R12 has a wrong papersize in BricsCAD and
wrong margins in Autodesk DWG Trueview. I don’t know why this happens and I don’t waste my time to fix
this.
IMPORTANT:
If you need paperspace layouts use DXF version R2000 or newer because the export of the page
dimensions does not work for DXF R12!
The scripts creates three flat geometries in the xy-plane of the WCS and a 3D mesh as content of the
modelspace: [image]
Page Setup
The paperspace layout feature lacks documentation in the DXF reference, there is no information in
practice on how it is used, so most of the information here is assumptions gathered through trail and
error.
The page_setup() method defines the properties of the paper sheet itself. The units of the modelspace
and the paperspace are not related and can even have different unit systems (imperial, meters), but to
keep things simple it’s recommended to use the same unit system for both spaces.
layout.page_setup(size=(24, 18), margins=(1, 1, 1, 1), units="inch")
The size argument defines the overall paper size in rotation mode 0, it seems to be the best practice to
define the paper extents in landscape mode and rotate the paper by the rotate argument afterwards.
Choices for the rotation argument:
┌───┬──────────────────────────────┐
│ 0 │ no rotation │
├───┼──────────────────────────────┤
│ 1 │ 90 degrees counter-clockwise │
├───┼──────────────────────────────┤
│ 2 │ upside-down │
├───┼──────────────────────────────┤
│ 3 │ 90 degrees clockwise │
└───┴──────────────────────────────┘
The scale argument reflects the relationship between paper unit and drawing unit in paperspace. It’s
recommended to let this scale at the default value of 1:1 and draw lines and text in paperspace with the
same units as you defined the paper size.
SEE ALSO:
• AutoCAD: About Plotting and About Setting the Plot Scale
• BricsCAD: General Procedure for Printing
Drawing in Paperspace
You can add DXF entities to the paperspace like to any other layout space. The coordinate origin (0, 0)
is in the left bottom corner of the canvas which is the paper size minus the margins. You can draw beyond
this limits but CAD applications may not print that content.
HINT:
By writing this tutorial I noticed that changing the printer/plotter and the paper size does shift the
layout content, because all paper sizes are defined without margins. Maybe it’s preferable to set all
margins to zero.
I added the helper method page_setup() to the Drawing class and an example simple_page_setup.py how to
use it.
Adding Viewports
The Viewport entity is a window to the modelspace to display the content of the modelspace in paperspace
with an arbitrary scaling and rotation. The VIEWPORT entity will be added by the factory method
add_viewport(), the center argument defines the center and the size argument defines the width and height
of the of the VIEWPORT in paperspace. The source of the modelspace to display is defined by the arguments
view_center_point and view_height. [image]
Scaling Factor
The scaling factor of the VIEWPORT is not an explicit value, the factor is defined by the relation of the
VIEWPORT height of the size argument and the view_height argument.
If both values are equal the scaling is 1:1
paperspace.add_viewport(
center=(14.5, 2.5),
size=(5, 5),
view_center_point=(12.5, 7.5),
view_height=5,
)
If the view_height is 5x larger than the VIEWPORT height the scaling is 1:5
paperspace.add_viewport(
center=(8.5, 2.5),
size=(5, 5),
view_center_point=(10, 5),
view_height=25,
)
View Direction
The default view direction is the top down view, but can be changed to any view by the attributes
view_target_point and view_direction_vector of the dxf namespace.
vp = paperspace.add_viewport(
center=(16, 10), size=(4, 4), view_center_point=(0, 0), view_height=30
)
vp.dxf.view_target_point = (40, 40, 0)
vp.dxf.view_direction_vector = (-1, -1, 1)
Viewport Frame
The VIEWPORT frame (borderlines) are shown in paperspace by default. The VIEWPORT entity does not have
an attribute to change this. The visibility of the VIEWPORT frame is controlled by the layer assigned to
the VIEWPORT entity which is the layer “VIEWPORTS” by default in ezdxf. Turning off this layer hides the
frames of the VIEWPORT entities on this layer, to do that the layer “VIEWPORTS” have to be created by the
library user:
vp_layer = doc.layers.add("VIEWPORTS")
vp_layer.off()
Freeze Layers
Each VIEWPORT can have individual frozen layers, which means the layers are not visible in this VIEWPORT.
To freeze layers in a VIEWPORT assign the names of the frozen layers as a list-like object to the
frozen_layers attribute of the VIEWPORT entity:
vp.frozen_layers = ["Layer0", "Layer1"]
IMPORTANT:
AutoCAD and BricsCAD do not crash if the layer names do not have layer table entries and the layer
names are case insensitive as all table names.
SEE ALSO:
• Basic concept of Layers
• Layer
Override Layer Properties
Each VIEWPORT can override layer properties individually. These overrides are stored in the Layer entity
and referenced by the handle of the VIEWPORT. This procedure is a bit more complex and shown in the
example file viewports_override_layer_attributes.py.
1. get the Layer object
2. get the LayerOverrides object from the layer
3. override the properties of the VIEWPORT
4. commit changes
layer = doc.layers.get("Layer0")
override = layer.get_vp_overrides()
override.set_linetype(vp.dxf.handle, "DASHED")
override.commit()
Supported property overrides:
• ACI color
• true color
• transparency
• linetype
• lineweight
SEE ALSO:
• Basic concept of Layers
• Basic concept of AutoCAD Color Index (ACI)
• Basic concept of True Color
• Basic concept of Transparency
• Basic concept of Linetypes
• Basic concept of Lineweights
• Layer
• LayerOverrides
Tutorial for OCS/UCS Usage
For OCS/UCS usage is a basic understanding of vector math required, for a brush up, watch the YouTube
tutorials of 3Blue1Brown about Linear Algebra.
Second read the Coordinate Systems introduction please.
SEE ALSO:
The free online book 3D Math Primer for Graphics and Game Development is a very good resource for
learning vector math and other graphic related topics, it is easy to read for beginners and especially
targeted to programmers.
For WCS there is not much to say as, it is what it is: the main world coordinate system, and a drawing
unit can have any real world unit you want. Autodesk added some mechanism to define a scale for
dimension and text entities, but because I am not an AutoCAD user, I am not familiar with it, and further
more I think this is more an AutoCAD topic than a DXF topic.
Object Coordinate System (OCS)
The OCS is used to place planar 2D entities in 3D space. ALL points of a planar entity lay in the same
plane, this is also true if the plane is located in 3D space by an OCS. There are three basic DXF
attributes that gives a 2D entity its spatial form.
Extrusion
The extrusion vector defines the OCS, it is a normal vector to the base plane of a planar entity. This
base plane is always located in the origin of the WCS. But there are some entities like Ellipse, which
have an extrusion vector, but do not establish an OCS. For this entities the extrusion vector defines
only the extrusion direction and thickness defines the extrusion distance, but all other points and
directions in WCS.
Elevation
The elevation value defines the z-axis value for all points of a planar entity, this is an OCS value, and
defines the distance of the entity plane from the base plane.
This value exists only in output from DXF versions prior to R11 as separated DXF attribute (group code
38). In DXF R12 and later, the elevation value is supplied as z-axis value of each point. But as always
in DXF, this simple rule does not apply to all entities: LWPolyline and Hatch have an DXF attribute
elevation as a 3D point, where the z-values of this point is the elevation height and the x-value and the
y-value are 0.
Thickness
Defines the extrusion distance for an entity.
NOTE:
There is a new edition of this tutorial using UCS based transformation, which are available in ezdxf
v0.11 and later: Tutorial for UCS Based Transformations
This edition shows the hard way to accomplish the transformations by low level operations.
Placing 2D Circle in 3D Space
The colors of the system axis follow the AutoCAD standard:
• red is x-axis
• green is y-axis
• blue is z-axis
import ezdxf
from ezdxf.math import OCS
doc = ezdxf.new('R2010')
msp = doc.modelspace()
# For this example the OCS is rotated around x-axis about 45 degree
# OCS z-axis: x=0, y=1, z=1
# extrusion vector must not normalized here
ocs = OCS((0, 1, 1))
msp.add_circle(
# You can place the 2D circle in 3D space
# but you have to convert WCS into OCS
center=ocs.from_wcs((0, 2, 2)),
# center in OCS: (0.0, 0.0, 2.82842712474619)
radius=1,
dxfattribs={
# here the extrusion vector should be normalized,
# which is granted by using the ocs.uz
'extrusion': ocs.uz,
'color': 1,
})
# mark center point of circle in WCS
msp.add_point((0, 2, 2), dxfattribs={'color': 1})
The following image shows the 2D circle in 3D space in AutoCAD Left and Front view. The blue line shows
the OCS z-axis (extrusion direction), elevation is the distance from the origin to the center of the
circle in this case 2.828, and you see that the x- and y-axis of the OCS and the WCS are not aligned.
[image: circle in ocs as side view] [image] [image: circle in ocs as front view] [image]
Placing LWPolyline in 3D Space
For simplicity of calculation I use the UCS class in this example to place a 2D pentagon in 3D space.
# The center of the pentagon should be (0, 2, 2), and the shape is
# rotated around x-axis about 45 degree, to accomplish this I use an
# UCS with z-axis (0, 1, 1) and an x-axis parallel to WCS x-axis.
ucs = UCS(
origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x-axis parallel to WCS x-axis
uz=(0, 1, 1), # z-axis
)
# calculating corner points in local (UCS) coordinates
points = [Vec3.from_deg_angle((360 / 5) * n) for n in range(5)]
# converting UCS into OCS coordinates
ocs_points = list(ucs.points_to_ocs(points))
# LWPOLYLINE accepts only 2D points and has an separated DXF attribute elevation.
# All points have the same z-axis (elevation) in OCS!
elevation = ocs_points[0].z
msp.add_lwpolyline(
points=ocs_points,
format='xy', # ignore z-axis
close=True,
dxfattribs={
'elevation': elevation,
'extrusion': ucs.uz,
'color': 1,
})
The following image shows the 2D pentagon in 3D space in AutoCAD Left, Front and Top view. The three
lines from the center of the pentagon show the UCS, the three colored lines in the origin show the OCS,
the white lines in the origin show the WCS.
The z-axis of the UCS and the OCS pointing in the same direction (extrusion direction), and the x-axis of
the UCS and the WCS pointing also in the same direction. The elevation is the distance from the origin
to the center of the pentagon and all points of the pentagon have the same elevation, and you see that
the y-axis of the UCS, the OCS and the WCS are not aligned. [image: pentagon in ucs as side view]
[image] [image: pentagon in ucs as front view] [image]
Using UCS to Place 3D Polyline
It is much simpler to use a 3D Polyline to create the 3D pentagon. The UCS class is handy for this
example and all kind of 3D operations.
# Using an UCS simplifies 3D operations, but UCS definition can happen later
# calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians(360 / 5)
corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]
# let's do some transformations
tmatrix = Matrix44.chain( # creating a transformation matrix
Matrix44.z_rotate(math.radians(15)), # 1. rotation around z-axis
Matrix44.translate(0, .333, .333), # 2. translation
)
transformed_corners_ucs = tmatrix.transform_vertices(corners_ucs)
# transform UCS into WCS
ucs = UCS(
origin=(0, 2, 2), # center of pentagon
ux=(1, 0, 0), # x-axis parallel to WCS x-axis
uz=(0, 1, 1), # z-axis
)
corners_wcs = list(ucs.points_to_wcs(transformed_corners_ucs))
msp.add_polyline3d(
points=corners_wcs,
close=True,
)
# add lines from center to corners
center_wcs = ucs.to_wcs((0, .333, .333))
for corner in corners_wcs:
msp.add_line(center_wcs, corner, dxfattribs={'color': 1})
ucs.render_axis(msp)
[image: 3d poyline with UCS] [image]
Placing 2D Text in 3D Space
The problem of placing text in 3D space is the text rotation, which is always counter clockwise around
the OCS z-axis, and 0 degree is the direction of the positive OCS x-axis, and the OCS x-axis is
calculated by the Arbitrary Axis Algorithm.
Calculate the OCS rotation angle by converting the TEXT rotation angle (in UCS or WCS) into a vector or
begin with text direction as vector, transform this direction vector into OCS and convert the OCS vector
back into an angle in the OCS xy-plane (see example), this procedure is available as
UCS.to_ocs_angle_deg() or UCS.to_ocs_angle_rad().
AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.
# Thickness for text works only with shx fonts not with true type fonts
doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'})
ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
# calculation of text direction as angle in OCS:
# convert text rotation in degree into a vector in UCS
text_direction = Vec3.from_deg_angle(-45)
# transform vector into OCS and get angle of vector in xy-plane
rotation = ucs.to_ocs(text_direction).angle_deg
text = msp.add_text(
text="TEXT",
dxfattribs={
# text rotation angle in degrees in OCS
'rotation': rotation,
'extrusion': ucs.uz,
'thickness': .333,
'color': 1,
'style': 'TXT',
})
# set text position in OCS
text.set_pos(ucs.to_ocs((0, 0, 0)), align='MIDDLE_CENTER')
[image: text in ucs as top view] [image] [image: text in ucs as front view] [image]
HINT:
For calculating OCS angles from an UCS, be aware that 2D entities, like TEXT or ARC, are placed
parallel to the xy-plane of the UCS.
Placing 2D Arc in 3D Space
Here we have the same problem as for placing text, you need the start- and end angle of the arc in
degrees in the OCS, and this example also shows a shortcut for calculating the OCS angles.
ucs = UCS(origin=(0, 2, 2), ux=(1, 0, 0), uz=(0, 1, 1))
msp.add_arc(
center=ucs.to_ocs((0, 0)),
radius=1,
start_angle=ucs.to_ocs_angle_deg(45),
end_angle=ucs.to_ocs_angle_deg(270),
dxfattribs={
'extrusion': ucs.uz,
'color': 1,
})
center = ucs.to_wcs((0, 0))
msp.add_line(
start=center,
end=ucs.to_wcs(Vec3.from_deg_angle(45)),
dxfattribs={'color': 1},
)
msp.add_line(
start=center,
end=ucs.to_wcs(Vec3.from_deg_angle(270)),
dxfattribs={'color': 1},
)
[image: arc in ucs as top view] [image] [image: arc in ucs as front view] [image]
Placing Block References in 3D Space
Despite the fact that block references (Insert) can contain true 3D entities like Line or Mesh, the
Insert entity uses the same placing principe as Text or Arc shown in the previous chapters.
Placement by OCS coordinates and rotation about the OCS z-axis, can be achieved the same way as for
generic 2D entities. The DXF attribute Insert.dxf.rotation rotates a block reference around the block
z-axis, which is located in the Block.dxf.base_point. To rotate the block reference around the WCS
x-axis, a transformation of the block z-axis into the WCS x-axis is required by rotating the block z-axis
90 degree counter-clockwise around y-axis by using an UCS:
This is just an excerpt of the important parts, see the whole code of insert.py at github.
# rotate UCS around an arbitrary axis:
def ucs_rotation(ucs: UCS, axis: Vec3, angle: float):
# new in ezdxf v0.11: UCS.rotate(axis, angle)
t = Matrix44.axis_rotate(axis, math.radians(angle))
ux, uy, uz = t.transform_vertices([ucs.ux, ucs.uy, ucs.uz])
return UCS(origin=ucs.origin, ux=ux, uy=uy, uz=uz)
doc = ezdxf.new('R2010', setup=True)
blk = doc.blocks.new('CSYS')
setup_csys(blk)
msp = doc.modelspace()
ucs = ucs_rotation(UCS(), axis=Y_AXIS, angle=90)
# transform insert location to OCS
insert = ucs.to_ocs((0, 0, 0))
# rotation angle about the z-axis (= WCS x-axis)
rotation = ucs.to_ocs_angle_deg(15)
msp.add_blockref('CSYS', insert, dxfattribs={
'extrusion': ucs.uz,
'rotation': rotation,
})
[image] [image]
To rotate a block reference around another axis than the block z-axis, you have to find the rotated
z-axis (extrusion vector) of the rotated block reference, following example rotates the block reference
around the block x-axis by 15 degrees:
# t is a transformation matrix to rotate 15 degree around the x-axis
t = Matrix44.axis_rotate(axis=X_AXIS, angle=math.radians(15))
# transform block z-axis into new UCS z-axis (= extrusion vector)
uz = Vec3(t.transform(Z_AXIS))
# create new UCS at the insertion point, because we are rotating around the x-axis,
# ux is the same as the WCS x-axis and uz is the rotated z-axis.
ucs = UCS(origin=(1, 2, 0), ux=X_AXIS, uz=uz)
# transform insert location to OCS, block base_point=(0, 0, 0)
insert = ucs.to_ocs((0, 0, 0))
# for this case a rotation around the z-axis is not required
rotation = 0
blockref = msp.add_blockref('CSYS', insert, dxfattribs={
'extrusion': ucs.uz,
'rotation': rotation,
})
[image] [image]
The next example shows how to translate a block references with an already established OCS:
# translate a block references with an established OCS
translation = Vec3(-3, -1, 1)
# get established OCS
ocs = blockref.ocs()
# get insert location in WCS
actual_wcs_location = ocs.to_wcs(blockref.dxf.insert)
# translate location
new_wcs_location = actual_wcs_location + translation
# convert WCS location to OCS location
blockref.dxf.insert = ocs.from_wcs(new_wcs_location)
Setting a new insert location is the same procedure without adding a translation vector, just transform
the new insert location into the OCS. [image] [image]
The next operation is to rotate a block reference with an established OCS, rotation axis is the block
y-axis, rotation angle is -90 degrees. First transform block y-axis (rotation axis) and block z-axis
(extrusion vector) from OCS into WCS:
# rotate a block references with an established OCS around the block y-axis about 90 degree
ocs = blockref.ocs()
# convert block y-axis (= rotation axis) into WCS vector
rotation_axis = ocs.to_wcs((0, 1, 0))
# convert local z-axis (=extrusion vector) into WCS vector
local_z_axis = ocs.to_wcs((0, 0, 1))
Build transformation matrix and transform extrusion vector and build new UCS:
# build transformation matrix
t = Matrix44.axis_rotate(axis=rotation_axis, angle=math.radians(-90))
uz = t.transform(local_z_axis)
uy = rotation_axis
# the block reference origin stays at the same location, no rotation needed
wcs_insert = ocs.to_wcs(blockref.dxf.insert)
# build new UCS to convert WCS locations and angles into OCS
ucs = UCS(origin=wcs_insert, uy=uy, uz=uz)
Set new OCS attributes, we also have to set the rotation attribute even though we do not rotate the block
reference around the local z-axis, the new block x-axis (0 deg) differs from OCS x-axis and has to be
adjusted:
# set new OCS
blockref.dxf.extrusion = ucs.uz
# set new insert
blockref.dxf.insert = ucs.to_ocs((0, 0, 0))
# set new rotation: we do not rotate the block reference around the local z-axis,
# but the new block x-axis (0 deg) differs from OCS x-axis and has to be adjusted
blockref.dxf.rotation = ucs.to_ocs_angle_deg(0)
[image] [image]
And here is the point, where my math knowledge ends, for more advanced CAD operation you have to look
elsewhere.
Tutorial for UCS Based Transformations
The ezdxf version v0.13 introduced a transformation interface for DXF primitives, which makes working
with OCS/UCS much easier. This is a new edition of the Tutorial for OCS/UCS Usage. Please read the old
tutorial for the basics about the OCS.
For this tutorial we don’t have to worry about the OCS and the extrusion vector, this is done
automatically by the transform() method of each DXF entity.
Placing 2D Circle in 3D Space
To recreate the situation of the old tutorial instantiate a new UCS and rotate it around the local
x-axis. Use UCS coordinates to place the 2D CIRCLE in 3D space and transform the UCS coordinates to the
WCS.
import math
import ezdxf
from ezdxf.math import UCS
doc = ezdxf.new('R2010')
msp = doc.modelspace()
ucs = UCS() # New default UCS
# All rotation angles in radians, and rotation
# methods always return a new UCS.
ucs = ucs.rotate_local_x(math.radians(-45))
circle = msp.add_circle(
# Use UCS coordinates to place the 2d circle in 3d space
center=(0, 0, 2),
radius=1,
dxfattribs={'color': 1}
)
circle.transform(ucs.matrix)
# mark center point of circle in WCS
msp.add_point((0, 0, 2), dxfattribs={'color': 1}).transform(ucs.matrix)
[image: circle in ucs as side view] [image] [image: circle in ucs as front view] [image]
Placing LWPolyline in 3D Space
Simplified LWPOLYLINE example:
# The center of the pentagon should be (0, 2, 2), and the shape is
# rotated around x-axis about -45 degree
ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))
msp.add_lwpolyline(
# calculating corner points in UCS coordinates
points=(Vec3.from_deg_angle((360 / 5) * n) for n in range(5)),
format='xy', # ignore z-axis
close=True,
dxfattribs={
'color': 1,
}
).transform(ucs.matrix)
The 2D pentagon in 3D space in BricsCAD Left and Front view. [image: pentagon in ucs as side view]
[image] [image: pentagon in ucs as front view] [image]
Using UCS to Place 3D Polyline
Simplified POLYLINE example: Using a first UCS to transform the POLYLINE and a second UCS to place the
POLYLINE in 3D space.
# using an UCS simplifies 3D operations, but UCS definition can happen later
# calculating corner points in local (UCS) coordinates without Vec3 class
angle = math.radians(360 / 5)
corners_ucs = [(math.cos(angle * n), math.sin(angle * n), 0) for n in range(5)]
# let's do some transformations by UCS
transformation_ucs = UCS().rotate_local_z(math.radians(15)) # 1. rotation around z-axis
transformation_ucs.shift((0, .333, .333)) # 2. translation (inplace)
corners_ucs = list(transformation_ucs.points_to_wcs(corners_ucs))
location_ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))
msp.add_polyline3d(
points=corners_ucs,
close=True,
dxfattribs={
'color': 1,
}
).transform(location_ucs.matrix)
# Add lines from the center of the POLYLINE to the corners
center_ucs = transformation_ucs.to_wcs((0, 0, 0))
for corner in corners_ucs:
msp.add_line(
center_ucs, corner, dxfattribs={'color': 1}
).transform(location_ucs.matrix)
[image: 3d poyline with UCS] [image]
Placing 2D Text in 3D Space
The problem with the text rotation in the old tutorial disappears with the new UCS based transformation
method:
AutoCAD supports thickness for the TEXT entity only for .shx fonts and not for true type fonts.
# thickness for text works only with shx fonts not with true type fonts
doc.styles.new('TXT', dxfattribs={'font': 'romans.shx'})
ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))
text = msp.add_text(
text="TEXT",
dxfattribs={
# text rotation angle in degrees in UCS
'rotation': -45,
'thickness': .333,
'color': 1,
'style': 'TXT',
}
)
# set text position in UCS
text.set_pos((0, 0, 0), align='MIDDLE_CENTER')
text.transform(ucs.matrix)
[image: text in ucs as top view] [image] [image: text in ucs as front view] [image]
Placing 2D Arc in 3D Space
Same as for the text example, OCS angle transformation can be ignored:
ucs = UCS(origin=(0, 2, 2)).rotate_local_x(math.radians(-45))
CENTER = (0, 0)
START_ANGLE = 45
END_ANGLE = 270
msp.add_arc(
center=CENTER,
radius=1,
start_angle=START_ANGLE,
end_angle=END_ANGLE,
dxfattribs={'color': 6},
).transform(ucs.matrix)
msp.add_line(
start=CENTER,
end=Vec3.from_deg_angle(START_ANGLE),
dxfattribs={'color': 6},
).transform(ucs.matrix)
msp.add_line(
start=CENTER,
end=Vec3.from_deg_angle(END_ANGLE),
dxfattribs={'color': 6},
).transform(ucs.matrix)
[image: arc in ucs as top view] [image] [image: arc in ucs as front view] [image]
Placing Block References in 3D Space
Despite the fact that block references (INSERT) can contain true 3D entities like LINE or MESH, the
INSERT entity uses the same placing principe as TEXT or ARC shown in the previous sections.
To rotate the block reference 15 degrees around the WCS x-axis, we place the block reference in the
origin of the UCS, and rotate the UCS 90 degrees around its local y-axis, to align the UCS z-axis with
the WCS x-axis:
This is just an excerpt of the important parts, see the whole code of insert.py at github.
doc = ezdxf.new('R2010', setup=True)
blk = doc.blocks.new('CSYS')
setup_csys(blk)
msp = doc.modelspace()
ucs = UCS().rotate_local_y(angle=math.radians(90))
msp.add_blockref(
'CSYS',
insert=(0, 0),
# rotation around the block z-axis (= WCS x-axis)
dxfattribs={'rotation': 15},
).transform(ucs.matrix)
[image] [image]
A more simple approach is to ignore the rotate attribute at all and just rotate the UCS. To rotate a
block reference around any axis rather than the block z-axis, rotate the UCS into the desired position.
The following example rotates the block reference around the block x-axis by 15 degrees:
ucs = UCS(origin=(1, 2, 0)).rotate_local_x(math.radians(15))
blockref = msp.add_blockref('CSYS', insert=(0, 0, 0))
blockref.transform(ucs.matrix)
[image] [image]
The next example shows how to translate a block references with an already established OCS:
# New UCS at the translated location, axis aligned to the WCS
ucs = UCS((-3, -1, 1))
# Transform an already placed block reference, including
# the transformation of the established OCS.
blockref.transform(ucs.matrix)
[image] [image]
The next operation is to rotate a block reference with an established OCS, rotation axis is the block
y-axis, rotation angle is -90 degrees. The idea is to create an UCS in the origin of the already placed
block reference, UCS axis aligned to the block axis and resetting the block reference parameters for a
new WCS transformation.
# Get UCS at the block reference insert location, UCS axis aligned
# to the block axis.
ucs = blockref.ucs()
# Rotate UCS around the local y-axis.
ucs = ucs.rotate_local_y(math.radians(-90))
Reset block reference parameters, this places the block reference in the UCS origin and aligns the block
axis to the UCS axis, now we do a new transformation from UCS to WCS:
# Reset block reference parameters to place block reference in
# UCS origin, without any rotation and OCS.
blockref.reset_transformation()
# Transform block reference from UCS to WCS
blockref.transform(ucs.matrix)
[image] [image]
Tutorial for Linear Dimensions
The Dimension entity is the generic entity for all dimension types, but unfortunately AutoCAD is not
willing to show a dimension line defined only by this dimension entity, it also needs an anonymous block
which contains the dimension line shape constructed by DXF primitives like LINE and TEXT entities, this
representation is called the dimension line rendering in this documentation, beside the fact that this is
not a real graphical rendering. BricsCAD is a much more friendly CAD application, which do show the
dimension entity without the graphical rendering as block, which was very useful for testing, because
there is no documentation how to apply all the dimension style variables (more than 80). This seems to
be the reason why dimension lines are rendered so differently by many CAD application.
Don’t expect to get the same rendering results by ezdxf as you get from AutoCAD. Ezdxf tries to be as
close to the results rendered by BricsCAD, but it is not possible to implement all the various
combinations of dimension style parameters, which often affect one another.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.
Text rendering is another problem, because ezdxf has no real rendering engine. Some font properties,
like the real text width, which is only available to ezdxf if the Matplotlib package is installed and
this value may also vary slightly for different CAD applications. Without access to the Matplotlib
package the text properties in ezdxf are based on an abstract monospaced font and are bigger than
required by true type fonts.
Not all DIMENSION and DIMSTYLE features are supported by all DXF versions, especially DXF R12 does not
support many features, but in this case the required rendering of dimension lines is an advantage,
because if the application just shows the rendered block, all features which can be used in DXF R12 will
be displayed, but these features will disappear if the dimension line will be edited in the CAD
application. Ezdxf writes only the supported DIMVARS of the used DXF version to avoid invalid DXF files.
So it is not that critical to know all the supported features of a DXF version, except for limits and
tolerances, ezdxf uses the advanced features of the MTEXT entity to create limits and tolerances and
therefore they are not supported (displayed) in DXF R12 files.
SEE ALSO:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_linear.py shows examples for linear dimensions.
Horizontal Dimension
import ezdxf
# Create a DXF R2010 document:
# Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new("R2010", setup=True)
# Add new dimension entities to the modelspace:
msp = doc.modelspace()
# Add a LINE entity for visualization, not required to create the DIMENSION
# entity:
msp.add_line((0, 0), (3, 0))
# Add a horizontal linear DIMENSION entity:
dim = msp.add_linear_dim(
base=(3, 2), # location of the dimension line
p1=(0, 0), # 1st measurement point
p2=(3, 0), # 2nd measurement point
dimstyle="EZDXF", # default dimension style
)
# Necessary second step to create the BLOCK entity with the dimension geometry.
# Additional processing of the DIMENSION entity could happen between adding
# the entity and the rendering call.
dim.render()
doc.saveas("dim_linear_horiz.dxf")
[image]
The example above creates a horizontal Dimension entity. The default dimension style “EZDXF” is defined
as:
• 1 drawing unit = 1m
• measurement text height = 0.25 (drawing scale = 1:100)
• the length factor dimlfac = 100, which creates a measurement text in cm.
• arrow is “ARCHTICK”, arrow size dimasz = 0.175
Every dimension style which does not exist will be replaced by the dimension style “Standard” at DXF
export by save() or saveas() (e.g. dimension style setup was not initiated).
The base point defines the location of the dimension line, ezdxf accepts any point on the dimension line,
the point p1 defines the start point of the first extension line, which also defines the first
measurement point and the point p2 defines the start point of the second extension line, which also
defines the second measurement point.
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the
dimension entity is stored as attribute dim.dimension.
Vertical and Rotated Dimension
Argument angle defines the angle of the dimension line in relation to the x-axis of the WCS or UCS,
measurement is the distance between first and second measurement point in direction of angle.
# assignment to dim is not necessary, if no additional processing happens
msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0), angle=-30).render()
doc.saveas("dim_linear_rotated.dxf")
[image]
For a vertical dimension set argument angle to 90 degree, but in this example the vertical distance would
be 0.
Aligned Dimension
An aligned dimension line is parallel to the line defined by the definition points p1 and p2. The
placement of the dimension line is defined by the argument distance, which is the distance between the
definition line and the dimension line. The distance of the dimension line is orthogonal to the base line
in counter clockwise orientation.
msp.add_line((0, 2), (3, 0))
dim = msp.add_aligned_dim(p1=(0, 2), p2=(3, 0), distance=1)
doc.saveas("dim_linear_aligned.dxf")
[image]
Dimension Style Override
Many dimension styling options are defined by the associated DimStyle entity. But often you wanna change
just a few settings without creating a new dimension style, therefore the DXF format has a protocol to
store this changed settings in the dimension entity itself. This protocol is supported by ezdxf and
every factory function which creates dimension entities supports the override argument. This override
argument is a simple Python dictionary (e.g. override = {"dimtad": 4}, place measurement text below
dimension line).
The overriding protocol is managed by the DimStyleOverride object, which is returned by the most
dimension factory functions.
Placing Measurement Text
The default location of the measurement text depends on various DimStyle parameters and is applied if no
user defined text location is defined.
Default Text Locations
“Horizontal direction” means in direction of the dimension line and “vertical direction” means
perpendicular to the dimension line direction.
The “horizontal” location of the measurement text is defined by dimjust:
┌───┬───────────────────────────────────────┐
│ 0 │ Center of dimension line │
├───┼───────────────────────────────────────┤
│ 1 │ Left side of the dimension line, near │
│ │ first extension line │
├───┼───────────────────────────────────────┤
│ 2 │ Right side of the dimension line, │
│ │ near second extension line │
├───┼───────────────────────────────────────┤
│ 3 │ Over first extension line │
├───┼───────────────────────────────────────┤
│ 4 │ Over second extension line │
└───┴───────────────────────────────────────┘
msp.add_linear_dim(
base=(3, 2), p1=(0, 0), p2=(3, 0), override={"dimjust": 1}
).render()
[image]
The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:
┌───┬───────────────────────────────────────┐
│ 0 │ Center, it is possible to adjust the │
│ │ vertical location by dimtvp │
├───┼───────────────────────────────────────┤
│ 1 │ Above │
├───┼───────────────────────────────────────┤
│ 2 │ Outside, handled like Above by ezdxf │
├───┼───────────────────────────────────────┤
│ 3 │ JIS, handled like Above by ezdxf │
├───┼───────────────────────────────────────┤
│ 4 │ Below │
└───┴───────────────────────────────────────┘
msp.add_linear_dim(
base=(3, 2), p1=(0, 0), p2=(3, 0), override={"dimtad": 4}
).render()
[image]
The distance between text and dimension line is defined by dimgap.
The DimStyleOverride object has a method set_text_align() to set the default text location in an easy
way, this is also the reason for the 2 step creation process of dimension entities:
dim = msp.add_linear_dim(base=(3, 2), p1=(0, 0), p2=(3, 0))
dim.set_text_align(halign="left", valign="center")
dim.render()
┌────────┬───────────────────────────────────────┐
│ halign │ “left”, “right”, “center”, “above1”, │
│ │ “above2” │
├────────┼───────────────────────────────────────┤
│ valign │ “above”, “center”, “below” │
└────────┴───────────────────────────────────────┘
Run function example_for_all_text_placings_R2007() in the example script dimension_linear.py to create a
DXF file with all text placings supported by ezdxf.
User Defined Text Locations
Beside the default location, it is possible to locate the measurement text freely.
Location Relative to Origin
The user defined text location can be set by the argument location in most dimension factory functions
and always references the midpoint of the measurement text:
msp.add_linear_dim(
base=(3, 2), p1=(3, 0), p2=(6, 0), location=(4, 4)
).render()
[image]
The location is relative to the origin of the active coordinate system or WCS if no UCS is defined in the
render() method, the user defined location can also be set by user_location_override().
Location Relative to Center of Dimension Line
The method set_location() has additional features for linear dimensions. Argument leader = True adds a
simple leader from the measurement text to the center of the dimension line and argument relative = True
places the measurement text relative to the center of the dimension line.
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_location(location=(-1, 1), leader=True, relative=True)
dim.render()
[image]
Location Relative to Default Location
The method shift_text() shifts the measurement text away from the default text location. The shifting
directions are aligned to the text direction, which is the direction of the dimension line in most cases,
dh (for delta horizontal) shifts the text parallel to the text direction, dv (for delta vertical) shifts
the text perpendicular to the text direction. This method does not support leaders.
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.shift_text(dh=1, dv=1)
dim.render()
[image]
Overriding Text Rotation
All factory methods supporting the argument text_rotation can override the measurement text rotation.
The user defined rotation is relative to the render UCS x-axis (default is WCS).
Measurement Text Formatting and Styling
Text Properties
┌──────────┬───────────────────────────────────────┐
│ DIMVAR │ Description │
├──────────┼───────────────────────────────────────┤
│ dimtxsty │ Specifies the text style of the │
│ │ dimension as Textstyle name. │
├──────────┼───────────────────────────────────────┤
│ dimtxt │ Text height in drawing units. │
├──────────┼───────────────────────────────────────┤
│ dimclrt │ Measurement text color as AutoCAD │
│ │ Color Index (ACI). │
└──────────┴───────────────────────────────────────┘
msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={
"dimtxsty": "Standard",
"dimtxt": 0.35,
"dimclrt": 1,
}
).render()
[image]
Background Filling
Background fillings are supported since DXF R2007, and ezdxf uses the MTEXT entity to implement this
feature, so setting background filling in DXF R12 has no effect. The DIMVAR dimtfill defines the kind of
background filling and the DIMVAR dimtfillclr defines the fill color.
┌─────────────┬───────────────────────────────────────┐
│ DIMVAR │ Description │
├─────────────┼───────────────────────────────────────┤
│ dimtfill │ Enables background filling if bigger │
│ │ than 0 │
├─────────────┼───────────────────────────────────────┤
│ dimtfillclr │ Fill color as AutoCAD Color Index │
│ │ (ACI), if dimtfill is 2 │
└─────────────┴───────────────────────────────────────┘
┌──────────┬──────────────────────────────┐
│ dimtfill │ Description │
├──────────┼──────────────────────────────┤
│ 0 │ disabled │
├──────────┼──────────────────────────────┤
│ 1 │ canvas color │
├──────────┼──────────────────────────────┤
│ 2 │ color defined by dimtfillclr │
└──────────┴──────────────────────────────┘
msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={
"dimtfill": 2,
"dimtfillclr": 1,
}
).render()
[image]
Text Formatting
• decimal places: dimdec defines the number of decimal places displayed for the primary units of a
dimension. (DXF R2000)
• decimal point character: dimdsep defines the decimal point as ASCII code, get the ASCII code by
ord('.')
• rounding: dimrnd, rounds all dimensioning distances to the specified value, for instance, if dimrnd is
set to 0.25, all distances round to the nearest 0.25 unit. If dimrnd is set to 1.0, all distances round
to the nearest integer. For more information look at the documentation of the ezdxf.math.xround()
function.
• zero trimming: dimzin, ezdxf supports only a subset of values:
• 4 to suppress leading zeros
• 8 to suppress trailing zeros
• 12 as the combination of both
• measurement factor: scale measurement by factor dimlfac, e.g. to get the dimensioning text in cm for a
DXF file where 1 drawing unit represents 1m, set dimlfac to 100.
• text template: dimpost, “<>” represents the measurement text, e.g. “~<>cm” produces “~300cm” for
measurement in previous example.
To set this values the ezdxf.entities.DimStyle.set_text_format() and
ezdxf.entities.DimStyleOverride.set_text_format() methods are very recommended.
Overriding Measurement Text
This feature allows overriding the real measurement text by a custom measurement text, the text is stored
as string in the Dimension entity as attribute text. Special values of the text attribute are: one space
“ “ to suppress the measurement text at all, an empty string “” or “<>” to display the real measurement.
All factory functions have an explicit text argument, which always replaces the text value in the
dxfattribs dict.
msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0), text=">1m").render()
[image]
Dimension Line Properties
The dimension line color is defined by the DIMVAR dimclrd as AutoCAD Color Index (ACI), dimclrd and also
defines the color of the arrows. The linetype is defined by dimltype and requires DXF R2007. The
lineweight is defined by dimlwd and requires DXF R2000, see also the lineweight reference for valid
values. The dimdle is the extension of the dimension line beyond the extension lines, this dimension
line extension is not supported for all arrows.
┌──────────┬───────────────────────────────────────┐
│ DIMVAR │ Description │
├──────────┼───────────────────────────────────────┤
│ dimclrd │ dimension line and arrows color as │
│ │ AutoCAD Color Index (ACI) │
├──────────┼───────────────────────────────────────┤
│ dimltype │ linetype of dimension line │
├──────────┼───────────────────────────────────────┤
│ dimlwd │ line weight of dimension line │
├──────────┼───────────────────────────────────────┤
│ dimdle │ extension of dimension line in │
│ │ drawing units │
└──────────┴───────────────────────────────────────┘
msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={
"dimclrd": 1, # red
"dimdle": 0.25,
"dimltype": "DASHED2",
"dimlwd": 35, # 0.35mm line weight
}
).render()
[image]
DimStyleOverride() method:
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_dimline_format(
color=1, linetype="DASHED2", lineweight=35, extension=0.25
)
dim.render()
Extension Line Properties
The extension line color is defined by the DIMVAR dimclre as AutoCAD Color Index (ACI). The linetype for
the first and the second extension line is defined by dimltex1 and dimltex2 and requires DXF R2007. The
lineweight is defined by dimlwe and required DXF R2000, see also the lineweight reference for valid
values.
The dimexe is the extension of the extension line beyond the dimension line, and dimexo defines the
offset of the extension line from the measurement point.
┌──────────┬───────────────────────────────────────┐
│ DIMVAR │ Description │
├──────────┼───────────────────────────────────────┤
│ dimclre │ extension line color as AutoCAD Color │
│ │ Index (ACI) │
├──────────┼───────────────────────────────────────┤
│ dimltex1 │ linetype of first extension line │
├──────────┼───────────────────────────────────────┤
│ dimltex2 │ linetype of second extension line │
├──────────┼───────────────────────────────────────┤
│ dimlwe │ line weight of extension line │
├──────────┼───────────────────────────────────────┤
│ dimexe │ extension beyond dimension line in │
│ │ drawing units │
├──────────┼───────────────────────────────────────┤
│ dimexo │ offset of extension line from │
│ │ measurement point │
├──────────┼───────────────────────────────────────┤
│ dimfxlon │ set to 1 to enable fixed length │
│ │ extension line │
├──────────┼───────────────────────────────────────┤
│ dimfxl │ length of fixed length extension line │
│ │ in drawing units │
├──────────┼───────────────────────────────────────┤
│ dimse1 │ suppress first extension line if 1 │
├──────────┼───────────────────────────────────────┤
│ dimse2 │ suppress second extension line if 1 │
└──────────┴───────────────────────────────────────┘
msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={
"dimclre": 1, # red
"dimltex1": "DASHED2",
"dimltex2": "CENTER2",
"dimlwe": 35, # 0.35mm line weight
"dimexe": 0.3, # length above dimension line
"dimexo": 0.1, # offset from measurement point
}
).render()
[image]
DimStyleOverride() methods:
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_extline_format(color=1, lineweight=35, extension=0.3, offset=0.1)
dim.set_extline1(linetype="DASHED2")
dim.set_extline2(linetype="CENTER2")
dim.render()
Fixed length extension lines are supported in DXF R2007, set dimfxlon to 1 and dimfxl defines the length
of the extension line starting at the dimension line.
msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={
"dimfxlon": 1, # fixed length extension lines
"dimexe": 0.2, # length above dimension line
"dimfxl": 0.4, # length below dimension line
}
).render()
[image]
DimStyleOverride() method:
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_extline_format(extension=0.2, fixed_length=0.4)
dim.render()
To suppress extension lines set dimse1 to 1 to suppress the first extension line and dimse2 to 1 to
suppress the second extension line.
msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={
"dimse1": 1, # suppress first extension line
"dimse2": 1, # suppress second extension line
"dimblk": ezdxf.ARROWS.closed_filled, # arrows just looks better
}
).render()
[image]
DimStyleOverride() methods:
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_arrows(blk=ezdxf.ARROWS.closed_filled)
dim.set_extline1(disable=True)
dim.set_extline2(disable=True)
dim.render()
Arrows
“Arrows” mark then beginning and the end of a dimension line, and most of them do not look like arrows.
DXF distinguish between the simple tick (a slanted line) and arrows as blocks.
To use a simple tick as “arrow” set dimtsz to a value greater than 0, this also disables arrow blocks as
side effect:
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_tick(size=0.25)
dim.render()
Ezdxf uses the “ARCHTICK” block at double size to render the tick (AutoCAD and BricsCad just draw a
simple line), so there is no advantage of using the tick instead of an arrow.
Using arrows:
dim = msp.add_linear_dim(base=(3, 2), p1=(3, 0), p2=(6, 0))
dim.set_arrow(blk="OPEN_30", size=0.25)
dim.render()
┌─────────┬───────────────────────────────────────┐
│ DIMVAR │ Description │
├─────────┼───────────────────────────────────────┤
│ dimtsz │ tick size in drawing units, set to 0 │
│ │ to use arrows │
├─────────┼───────────────────────────────────────┤
│ dimblk │ set both arrow block names at once │
├─────────┼───────────────────────────────────────┤
│ dimblk1 │ first arrow block name │
├─────────┼───────────────────────────────────────┤
│ dimblk2 │ second arrow block name │
├─────────┼───────────────────────────────────────┤
│ dimasz │ arrow size in drawing units │
└─────────┴───────────────────────────────────────┘
msp.add_linear_dim(
base=(3, 2),
p1=(3, 0),
p2=(6, 0),
override={
"dimtsz": 0, # set tick size to 0 to enable arrow usage
"dimasz": 0.25, # arrow size in drawing units
"dimblk": "OPEN_30", # arrow block name
}
).render()
The dimension line extension (dimdle) works only for a few arrow blocks and the simple tick:
• “ARCHTICK”
• “OBLIQUE”
• “NONE”
• “SMALL”
• “DOTSMALL”
• “INTEGRAL”
Arrow Shapes
[image]
Arrow Names
The arrow names are stored as attributes in the ezdxf.ARROWS object.
┌───────────────────────┬───────────────────┐
│ closed_filled │ “” (empty string) │
├───────────────────────┼───────────────────┤
│ dot │ “DOT” │
├───────────────────────┼───────────────────┤
│ dot_small │ “DOTSMALL” │
├───────────────────────┼───────────────────┤
│ dot_blank │ “DOTBLANK” │
├───────────────────────┼───────────────────┤
│ origin_indicator │ “ORIGIN” │
├───────────────────────┼───────────────────┤
│ origin_indicator_2 │ “ORIGIN2” │
├───────────────────────┼───────────────────┤
│ open │ “OPEN” │
├───────────────────────┼───────────────────┤
│ right_angle │ “OPEN90” │
├───────────────────────┼───────────────────┤
│ open_30 │ “OPEN30” │
├───────────────────────┼───────────────────┤
│ closed │ “CLOSED” │
├───────────────────────┼───────────────────┤
│ dot_smallblank │ “SMALL” │
├───────────────────────┼───────────────────┤
│ none │ “NONE” │
├───────────────────────┼───────────────────┤
│ oblique │ “OBLIQUE” │
├───────────────────────┼───────────────────┤
│ box_filled │ “BOXFILLED” │
├───────────────────────┼───────────────────┤
│ box │ “BOXBLANK” │
├───────────────────────┼───────────────────┤
│ closed_blank │ “CLOSEDBLANK” │
├───────────────────────┼───────────────────┤
│ datum_triangle_filled │ “DATUMFILLED” │
├───────────────────────┼───────────────────┤
│ datum_triangle │ “DATUMBLANK” │
├───────────────────────┼───────────────────┤
│ integral │ “INTEGRAL” │
├───────────────────────┼───────────────────┤
│ architectural_tick │ “ARCHTICK” │
├───────────────────────┼───────────────────┤
│ ez_arrow │ “EZ_ARROW” │
├───────────────────────┼───────────────────┤
│ ez_arrow_blank │ “EZ_ARROW_BLANK” │
├───────────────────────┼───────────────────┤
│ ez_arrow_filled │ “EZ_ARROW_FILLED” │
└───────────────────────┴───────────────────┘
Tolerances and Limits
The tolerances and limits features are implemented by using inline codes for the MText entity, therefore
DXF R2000 is required. It is not possible to use both tolerances and limits at the same time.
Tolerances
Geometrical tolerances are shown as additional text appended to the measurement text. It is recommend to
use set_tolerance() method in DimStyleOverride or DimStyle.
The attribute dimtp defines the upper tolerance value, dimtm defines the lower tolerance value if
present, else the lower tolerance value is the same as the upper tolerance value. Tolerance values are
shown as given!
Same upper and lower tolerance value:
dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0))
dim.set_tolerance(.1, hfactor=.4, align="top", dec=2)
dim.render()
[image]
Different upper and lower tolerance values:
dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0))
dim.set_tolerance(upper=.1, lower=.15, hfactor=.4, align="middle", dec=2)
dim.render()
[image]
The attribute dimtfac specifies a scale factor for the text height of limits and tolerance values
relative to the dimension text height, as set by dimtxt. For example, if dimtfac is set to 1.0, the text
height of fractions and tolerances is the same height as the dimension text. If dimtxt is set to 0.75,
the text height of limits and tolerances is three-quarters the size of dimension text.
Vertical justification for tolerances is specified by dimtolj:
┌─────────┬───────────────────────────────────────┐
│ dimtolj │ Description │
├─────────┼───────────────────────────────────────┤
│ 0 │ Align with bottom line of dimension │
│ │ text │
├─────────┼───────────────────────────────────────┤
│ 1 │ Align vertical centered to dimension │
│ │ text │
├─────────┼───────────────────────────────────────┤
│ 2 │ Align with top line of dimension text │
└─────────┴───────────────────────────────────────┘
┌─────────┬───────────────────────────────────────┐
│ DIMVAR │ Description │
├─────────┼───────────────────────────────────────┤
│ dimtol │ set to 1 to enable tolerances │
├─────────┼───────────────────────────────────────┤
│ dimtp │ set the maximum (or upper) tolerance │
│ │ limit for dimension text │
├─────────┼───────────────────────────────────────┤
│ dimtm │ set the minimum (or lower) tolerance │
│ │ limit for dimension text │
├─────────┼───────────────────────────────────────┤
│ dimtfac │ specifies a scale factor for the text │
│ │ height of limits and tolerance values │
│ │ relative to the dimension text │
│ │ height, as set by dimtxt. │
├─────────┼───────────────────────────────────────┤
│ dimtzin │ 4 to suppress leading zeros, 8 to │
│ │ suppress trailing zeros or 12 to │
│ │ suppress both, like dimzin for │
│ │ dimension text, see also Text │
│ │ Formatting │
├─────────┼───────────────────────────────────────┤
│ dimtolj │ set the vertical justification for │
│ │ tolerance values relative to the │
│ │ nominal dimension text. │
├─────────┼───────────────────────────────────────┤
│ dimtdec │ set the number of decimal places to │
│ │ display in tolerance values │
└─────────┴───────────────────────────────────────┘
Limits
The geometrical limits are shown as upper and lower measurement limit and replaces the usual measurement
text. It is recommend to use set_limits() method in DimStyleOverride or DimStyle.
For limits the tolerance values are drawing units scaled by measurement factor dimlfac, the upper limit
is scaled measurement value + dimtp and the lower limit is scaled measurement value - dimtm.
The attributes dimtfac, dimtzin and dimtdec have the same meaning for limits as for tolerances.
dim = msp.add_linear_dim(base=(0, 3), p1=(3, 0), p2=(6.5, 0))
dim.set_limits(upper=.1, lower=.15, hfactor=.4, dec=2)
dim.render()
[image]
┌────────┬───────────────────────────┐
│ DIMVAR │ Description │
├────────┼───────────────────────────┤
│ dimlim │ set to 1 to enable limits │
└────────┴───────────────────────────┘
Alternative Units
Alternative units are not supported.
Tutorial for Radius Dimensions
Please read the Tutorial for Linear Dimensions before, if you haven’t.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.
import ezdxf
# DXF R2010 drawing, official DXF version name: 'AC1024',
# setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)
msp = doc.modelspace() # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
# add default radius dimension, measurement text is located outside
dim = msp.add_radius_dim(
center=(0, 0), radius=3, angle=45, dimstyle="EZ_RADIUS"
)
# necessary second step, to create the BLOCK entity with the dimension geometry.
dim.render()
doc.saveas("radius_dimension.dxf")
The example above creates a 45 degrees slanted radius Dimension entity, the default dimension style
“EZ_RADIUS” is defined as 1 drawing unit = 1m, drawing scale = 1:100 and the length factor = 100, which
creates a measurement text in cm, the default location for the measurement text is outside of the circle.
The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius
defines the circle radius, which is also the measurement, and angle defines the slope of the dimension
line, it is also possible to define the circle by a measurement point mpoint on the circle.
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the
dimension entity is stored as dim.dimension.
Placing Measurement Text
There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:
• 1 drawing unit = 1m
• scale 1:100
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25
NOTE:
Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially
for the radial dimension there are less features implemented than for the linear dimension because of
the lack of good documentation.
SEE ALSO:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_radius.py shows examples for radius dimensions.
Default Text Locations Outside
Advanced “EZ_RADIUS” settings for placing the text outside of the circle:
┌────────┬───────────────────────────────────────┐
│ tmove │ 1 = add a leader when dimension text │
│ │ is moved, this is the best setting │
│ │ for text outside to preserve the │
│ │ appearance of the DIMENSION entity, │
│ │ if editing afterwards in a CAD │
│ │ application. │
├────────┼───────────────────────────────────────┤
│ dimtad │ 1 = place the text vertical above the │
│ │ dimension line │
└────────┴───────────────────────────────────────┘
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS"
)
dim.render() # always required, but not shown in the following examples
[image]
To force text outside horizontal set dimtoh to 1:
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}
)
[image]
Default Text Locations Inside
DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default
location.
The basic DIMSTYLE “EZ_RADIUS_INSIDE” settings are:
• 1 drawing unit = 1m
• scale 1:100, length_factor is 100 which creates
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25
Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:
┌──────────┬───────────────────────────────────────┐
│ tmove │ 0 = moves the dimension line with │
│ │ dimension text, this is the best │
│ │ setting for text inside to preserve │
│ │ the appearance of the DIMENSION │
│ │ entity, if editing afterwards in a │
│ │ CAD application. │
├──────────┼───────────────────────────────────────┤
│ dimtix │ 1 = force text inside │
├──────────┼───────────────────────────────────────┤
│ dimatfit │ 0 = force text inside, required by │
│ │ BricsCAD and AutoCAD │
├──────────┼───────────────────────────────────────┤
│ dimtad │ 0 = center text vertical, BricsCAD │
│ │ and AutoCAD always create a vertical │
│ │ centered text, ezdxf let you choose │
│ │ the vertical placement (above, below, │
│ │ center), but editing the DIMENSION in │
│ │ BricsCAD or AutoCAD will reset text │
│ │ to center placement. │
└──────────┴───────────────────────────────────────┘
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE"
)
[image] [image]
To force text inside horizontal set dimtih to 1:
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}
)
[image]
User Defined Text Locations
Beside the default location it is always possible to override the text location by a user defined
location. This location also determines the angle of the dimension line and overrides the argument angle.
For user defined locations it is not necessary to force text inside (dimtix=1), because the location of
the text is explicit given, therefore the DIMSTYLE “EZ_RADIUS” can be used for all this examples.
User defined location outside of the circle:
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS"
)
[image]
User defined location outside of the circle and forced horizontal text:
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}
)
[image]
User defined location inside of the circle:
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS"
)
[image] [image]
User defined location inside of the circle and forced horizontal text:
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS",
override={"dimtih": 1},
)
[image]
Center Mark/Lines
Center mark/lines are controlled by dimcen, default value is 0 for predefined dimstyles “EZ_RADIUS” and
“EZ_RADIUS_INSIDE”:
┌────┬──────────────────────────────────┐
│ 0 │ Center mark is off │
├────┼──────────────────────────────────┤
│ >0 │ Create center mark of given size │
├────┼──────────────────────────────────┤
│ <0 │ Create center lines │
└────┴──────────────────────────────────┘
dim = msp.add_radius_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS",
override={"dimcen": 0.25},
)
[image]
Overriding Measurement Text
See Linear Dimension Tutorial: Overriding Measurement Text
Measurement Text Formatting and Styling
See Linear Dimension Tutorial: Measurement Text Formatting and Styling
Tutorial for Diameter Dimensions
Please read the Tutorial for Radius Dimensions before, if you haven’t.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.
This is a repetition of the radius tutorial, just with diameter dimensions.
import ezdxf
# setup=True setups the default dimension styles
doc = ezdxf.new("R2010", setup=True)
msp = doc.modelspace() # add new dimension entities to the modelspace
msp.add_circle((0, 0), radius=3) # add a CIRCLE entity, not required
# add default diameter dimension, measurement text is located outside
dim = msp.add_diameter_dim(
center=(0, 0),
radius=3,
angle=45,
dimstyle="EZ_RADIUS"
)
dim.render()
doc.saveas("diameter_dimension.dxf")
The example above creates a 45 degrees slanted diameter Dimension entity, the default dimension style
“EZ_RADIUS” (same as for radius dimensions) is defined as 1 drawing unit = 1m, drawing scale = 1:100 and
the length factor = 100, which creates a measurement text in cm, the default location for the measurement
text is outside of the circle.
The center point defines the center of the circle but there doesn’t have to exist a circle entity, radius
defines the circle radius and angle defines the slope of the dimension line, it is also possible to
define the circle by a measurement point mpoint on the circle.
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the
dimension entity is stored as dim.dimension.
Placing Measurement Text
There are different predefined DIMSTYLES to achieve various text placing locations.
The basic DIMSTYLE “EZ_RADIUS” settings are:
• 1 drawing unit = 1m
• scale 1:100
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25
NOTE:
Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially
for the diameter dimension there are less features implemented than for the linear dimension because
of the lack of good documentation.
SEE ALSO:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_diameter.py shows examples for radius dimensions.
Default Text Locations Outside
“EZ_RADIUS” default settings for to place text outside:
┌────────┬───────────────────────────────────────┐
│ tmove │ 1 = add a leader when dimension text │
│ │ is moved, this is the best setting │
│ │ for text outside to preserve the │
│ │ appearance of the DIMENSION entity, │
│ │ if editing afterwards in a CAD │
│ │ application. │
├────────┼───────────────────────────────────────┤
│ dimtad │ 1 = place the text vertical above the │
│ │ dimension line │
└────────┴───────────────────────────────────────┘
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS"
)
dim.render() # always required, but not shown in the following examples
[image]
To force text outside horizontal set dimtoh to 1:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}
)
[image]
Default Text Locations Inside
DIMSTYLE “EZ_RADIUS_INSIDE” can be used to place the dimension text inside the circle at a default
location.
The basic DIMSTYLE settings are:
• 1 drawing unit = 1m
• scale 1:100, length_factor is 100 which creates
• the length factor dimlfac = 100, which creates a measurement text in cm.
• uses a closed filled arrow, arrow size dimasz = 0.25
Advanced “EZ_RADIUS_INSIDE” settings to place (force) the text inside of the circle:
┌──────────┬───────────────────────────────────────┐
│ tmove │ 0 = moves the dimension line with │
│ │ dimension text, this is the best │
│ │ setting for text inside to preserve │
│ │ the appearance of the DIMENSION │
│ │ entity, if editing afterwards in a │
│ │ CAD application. │
├──────────┼───────────────────────────────────────┤
│ dimtix │ 1 = force text inside │
├──────────┼───────────────────────────────────────┤
│ dimatfit │ 0 = force text inside, required by │
│ │ BricsCAD and AutoCAD │
├──────────┼───────────────────────────────────────┤
│ dimtad │ 0 = center text vertical, BricsCAD │
│ │ and AutoCAD always create a vertical │
│ │ centered text, ezdxf let you choose │
│ │ the vertical placement (above, below, │
│ │ center), but editing the DIMENSION in │
│ │ BricsCAD or AutoCAD will reset text │
│ │ to center placement. │
└──────────┴───────────────────────────────────────┘
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE"
)
[image]
To force text inside horizontal set dimtih to 1:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
angle=45,
dimstyle="EZ_RADIUS_INSIDE",
override={"dimtih": 1}
)
[image]
User Defined Text Locations
Beside the default location it is always possible to override the text location by a user defined
location. This location also determines the angle of the dimension line and overrides the argument angle.
For user defined locations it is not necessary to force text inside (dimtix=1), because the location of
the text is explicit given, therefore the DIMSTYLE “EZ_RADIUS” can be used for all this examples.
User defined location outside of the circle:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS"
)
[image]
User defined location outside of the circle and forced horizontal text:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(4, 4),
dimstyle="EZ_RADIUS",
override={"dimtoh": 1}
)
[image]
User defined location inside of the circle:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS"
)
[image]
User defined location inside of the circle and forced horizontal text:
dim = msp.add_diameter_dim(
center=(0, 0),
radius=2.5,
location=(1, 1),
dimstyle="EZ_RADIUS",
override={"dimtih": 1},
)
[image]
Center Mark/Lines
See Radius Dimension Tutorial: Center Mark/Lines
Overriding Measurement Text
See Linear Dimension Tutorial: Overriding Measurement Text
Measurement Text Formatting and Styling
See Linear Dimension Tutorial: Measurement Text Formatting and Styling
Tutorial for Angular Dimensions
Please read the Tutorial for Linear Dimensions before, if you haven’t.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.
Dimension Style “EZ_CURVED”
All factory methods to create angular dimensions uses the dimension style “EZ_CURVED” for curved
dimension lines which is defined as:
• angle unit is decimal degrees, dimaunit = 0
• measurement text height = 0.25 (drawing scale = 1:100)
• measurement text location is above the dimension line
• closed filled arrow and arrow size dimasz = 0.25
• dimazin = 2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)
This DIMENSION style only exist if the argument setup is True for creating a new DXF document by
ezdxf.new(). Every dimension style which does not exist will be replaced by the dimension style
“Standard” at DXF export by save() or saveas() (e.g. dimension style setup was not initiated).
Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:
import ezdxf
from ezdxf.tools.standards import setup_drawing
doc = ezdxf.readfile("your.dxf")
setup_drawing(doc, topics="all")
Factory Methods to Create Angular Dimensions
Defined by Center, Radius and Angles
The first example shows an angular dimension defined by the center point, radius, start- and end angles:
import ezdxf
# Create a DXF R2010 document:
# Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new("R2010", setup=True)
# Add new entities to the modelspace:
msp = doc.modelspace()
# Add an angular DIMENSION defined by the center point, start- and end angles,
# the measurement text is placed at the default location above the dimension
# line:
dim = msp.add_angular_dim_cra(
center=(5, 5), # center point of the angle
radius= 7, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees
end_angle=120, # end angle in degrees
distance=3, # distance from start of the extension lines to the dimension line
dimstyle="EZ_CURVED", # default angular dimension style
)
# Necessary second step to create the BLOCK entity with the dimension geometry.
# Additional processing of the DIMENSION entity could happen between adding
# the entity and the rendering call.
dim.render()
doc.saveas("angular_dimension_cra.dxf")
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the
dimension entity is stored as dim.dimension. [image]
Angle by 2 Lines
The next example shows an angular dimension for an angle defined by two lines:
import ezdxf
doc = ezdxf.new(setup=True)
msp = doc.modelspace()
# Setup the geometric parameters for the DIMENSION entity:
base = (5.8833, -6.3408) # location of the dimension line
p1 = (2.0101, -7.5156) # start point of 1st leg
p2 = (2.7865, -10.4133) # end point of 1st leg
p3 = (6.7054, -7.5156) # start point of 2nd leg
p4 = (5.9289, -10.4133) # end point of 2nd leg
# Draw the lines for visualization, not required to create the
# DIMENSION entity:
msp.add_line(p1, p2)
msp.add_line(p3, p4)
# Add an angular DIMENSION defined by two lines, the measurement text is
# placed at the default location above the dimension line:
dim = msp.add_angular_dim_2l(
base=base, # defines the location of the dimension line
line1=(p1, p2), # start leg of the angle
line2=(p3, p4), # end leg of the angle
dimstyle="EZ_CURVED", # default angular dimension style
)
# Necessary second step to create the dimension line geometry:
dim.render()
doc.saveas("angular_dimension_2l.dxf")
The example above creates an angular Dimension entity to measures the angle between two lines (line1 and
line2).
The base point defines the location of the dimension line (arc), any point on the dimension line is
valid. The points p1 and p2 define the first leg of the angle, p1 also defines the start point of the
first extension line. The points p3 and p4 define the second leg of the angle and point p3 also defines
the start point of the second extension line.
The measurement of the DIMENSION entity is the angle enclosed by the first and the second leg and where
the dimension line passes the base point. [image]
Angle by 3 Points
The next example shows an angular dimension defined by three points, a center point and the two end
points of the angle legs:
import ezdxf
doc = ezdxf.new(setup=True)
msp = doc.modelspace()
msp.add_angular_dim_3p(
base=(0, 7), # location of the dimension line
center=(0, 0), # center point
p1=(-3, 5), # end point of 1st leg = start angle
p2=(3, 5), # end point of 2nd leg = end angle
).render()
[image]
Angle from ConstructionArc
The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.
Add an angular dimension to an ARC entity:
import ezdxf
doc = ezdxf.new(setup=True)
msp = doc.modelspace()
arc = msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,
end_angle = 120,
)
msp.add_angular_dim_arc(
arc.construction_tool(),
distance=2,
).render()
[image]
Placing Measurement Text
The default location of the measurement text depends on various DimStyle parameters and is applied if no
user defined text location is defined.
NOTE:
Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially
for the angular dimension there are less features implemented than for the linear dimension because of
the lack of good documentation.
SEE ALSO:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_angular.py shows examples for angular dimensions.
Default Text Locations
The DIMSTYLE “EZ_CURVED” places the measurement text in the center of the angle above the dimension line.
The first examples above show the measurement text at the default text location.
The text direction angle is always perpendicular to the line from the text center to the center point of
the angle unless this angle is manually overridden.
The “vertical” location of the measurement text relative to the dimension line is defined by dimtad:
┌───┬───────────────────────────────────────┐
│ 0 │ Center, it is possible to adjust the │
│ │ vertical location by dimtvp │
├───┼───────────────────────────────────────┤
│ 1 │ Above │
├───┼───────────────────────────────────────┤
│ 2 │ Outside, handled like Above by ezdxf │
├───┼───────────────────────────────────────┤
│ 3 │ JIS, handled like Above by ezdxf │
├───┼───────────────────────────────────────┤
│ 4 │ Below │
└───┴───────────────────────────────────────┘
msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={
"dimtad": 1, # 0=center; 1=above; 4=below;
},
).render()
[image]
Arrows and measurement text are placed “outside” automatically if the available space between the
extension lines isn’t sufficient. This overrides the dimtad value by 1 (“above”). Ezdxf follows its own
rules, ignores the dimatfit attribute and works similar to dimatfit = 1, move arrows first, then text:
[image]
Shift Text From Default Location
The method shift_text() shifts the measurement text away from the default location. The shifting
direction is aligned to the text rotation of the default measurement text.
dim = msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
)
# shift text from default text location:
dim.shift_text(0.5, 1.0)
dim.render()
[image]
This is just a rendering effect, editing the dimension line in a CAD application resets the text to the
default location.
User Defined Text Locations
Beside the default location it is always possible to override the text location by a user defined
location.
The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the
WCS.
Absolute User Location
Absolute placing of the measurement text means relative to the origin of the render UCS. The user
location is stored in the DIMENSION entity, which means editing the dimension line in a CAD application
does not alter the text location. This location also determines the rotation of the measurement text.
dim = msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
location=(5, 8), # user defined measurement text location
)
dim.render()
[image]
Relative User Location
Relative placing of the measurement text means relative to the middle of the dimension line. This is only
possible by calling the set_location() method, and the argument relative has to be True. The user
location is stored in the DIMENSION entity, which means editing the dimension line in a CAD application
does not alter the text location. This location also determines the rotation of the measurement text.
dim = msp.add_angular_dim_cra(
center=(3, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
)
dim.set_location((1, 2), relative=True)
dim.render()
[image]
Adding a Leader
The method set_location() has the option to add a leader line to the measurement text. This also aligns
the text rotation to the render UCS x-axis, this means in the default case the measurement text is
horizontal. The leader line can be “below” the text or start at the “left” or “right” center of the
text, this location is defined by the dimtad attribute, 0 means “center” and any value != 0 means
“below”.
for dimtad, x in [(0, 0), (4, 6)]:
dim = msp.add_angular_dim_cra(
center=(3 + x, 3),
radius=3,
distance=1,
start_angle=60,
end_angle=120,
override={"dimtad": dimtad} # "center" == 0; "below" != 0;
)
dim.set_location((1, 2), relative=True, leader=True)
dim.render()
[image]
Advanced version which calculates the relative text location: The user location vector has a length 2 and
the orientation is defined by center_angle pointing away from the center of the angle.
import ezdxf
from ezdxf.math import Vec3
doc = ezdxf.new(setup=True)
msp = doc.modelspace()
for dimtad, y, leader in [
[0, 0, False],
[0, 7, True],
[4, 14, True],
]:
for x, center_angle in [
(0, 0), (7, 45), (14, 90), (21, 135), (26, 225), (29, 270)
]:
dim = msp.add_angular_dim_cra(
center=(x, y),
radius=3.0,
distance=1.0,
start_angle=center_angle - 15.0,
end_angle=center_angle + 15.0,
override={"dimtad": dimtad},
)
# The user location is relative to the center of the dimension line:
usr_location = Vec3.from_deg_angle(angle=center_angle, length=2.0)
dim.set_location(usr_location, leader=leader, relative=True)
dim.render()
[image]
Overriding Text Rotation
All factory methods supporting the argument text_rotation can override the measurement text rotation.
The user defined rotation is relative to the render UCS x-axis (default is WCS).
This example uses a relative text location without a leader and forces the text rotation to 90 degrees:
for x, center_angle in [(7, 45), (14, 90), (21, 135)]:
dim = msp.add_angular_dim_cra(
center=(x, 0),
radius=3.0,
distance=1.0,
start_angle=center_angle - 15.0,
end_angle=center_angle + 15.0,
text_rotation=90, # vertical text
)
usr_location = Vec3.from_deg_angle(angle=center_angle, length=1.0)
dim.set_location(usr_location, leader=False, relative=True)
dim.render()
[image]
Angular Units
Angular units are set by dimaunit:
┌───┬───────────────────────────────────────┐
│ 0 │ Decimal degrees │
├───┼───────────────────────────────────────┤
│ 1 │ Degrees/Minutes/Seconds, dimadec │
│ │ controls the shown precision │
│ │ │
│ │ • dimadec=0: 30° │
│ │ │
│ │ • dimadec=2: 30°35’ │
│ │ │
│ │ • dimadec=4: 30°35’25” │
│ │ │
│ │ • dimadec=7: 30°35’25.15” │
├───┼───────────────────────────────────────┤
│ 2 │ Grad │
├───┼───────────────────────────────────────┤
│ 3 │ Radians │
└───┴───────────────────────────────────────┘
d1 = 15
d2 = 15.59031944
for x, (dimaunit, dimadec) in enumerate(
[
(0, 4),
(1, 7),
(2, 4),
(3, 4),
]
):
dim = msp.add_angular_dim_cra(
center=(x * 4.0, 0.0),
radius=3.0,
distance=1.0,
start_angle=90.0 - d1,
end_angle=90.0 + d2,
override={
"dimaunit": dimaunit,
"dimadec": dimadec,
},
)
dim.render()
[image] [image]
Overriding Measurement Text
See Linear Dimension Tutorial: Overriding Measurement Text
Measurement Text Formatting and Styling
See Linear Dimension Tutorial: Measurement Text Formatting and Styling
Tolerances and Limits
See Linear Dimension Tutorial: Tolerances and Limits
Tutorial for Arc Dimensions
Please read the Tutorial for Linear Dimensions before, if you haven’t. This is a repetition of the
Tutorial for Angular Dimensions, because ezdxf reuses the angular dimension to render arc dimensions.
This approach is very different to CAD applications, but also much less work.
NOTE:
Ezdxf does not render the arc dimension like CAD applications and does not consider all DIMSTYLE
variables, so the rendering results are very different from CAD applications.
Dimension Style “EZ_CURVED”
All factory methods to create arc dimensions uses the dimension style “EZ_CURVED” for curved dimension
lines which is defined as:
• angle unit is decimal degrees, dimaunit = 0
• measurement text height = 0.25 (drawing scale = 1:100)
• measurement text location is above the dimension line
• closed filled arrow and arrow size dimasz = 0.25
• dimzin = 2, suppresses trailing zeros (e.g. 12.5000 becomes 12.5)
• dimarcsym = 2, disables the arc symbol, 0 renders only an open round bracket “(” in front of the text
and 1 for arc symbol above the text is not supported, renders like disabled
For more information go to: Dimension Style “EZ_CURVED”
Factory Methods to Create Arc Dimensions
Defined by Center, Radius and Angles
The first example shows an arc dimension defined by the center point, radius, start- and end angles:
import ezdxf
# Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new(setup=True)
# Add new entities to the modelspace:
msp = doc.modelspace()
# Add an arc DIMENSION defined by the center point, start- and end angles,
# the measurement text is placed at the default location above the dimension
# line:
dim = msp.add_arc_dim_cra(
center=(5, 5), # center point of the angle
radius=5, # distance from center point to the start of the extension lines
start_angle=60, # start angle in degrees
end_angle=120, # end angle in degrees
distance=2, # distance from start of the extension lines to the dimension line
dimstyle="EZ_CURVED", # default angular dimension style
)
# Necessary second step to create the BLOCK entity with the dimension geometry.
# Additional processing of the DIMENSION entity could happen between adding
# the entity and the rendering call.
dim.render()
doc.saveas("arc_dimension_cra.dxf")
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the
dimension entity is stored as dim.dimension. [image]
Arc by 3 Points
The next example shows an angular dimension defined by three points, a center point and the two end
points of the angle legs, the first point defines the radius, the second point defines only the end
angle, the distance from the center point is not relevant:
import ezdxf
doc = ezdxf.new(setup=True)
msp = doc.modelspace()
msp.add_arc_dim_3p(
base=(0, 7), # location of the dimension line
center=(0, 0), # center point
p1=(2.5, 4.330127018922193), # 1st point of arc defines start angle and radius
p2=(-2.5, 4.330127018922194), # 2nd point defines the end angle
).render()
[image]
Angle from ConstructionArc
The ezdxf.math.ConstructionArc provides various class methods for creating arcs and the construction tool
can be created from an ARC entity.
Add an angular dimension to an ARC entity:
import ezdxf
doc = ezdxf.new(setup=True)
msp = doc.modelspace()
arc = msp.add_arc(
center=(0, 0),
radius=5,
start_angle = 60,
end_angle = 120,
)
msp.add_arc_dim_arc(
arc.construction_tool(),
distance=2,
).render()
Placing Measurement Text
The default location of the measurement text depends on various DimStyle parameters and is applied if no
user defined text location is defined.
NOTE:
Not all possibles features of DIMSTYLE are supported by the ezdxf rendering procedure and especially
for the arc dimension there are less features implemented than for the linear dimension because of the
lack of good documentation. If the arc symbol is enabled (dimarcsym = 0) only an open round bracket
“(” is rendered in front of the measurement text!
SEE ALSO:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_arc.py shows examples for angular dimensions.
Default Text Locations
The DIMSTYLE “EZ_CURVED” places the measurement text in the center of the angle above the dimension line.
The first examples above show the measurement text at the default text location.
The text direction angle is always perpendicular to the line from the text center to the center point of
the angle unless this angle is manually overridden.
Arrows and measurement text are placed “outside” automatically if the available space between the
extension lines isn’t sufficient.
For more information go to: Default Text Locations
Shift Text From Default Location
The method shift_text() shifts the measurement text away from the default location. The shifting
direction is aligned to the text rotation of the default measurement text.
For more information go to: Shift Text From Default Location
User Defined Text Locations
Beside the default location it is always possible to override the text location by a user defined
location.
The coordinates of user locations are located in the rendering UCS and the default rendering UCS is the
WCS.
For more information go to: User Defined Text Locations
Absolute User Location
Absolute placing of the measurement text means relative to the origin of the render UCS.
For more information go to: User Defined Text Locations
Relative User Location
Relative placing of the measurement text means relative to the middle of the dimension line.
For more information go to: User Defined Text Locations
Adding a Leader
Add a leader line to the measurement text and set the text rotation to “horizontal”.
For more information go to: User Defined Text Locations
Overriding Text Rotation
All factory methods supporting the argument text_rotation can override the measurement text rotation.
The user defined rotation is relative to the render UCS x-axis (default is WCS).
For more information go to: User Defined Text Locations
Overriding Measurement Text
See Linear Dimension Tutorial: Overriding Text Rotation
Measurement Text Formatting and Styling
See Linear Dimension Tutorial: Measurement Text Formatting and Styling
Tolerances and Limits
See Linear Dimension Tutorial: Tolerances and Limits
Tutorial for Ordinate Dimensions
Please read the Tutorial for Linear Dimensions before, if you haven’t.
NOTE:
Ezdxf does not consider all DIMSTYLE variables, so the rendering results are different from CAD
applications.
Local Coordinate System
Ordinate dimensioning is used when the x- and the y-coordinates from a location (feature), are the only
dimensions necessary. The dimensions to each feature, originate from one datum location, called “origin”
in this tutorial.
The local coordinate system (LCS) in which the measurement is done, is defined by the origin and the
rotation angle around the z-axis in the rendering UCS, which is the WCS by default.
Factory Methods to Create Ordinate Dimensions
All factory methods for creating ordinate dimensions expect global coordinates to define the feature
location.
Global Feature Location
The first example shows ordinate dimensions defined in the render UCS, in this example the WCS, this is
how the DIMENSION entity expects the coordinates of the feature location:
import ezdxf
from ezdxf.math import Vec3
from ezdxf.render import forms
# Use argument setup=True to setup the default dimension styles.
doc = ezdxf.new(setup=True)
# Add new entities to the modelspace:
msp = doc.modelspace()
# Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3)
origin = Vec3(2, 3)
msp.add_lwpolyline(
forms.translate(forms.box(4, 2.5), origin),
close=True
)
# Add an x-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_x_dim(
# lower left corner
feature_location=origin + (0, 0), # feature location in the WCS
offset=(0, -2), # end of leader, relative to the feature location
origin=origin,
).render()
msp.add_ordinate_x_dim(
# lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(0, -2),
origin=origin,
).render()
# Add an y-type ordinate DIMENSION with global feature locations:
msp.add_ordinate_y_dim(
# lower right corner
feature_location=origin + (4, 0), # feature location in the WCS
offset=(2, 0),
origin=origin,
).render()
msp.add_ordinate_y_dim(
# upper right corner
feature_location=origin + (4, 2.5), # feature location in the WCS
offset=(2, 0),
origin=origin,
).render()
# Necessary second step to create the BLOCK entity with the dimension geometry.
# Additional processing of the DIMENSION entity could happen between adding
# the entity and the rendering call.
doc.saveas("ord_global_features.dxf")
The return value dim is not a dimension entity, instead a DimStyleOverride object is returned, the
dimension entity is stored as dim.dimension. [image]
Local Feature Location
The previous examples shows that the calculation of the global feature location is cumbersome and it gets
even more complicated for a rotated LCS.
This example shows how to use a render UCS for using locale coordinates to define the feature locations:
import ezdxf
from ezdxf.math import Vec3, UCS
from ezdxf.render import forms
doc = ezdxf.new(setup=True)
msp = doc.modelspace()
# Create a special DIMSTYLE for "vertical" centered measurement text:
dimstyle = doc.dimstyles.duplicate_entry("EZDXF", "ORD_CENTER")
dimstyle.dxf.dimtad = 0 # "vertical" centered measurement text
# Add a rectangle: width=4, height = 2.5, lower left corner is WCS(x=2, y=3),
# rotated about 30 degrees:
origin = Vec3(2, 3)
msp.add_lwpolyline(
forms.translate(forms.rotate(forms.box(4, 2.5), 30), origin),
close=True
)
# Define the rotated local render UCS.
# The origin is the lower-left corner of the rectangle and the axis are
# aligned to the rectangle edges:
# The y-axis "uy" is calculated automatically by the right-hand rule.
ucs = UCS(origin, ux=Vec3.from_deg_angle(30), uz=(0, 0, 1))
# Add a x-type ordinate DIMENSION with local feature locations:
# the origin is now the origin of the UCS, which is (0, 0) the default value of
# "origin" and the feature coordinates are located in the UCS:
msp.add_ordinate_x_dim(
# lower left corner
feature_location=(0, 0), # feature location in the UCS
offset=(0.25, -2), # # leader with a "knee"
dimstyle="ORD_CENTER",
).render(ucs=ucs) # Important when using a render UCS!
msp.add_ordinate_x_dim(
# lower right corner
feature_location=(4, 0), # feature location in the UCS
offset=(0.25, -2), # leader with a "knee"
dimstyle="ORD_CENTER",
).render(ucs=ucs) # Important when using a render UCS!
# Add a y-type ordinate DIMENSION with local feature coordinates:
msp.add_ordinate_y_dim(
# lower right corner
feature_location=(4, 0), # feature location in the UCS
offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",
).render(ucs=ucs) # Important when using a render UCS!
msp.add_ordinate_y_dim(
# upper right corner
feature_location=(4, 2.5), # feature location in the UCS
offset=(2, 0.25), # leader with a "knee"
dimstyle="ORD_CENTER",
).render(ucs=ucs) # Important when using a render UCS!
doc.saveas("ord_local_features.dxf")
[image]
Placing Measurement Text
The ezdxf ordinate DIMENSION renderer places the measurement text always at the default location, because
the location of the leader end point is given by the argument offset in the factory methods, which
provides a flexible way to place the measurement text, overriding the text location by an explicit user
location is not supported, also the user text rotation is not supported, the text is always aligned to
the local coordinate system x- and y-axis.
SEE ALSO:
• Graphical reference of many DIMVARS and some advanced information: DIMSTYLE Table
• Source code file standards.py shows how to create your own DIMSTYLES.
• The Script dimension_ordinate.py shows examples for angular dimensions.
Overriding Measurement Text
See Linear Dimension Tutorial: Overriding Text Rotation
Measurement Text Formatting and Styling
See Linear Dimension Tutorial: Measurement Text Formatting and Styling
Tolerances and Limits
See Linear Dimension Tutorial: Tolerances and Limits
Tutorial for the Geo Add-on
This tutorial shows how to load a GPS track into a geo located DXF file and also the inverse operation,
exporting geo located DXF entities as GeoJSON files.
Please read the section Intended Usage in the documentation of the ezdxf.addons.geo module first.
WARNING:
TO ALL BEGINNERS!
If you are just learning to work with geospatial data, using DXF files is not the way to go! DXF is
not the first choice for storing data for spatial data analysts. If you run into problems I cannot
help you as I am just learning myself.
The complete source code and test data for this tutorial are available in the github repository:
https://github.com/mozman/ezdxf/tree/master/docs/source/tutorials/src/geo
Setup Geo Location Reference
The first step is setting up the geo location reference, which is not doable with ezdxf yet - this
feature may come in the future - but for now you have to use a CAD application to do this. If the DXF
file has no geo location reference the projected 2D coordinates are most likely far away from the WCS
origin (0, 0), use the CAD command “ZOOM EXTENDS” to find the data.
Load GPX Data
The GPX format stores GPS data in a XML format, use the ElementTree class to load the data:
def load_gpx_track(p: Path) -> Iterable[Tuple[float, float]]:
"""Load all track points from all track segments at once."""
gpx = ET.parse(p)
root = gpx.getroot()
for track_point in root.findall(".//gpx:trkpt", GPX_NS):
data = track_point.attrib
# Elevation is not supported by the geo add-on.
yield float(data["lon"]), float(data["lat"])
The loaded GPS data has a WSG84 EPSG:4326 projection as longitude and latitude in decimal degrees. The
next step is to create a GeoProxy object from this data, the GeoProxy.parse() method accepts a
__geo_interface__ mapping or a Python object with a __geo_interface__ attribute/property. In this case as
simple “LineString” object for all GPS points is sufficient:
def add_gpx_track(msp, track_data, layer: str):
geo_mapping = {
"type": "LineString",
"coordinates": track_data,
}
geo_track = geo.GeoProxy.parse(geo_mapping)
Transform the data from the polar representation EPSG:4326 into a 2D cartesian map representation
EPSG:3395 called “World Mercator”, this is the only projection supported by the add-on, without the need
to write a custom transformation function:
geo_track.globe_to_map()
The data is now transformed into 2D cartesian coordinates in meters and most likely far away from origin
(0, 0), the data stored in the GEODATA entity helps to transform the data into the DXF WCS in modelspace
units, if the DXF file has no geo location reference you have to stick with the large coordinates:
# Load geo data information from the DXF file:
geo_data = msp.get_geodata()
if geo_data:
# Get the transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation()
else:
# Identity matrix for DXF files without a geo location reference:
m = Matrix44()
epsg = 3395
# Check for compatible projection:
if epsg == 3395:
# Transform CRS coordinates into DXF WCS:
geo_track.crs_to_wcs(m)
# Create DXF entities (LWPOLYLINE)
for entity in geo_track.to_dxf_entities(dxfattribs={"layer": layer}):
# Add entity to the modelspace:
msp.add_entity(entity)
else:
print(f"Incompatible CRS EPSG:{epsg}")
We are ready to save the final DXF file:
doc.saveas(str(out_path))
In BricsCAD the result looks like this, the underlying images were added by the BricsCAD command
MAPCONNECT and such a feature is not planned for the add-on: [image]
Export DXF Entities as GeoJSON
This will only work with a proper geo location reference, the code shown accepts also WCS data from DXF
files without a GEODATA object, but the result is just unusable - but in valid GeoJSON notation.
First get epsg code and the CRS transformation matrix:
# Get the geo location information from the DXF file:
geo_data = msp.get_geodata()
if geo_data:
# Get transformation matrix and epsg code:
m, epsg = geo_data.get_crs_transformation()
else:
# Identity matrix for DXF files without geo reference data:
m = Matrix44()
Query the DXF entities to export:
for track in msp.query("LWPOLYLINE"):
export_geojson(track, m)
Create a GeoProxy object from the DXF entity:
def export_geojson(entity, m):
# Convert DXF entity into a GeoProxy object:
geo_proxy = geo.proxy(entity)
Transform DXF WCS coordinates in modelspace units into the CRS coordinate system by the transformation
matrix m:
# Transform DXF WCS coordinates into CRS coordinates:
geo_proxy.wcs_to_crs(m)
The next step assumes a EPSG:3395 projection, everything else needs a custom transformation function:
# Transform 2D map projection EPSG:3395 into globe (polar)
# representation EPSG:4326
geo_proxy.map_to_globe()
Use the json module from the Python standard library to write the GeoJSON data, provided by the
GeoProxy.__geo_interface__ property:
# Export GeoJSON data:
name = entity.dxf.layer + ".geojson"
with open(TRACK_DATA / name, "wt", encoding="utf8") as fp:
json.dump(geo_proxy.__geo_interface__, fp, indent=2)
The content of the GeoJSON file looks like this:
{
"type": "LineString",
"coordinates": [
[
15.430999,
47.06503
],
[
15.431039,
47.064797
],
[
15.431206,
47.064582
],
[
15.431283,
47.064342
],
...
}
Custom Transformation Function
This sections shows how to use the GDAL package to write a custom transformation function. The example
reimplements the builtin transformation from unprojected WGS84 coordinates to 2D map coordinates
EPSG:3395 “World Mercator”:
from osgeo import osr
from ezdxf.math import Vec3
# GPS track in WGS84, load_gpx_track() code see above
gpx_points = list(load_gpx_track('track1.gpx'))
# Create source coordinate system:
src_datum = osr.SpatialReference()
src_datum.SetWellKnownGeoCS('WGS84')
# Create target coordinate system:
target_datum = osr.SpatialReference()
target_datum.SetWellKnownGeoCS('EPSG:3395')
# Create transformation object:
ct = osr.CoordinateTransform(src_datum, target_datum)
# Create GeoProxy() object:
geo_proxy = GeoProxy.parse({
'type': 'LineString',
'coordinates': gpx_points
})
# Apply a custom transformation function to all coordinates:
geo_proxy.apply(lambda v: Vec3(ct.TransformPoint(v.x, v.y)))
The same example with the pyproj package:
from pyproj import Transformer
from ezdxf.math import Vec3
# GPS track in WGS84, load_gpx_track() code see above
gpx_points = list(load_gpx_track('track1.gpx'))
# Create transformation object:
ct = Transformer.from_crs('EPSG:4326', 'EPSG:3395')
# Create GeoProxy() object:
geo_proxy = GeoProxy.parse({
'type': 'LineString',
'coordinates': gpx_points
})
# Apply a custom transformation function to all coordinates:
geo_proxy.apply(lambda v: Vec3(ct.transform(v.x, v.y)))
Polygon Validation by Shapely
Ezdxf tries to avoid to create invalid polygons from HATCH entities like a hole in another hole, but not
all problems are detected by ezdxf, especially overlapping polygons. For a reliable and robust result use
the Shapely package to check for valid polygons:
import ezdxf
from ezdxf.addons import geo
from shapely.geometry import shape
# Load DXF document including HATCH entities.
doc = ezdxf.readfile('hatch.dxf')
msp = doc.modelspace()
# Test a single entity
# Get the first DXF hatch entity:
hatch_entity = msp.query('HATCH').first
# Create GeoProxy() object:
hatch_proxy = geo.proxy(hatch_entity)
# Shapely supports the __geo_interface__
shapely_polygon = shape(hatch_proxy)
if shapely_polygon.is_valid:
...
else:
print(f'Invalid Polygon from {str(hatch_entity)}.')
# Remove invalid entities by a filter function
def validate(geo_proxy: geo.GeoProxy) -> bool:
# Multi-entities are divided into single entities:
# e.g. MultiPolygon is verified as multiple single Polygon entities.
if geo_proxy.geotype == 'Polygon':
return shape(geo_proxy).is_valid
return True
# The gfilter() function let only pass compatible DXF entities
msp_proxy = geo.GeoProxy.from_dxf_entities(geo.gfilter(msp))
# remove all mappings for which validate() returns False
msp_proxy.filter(validate)
Interface to GDAL/OGR
The GDAL/OGR package has no direct support for the __geo_interface__, but has builtin support for the
GeoJSON format:
from osgeo import ogr
from ezdxf.addons import geo
from ezdxf.render import random_2d_path
import json
p = geo.GeoProxy({'type': 'LineString', 'coordinates': list(random_2d_path(20))})
# Create a GeoJSON string from the __geo_interface__ object by the json
# module and feed the result into ogr:
line_string = ogr.CreateGeometryFromJson(json.dumps(p.__geo_interface__))
# Parse the GeoJSON string from ogr by the json module and feed the result
# into a GeoProxy() object:
p2 = geo.GeoProxy.parse(json.loads(line_string.ExportToJson()))
Storing Custom Data in DXF Files
This tutorial describes how to store custom data in DXF files using standard DXF features.
Saving data in comments is not covered in this section, because comments are not a reliable way to store
information in DXF files and ezdxf does not support adding comments to DXF files. Comments are also
ignored by ezdxf and many other DXF libraries when loading DXF files, but there is a ezdxf.comments
module to load comments from DXF files.
The DXF data format is a very versatile and flexible data format and supports various ways to store
custom data. This starts by setting special header variables, storing XData, AppData and extension
dictionaries in DXF entities and objects, storing XRecords in the OBJECTS section and ends by using proxy
entities or even extending the DXF format by user defined entities and objects.
This is the common prolog for all Python code examples shown in this tutorial:
import ezdxf
doc = ezdxf.new()
msp = doc.modelspace()
Retrieving User Data
Retrieving the custom data is a simple task by ezdxf, but often not possible in CAD applications without
using the scripting features (AutoLISP) or even the SDK.
AutoLISP Resources
• Autodesk Developer Documentation
• AfraLISP
• Lee Mac Programming
WARNING:
I have no experience with AutoLISP so far and I created this scripts for AutoLISP while writing this
tutorial. There may be better ways to accomplish these tasks, and feedback on this is very welcome.
Everything is tested with BricsCAD and should also work with the full version of AutoCAD.
Header Section
The HEADER section has tow ways to store custom data.
Predefined User Variables
There are ten predefined user variables, five 16-bit integer variables called $USERI1 up to $USERI5 and
five floating point variables (reals) called $USERR1 up to $USERR5. This is very limited and the data
maybe will be overwritten by the next application which opens and saves the DXF file. Advantage of this
methods is, it works for all supported DXF versions starting at R12.
Settings the data:
doc.header["$USERI1"] = 4711
doc.header["$USERR1"] = 3.141592
Getting the data by ezdxf:
i1 = doc.header["$USERI1"]
r1 = doc.header["$USERR1"]
Getting the data in BricsCAD at the command line:
: USERI1
New current value for USERI1 (-32768 to 32767) <4711>:
Getting the data by AutoLISP:
: (getvar 'USERI1)
4711
Setting the value by AutoLISP:
: (setvar 'USERI1 1234)
1234
Custom Document Properties
This method defines custom document properties, but requires at least DXF R2004. The custom document
properties are stored in a CustomVars instance in the custom_vars attribute of the HeaderSection object
and supports only string values.
Settings the data:
doc.header.custom_vars.append("MyFirstVar", "First Value")
Getting the data by ezdxf:
my_first_var = doc.header.custom_vars.get("MyFirstVar", "Default Value")
The document property MyFirstVar is available in BricsCAD as FIELD variable: [image]
AutoLISP script for getting the custom document properties:
(defun C:CUSTOMDOCPROPS (/ Info Num Index Custom)
(vl-load-com)
(setq acadObject (vlax-get-acad-object))
(setq acadDocument (vla-get-ActiveDocument acadObject))
;;Get the SummaryInfo
(setq Info (vlax-get-Property acadDocument 'SummaryInfo))
(setq Num (vla-NumCustomInfo Info))
(setq Index 0)
(repeat Num
(vla-getCustomByIndex Info Index 'ID 'Value)
(setq Custom (cons (cons ID Value) Custom))
(setq Index (1+ Index))
) ;repeat
(if Custom (reverse Custom))
)
Running the script in BricsCAD:
: (load "customdocprops.lsp")
C:CUSTOMDOCPROPS
: CUSTOMDOCPROPS
(("MyFirstVar" . "First Value"))
Meta Data
Starting with version v0.16.4 ezdxf stores some meta data in the DXF file and the AppID EZDXF will be
created. Two entries will be added to the MetaData instance, the CREATED_BY_EZDXF for DXF documents
created by ezdxf and the entry WRITTEN_BY_EZDXF if the DXF document will be saved by ezdxf. The marker
string looks like this "0.17b0 @ 2021-09-18T05:14:37.921826+00:00" and contains the ezdxf version and an
UTC timestamp in ISO format.
You can add your own data to the MetaData instance as a string with a maximum of 254 characters and
choose a good name which may never be used by ezdxf in the future.
metadata = doc.ezdxf_metadata()
metadata["MY_UNIQUE_KEY"] = "my additional meta data"
print(metadata.get("CREATED_BY_EZDXF"))
print(metadata.get("MY_UNIQUE_KEY"))
The data is stored as XDATA in then BLOCK entity of the model space for DXF R12 and for DXF R2000 and
later as a DXF Dictionary in the root dictionary by the key EZDXF_META. See following chapters for
accessing such data by AutoLISP.
XDATA
Extended Data (XDATA) is a way to attach arbitrary data to DXF entities. Each application needs a unique
AppID registered in the AppID table to add XDATA to an entity. The AppID ACAD is reserved and by using
ezdxf the AppID EZDXF is also registered automatically. The total size of XDATA for a single DXF entity
is limited to 16kB for AutoCAD. XDATA is supported by all DXF versions and is accessible by AutoLISP.
The valid group codes for extended data are limited to the following values, see also the internals of
Extended Data:
┌────────────┬───────────────────────────────────────┐
│ Group Code │ Description │
├────────────┼───────────────────────────────────────┤
│ 1000 │ Strings up to 255 bytes long │
├────────────┼───────────────────────────────────────┤
│ 1001 │ (fixed) Registered application name │
│ │ up to 31 bytes long │
├────────────┼───────────────────────────────────────┤
│ 1002 │ (fixed) An extended data control │
│ │ string '{' or '}' │
├────────────┼───────────────────────────────────────┤
│ 1004 │ Binary data │
├────────────┼───────────────────────────────────────┤
│ 1005 │ Database Handle of entities in the │
│ │ drawing database │
├────────────┼───────────────────────────────────────┤
│ 1010 │ 3D point, in the order X, Y, Z that │
│ │ will not be modified at any │
│ │ transformation of the entity │
├────────────┼───────────────────────────────────────┤
│ 1011 │ A WCS point that is moved, scaled, │
│ │ rotated and mirrored along with the │
│ │ entity │
├────────────┼───────────────────────────────────────┤
│ 1012 │ A WCS displacement that is scaled, │
│ │ rotated and mirrored along with the │
│ │ entity, but not moved │
├────────────┼───────────────────────────────────────┤
│ 1013 │ A WCS direction that is rotated and │
│ │ mirrored along with the entity but │
│ │ not moved and scaled. │
├────────────┼───────────────────────────────────────┤
│ 1040 │ A real value │
├────────────┼───────────────────────────────────────┤
│ 1041 │ Distance, a real value that is scaled │
│ │ along with the entity │
├────────────┼───────────────────────────────────────┤
│ 1042 │ Scale Factor, a real value that is │
│ │ scaled along with the entity │
├────────────┼───────────────────────────────────────┤
│ 1070 │ A 16-bit integer (signed or unsigned) │
├────────────┼───────────────────────────────────────┤
│ 1071 │ A 32-bit signed (long) integer │
└────────────┴───────────────────────────────────────┘
Group codes are not unique in the XDATA section and can be repeated, therefore tag order matters.
# register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add(APPID)
# create a DXF entity
line = msp.add_line((0, 0), (1, 0))
# setting the data
line.set_xdata(APPID, [
# basic types
(1000, "custom text"),
(1040, 3.141592),
(1070, 4711), # 16bit
(1071, 1_048_576), # 32bit
# points and vectors
(1010, (10, 20, 30)),
(1011, (11, 21, 31)),
(1012, (12, 22, 32)),
(1013, (13, 23, 33)),
# scaled distances and factors
(1041, 10),
(1042, 10),
])
# getting the data
if line.has_xdata(APPID):
tags = line.get_xdata(APPID)
print(f"{str(line)} has {len(tags)} tags of XDATA for AppID {APPID!r}")
for tag in tags:
print(tag)
AutoLISP script for getting XDATA for AppID YOUR_UNIQUE_ID:
(defun C:SHOWXDATA (/ entity_list xdata_list)
(setq entity_list (entget (car (entsel)) '("YOUR_UNIQUE_ID")))
(setq xdata_list (assoc -3 entity_list))
(car (cdr xdata_list))
)
Script output:
: SHOWXDATA
Select entity: ("YOUR_UNIQUE_ID" (1000 . "custom text") (1040 . 3.141592) ...
SEE ALSO:
• AfraLISP XDATA tutorial
• Extended Data (XDATA) Reference
XDATA Helper Classes
The XDataUserList and XDataUserDict are helper classes to manage XDATA content in a simple way.
Both classes store the Python types int, float and str and the ezdxf type Vec3. As the names suggests has
the XDataUserList a list-like interface and the XDataUserDict a dict-like interface. This classes can not
contain additional container types, but multiple lists and/or dicts can be stored in the same XDATA
section for the same AppID.
These helper classes uses a fixed group code for each data type:
┌──────┬──────────────────────────┐
│ 1001 │ strings (max. 255 chars) │
├──────┼──────────────────────────┤
│ 1040 │ floats │
├──────┼──────────────────────────┤
│ 1071 │ 32-bit ints │
├──────┼──────────────────────────┤
│ 1010 │ Vec3 │
└──────┴──────────────────────────┘
Additional required imports for these examples:
from ezdxf.math import Vec3
from ezdxf.entities.xdata import XDataUserDict, XDataUserList
Example for XDataUserDict:
Each XDataUserDict has a unique name, the default name is “DefaultDict” and the default AppID is EZDXF.
If you use your own AppID, don’t forget to create the requited AppID table entry like
doc.appids.new("MyAppID"), otherwise AutoCAD will not open the DXF file.
doc = ezdxf.new()
msp = doc.modelspace()
line = msp.add_line((0, 0), (1, 0))
with XDataUserDict.entity(line) as user_dict:
user_dict["CreatedBy"] = "mozman"
user_dict["Float"] = 3.1415
user_dict["Int"] = 4711
user_dict["Point"] = Vec3(1, 2, 3)
If you modify the content of without using the context manager entity(), you have to call commit() by
yourself, to transfer the modified data back into the XDATA section.
Getting the data back from an entity:
with XDataUserDict.entity(line) as user_dict:
print(user_dict)
# acts like any other dict()
storage = dict(user_dict)
Example for XDataUserList:
This example stores the data in a XDataUserList named “AppendedPoints”, the default name is “DefaultList”
and the default AppID is EZDXF.
with XDataUserList.entity(line, name="AppendedPoints") as user_list:
user_list.append(Vec3(1, 0, 0))
user_list.append(Vec3(0, 1, 0))
user_list.append(Vec3(0, 0, 1))
Now the content of both classes are stored in the same XDATA section for AppID EZDXF. The XDataUserDict
is stored by the name “DefaultDict” and the XDataUserList is stored by the name “AppendedPoints”.
Getting the data back from an entity:
with XDataUserList.entity(line, name="AppendedPoints") as user_list:
print(user_list)
storage = list(user_list)
print(f"Copy of XDataUserList: {storage}")
SEE ALSO:
• XDataUserList class
• XDataUserDict class
Extension Dictionaries
Extension dictionaries are another way to attach custom data to any DXF entity. This method requires DXF
R13/14 or later. I will use the short term XDICT for extension dictionaries in this tutorial.
The Extension Dictionary is a regular DXF Dictionary which can store (key, value) pairs where the key is
a string and the value is a DXF object from the OBJECTS section. The usual objects to store custom data
are DictionaryVar to store simple strings and XRecord to store complex data.
Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF
entity!
This example shows how to manage the XDICT and to store simple strings as DictionaryVar objects in the
XDICT, to store more complex data go to the next section XRecord.
1. Get or create the XDICT for an entity:
# create a DXF entity
line = msp.add_line((0, 0), (1, 0))
if line.has_extension_dict:
# get the extension dictionary
xdict = line.get_extension_dict()
else:
# create a new extension dictionary
xdict = line.new_extension_dict()
2. Add strings as DictionaryVar objects to the XDICT. No AppIDs required, but existing keys will be
overridden, so be careful by choosing your keys:
xdict.add_dictionary_var("DATA1", "Your custom data string 1")
xdict.add_dictionary_var("DATA2", "Your custom data string 2")
3. Retrieve the strings from the XDICT as DictionaryVar objects:
print(f"DATA1 is '{xdict['DATA1'].value}'")
print(f"DATA2 is '{xdict['DATA2'].value}'")
The AutoLISP access to DICTIONARIES is possible, but it gets complex and I’m only referring to the ‐
AfraLISP Dictionaries and XRecords tutorial.
SEE ALSO:
• AfraLISP Dictionaries and XRecords Tutorial
• Extension Dictionary Reference
• DXF Dictionary Reference
• DictionaryVar Reference
XRecord
The XRecord object can store arbitrary data like the XDATA section, but is not limited by size and can
use all group codes in the range from 1 to 369 for DXF Tags. The XRecord can be referenced by any DXF
Dictionary, other XRecord objects (tricky ownership!), the XDATA section (store handle by group code
1005) or any other DXF object by adding the XRecord object to the Extension Dictionary of the DXF entity.
It is recommend to follow the DXF reference to assign appropriate group codes to DXF Tags. My
recommendation is shown in the table below, but all group codes from 1 to 369 are valid. I advice against
using the group codes 100 and 102 (structure tags) to avoid confusing generic tag loaders.
Unfortunately, Autodesk doesn’t like general rules and uses DXF format exceptions everywhere.
┌─────┬───────────────────────────────────────┐
│ 1 │ strings (max. 2049 chars) │
├─────┼───────────────────────────────────────┤
│ 2 │ structure tags as strings like "{" │
│ │ and "}" │
├─────┼───────────────────────────────────────┤
│ 10 │ points and vectors │
├─────┼───────────────────────────────────────┤
│ 40 │ floats │
├─────┼───────────────────────────────────────┤
│ 90 │ integers │
├─────┼───────────────────────────────────────┤
│ 330 │ handles │
└─────┴───────────────────────────────────────┘
Group codes are not unique in XRecord and can be repeated, therefore tag order matters.
This example shows how to attach a XRecord object to a LINE entity by Extension Dictionary:
line = msp.add_line((0, 0), (1, 0))
line2 = msp.add_line((0, 2), (1, 2))
if line.has_extension_dict:
xdict = line.get_extension_dict()
else:
xdict = line.new_extension_dict()
xrecord = xdict.add_xrecord("DATA1")
xrecord.reset([
(1, "text1"), # string
(40, 3.141592), # float
(90, 256), # 32-bit int
(10, (1, 2, 0)), # points and vectors
(330, line2.dxf.handle) # handles
])
print(xrecord.tags)
Script output:
[DXFTag(1, 'text1'),
DXFTag(40, 3.141592),
DXFTag(90, 256),
DXFVertex(10, (1.0, 2.0, 0.0)),
DXFTag(330, '30')]
Unlike XDATA, custom data attached by extension dictionary will not be transformed along with the DXF
entity! To react to entity modifications by a CAD applications it is possible to write event handlers by
AutoLISP, see the AfraLISP Reactors Tutorial for more information. This is very advanced stuff!
SEE ALSO:
• AfraLISP Dictionaries and XRecords Tutorial
• AfraLISP Reactors Tutorial
• XRecord Reference
• helper functions: ezdxf.lldxf.types.dxftag() and ezdxf.lldxf.types.tuples_to_tags()
XRecord Helper Classes
The UserRecord and BinaryRecord are helper classes to manage XRECORD content in a simple way. The
UserRecord manages the data as plain Python types: dict, list, int, float, str and the ezdxf types Vec2
and Vec3. The top level type for the UserRecord.data attribute has to be a list. The BinaryRecord stores
arbitrary binary data as BLOB. These helper classes uses fixed group codes to manage the data in
XRECORD, you have no choice to change them.
Additional required imports for these examples:
from pprint import pprint
import ezdxf
from ezdxf.math import Vec3
from ezdxf.urecord import UserRecord, BinaryRecord
from ezdxf.entities import XRecord
import zlib
Example 1: Store entity specific data in the Extension Dictionary:
line = msp.add_line((0, 0), (1, 0))
xdict = line.new_extension_dict()
xrecord = xdict.add_xrecord("MyData")
with UserRecord(xrecord) as user_record:
user_record.data = [ # top level has to be a list!
"MyString",
4711,
3.1415,
Vec3(1, 2, 3),
{
"MyIntList": [1, 2, 3],
"MyFloatList": [4.5, 5.6, 7.8],
},
]
Example 1: Get entity specific data back from the Extension Dictionary:
if line.has_extension_dict:
xdict = line.get_extension_dict()
xrecord = xdict.get("MyData")
if isinstance(xrecord, XRecord):
user_record = UserRecord(xrecord)
pprint(user_record.data)
If you modify the content of UserRecord.data without using the context manager, you have to call commit()
by yourself, to store the modified data back into the XRECORD.
Example 2: Store arbitrary data in DICTIONARY objects. The XRECORD is stored in the named DICTIONARY,
called rootdict in ezdxf. This DICTIONARY is the root entity for the tree-like data structure stored in
the OBJECTS section, see also the documentation of the ezdxf.sections.objects module.
# Get the existing DICTIONARY object or create a new DICTIONARY object:
my_dict = doc.objects.rootdict.get_required_dict("MyDict")
# Create a new XRECORD object, the DICTIONARY object is the owner of this
# new XRECORD:
xrecord = my_dict.add_xrecord("MyData")
# This example creates the user record without the context manager.
user_record = UserRecord(xrecord)
# Store user data:
user_record.data = [
"Just another user record",
4711,
3.1415,
]
# Store user data in associated XRECORD:
user_record.commit()
Example 2: Get user data back from the DICTIONARY object
my_dict = doc.rootdict.get_required_dict("MyDict")
entity = my_dict["MyData"]
if isinstance(entity, XRecord):
user_record = UserRecord(entity)
pprint(user_record.data)
Example 3: Store arbitrary binary data
my_dict = doc.rootdict.get_required_dict("MyDict")
xrecord = my_dict.add_xrecord("MyBinaryData")
with BinaryRecord(xrecord) as binary_record:
# The content is stored as hex strings (e.g. ABBAFEFE...) in one or more
# group code 310 tags.
# A preceding group code 160 tag stores the data size in bytes.
data = b"Store any binary data, even line breaks\r\n" * 20
# compress data if required
binary_record.data = zlib.compress(data, level=9)
Example 3: Get binary data back from the DICTIONARY object
entity = my_dict["MyBinaryData"]
if isinstance(entity, XRecord):
binary_record = BinaryRecord(entity)
print("\ncompressed data:")
pprint(binary_record.data)
print("\nuncompressed data:")
pprint(zlib.decompress(binary_record.data))
HINT:
Don’t be fooled, the ability to save any binary data such as images, office documents, etc. in the DXF
file doesn’t impress AutoCAD, it simply ignores this data, this data only has a meaning for your
application!
SEE ALSO:
• urecord module
• UserRecord class
• BinaryRecord class
AppData
Application-Defined Data (AppData) was introduced in DXF R13/14 and is used by AutoCAD internally to
store the handle to the Extension Dictionary and the Reactors in DXF entities. Ezdxf supports these kind
of data storage for any AppID and the data is preserved by AutoCAD and BricsCAD, but I haven’t found a
way to access this data by AutoLISP or even the SDK. So I don’t recommend this feature to store
application defined data, because Extended Data (XDATA) and the Extension Dictionary are well documented
and safe ways to attach custom data to entities.
# register your appid
APPID = "YOUR_UNIQUE_ID"
doc.appids.add(APPID)
# create a DXF entity
line = msp.add_line((0, 0), (1, 0))
# setting the data
line.set_app_data(APPID, [(300, "custom text"), (370, 4711), (460, 3.141592)])
# getting the data
if line.has_app_data(APPID):
tags = line.get_app_data(APPID)
print(f"{str(line)} has {len(tags)} tags of AppData for AppID {APPID!r}")
for tag in tags:
print(tag)
Printed output:
LINE(#30) has 3 tags of AppData for AppID 'YOUR_UNIQUE_ID'
(300, 'custom text')
(370, 4711)
(460, 3.141592)
Tutorial for External References
• Introduction
• Supported Entities
• Environment Setup
• Attach a DXF File
• Attach a DWG File
• Detach an XREF
• Embed an XREF
• Load Modelspace
• Load Paperspace
• Write Block
• Conflict Policies
• ConflictPolicy.KEEP
• ConflictPolicy.XREF_PREFIX
• ConflictPolicy.NUM_PREFIX
• Load Table Resources
Introduction
This tutorial uses the ezdxf.xref module to work with external references (XREF).
Attached XREFs are links to the modelspace of a specified drawing file. Changes made to the referenced
drawing are automatically reflected in the current drawing when it’s opened or if the XREF is reloaded.
IMPORTANT:
AutoCAD can only display DWG files as attached XREFs. Any DXF file attached as an XREF to a DXF
document must be converted to DWG in order to be viewed in AutoCAD. Fortunately, other CAD
applications are more cooperative, BricsCAD has no problem displaying DXF files as XREFs.
The drawing add-on included in ezdxf does not display external references at all!
There are some example files included in the examples/xref folder of the repository:
• attach_dxf_dwg_xref.py
• detach_block_as_xref.py
• embed_dxf_dwg_xref.py
• load_table_resources.py
Supported Entities
All operations which move entities between layouts and XREFs copy these entities, therefore only entities
which are copyable can be transferred. The following entities are not copyable:
• All entities which are not documented by the DXF reference.
• ACAD_TABLE
• ACAD_PROXY_ENTITY
• OLE2FRAME
• ACIS based entities: BODY, 3DSOLID, REGION, …
• Custom entities from applications on top of AutoCAD like Map 3D, Civil 3D or Architecture. The vertical
integration stack is not documented by the DXF reference.
Unsupported entities are ignored and do not raise exceptions.
Environment Setup
Required imports to follow this tutorial:
import ezdxf
from ezdxf.addons import odafc
from ezdxf.document import Drawing
from ezdxf import xref, units, colors
from ezdxf.render import forms
DXFVERSION = "R2013"
Function to create a simple DXF file as XREF, the insertion point of the XREF is set to (5, 5):
def make_dxf_xref_document(name: str) -> Drawing:
ref_doc = ezdxf.new(DXFVERSION, units=units.M)
ref_doc.layers.add("GEAR", color=colors.YELLOW)
msp = ref_doc.modelspace()
gear = forms.gear(
16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
msp.add_lwpolyline(
forms.translate(gear, (5, 5)), close=True, dxfattribs={"layer": "GEAR"}
)
ref_doc.header["$INSBASE"] = (5, 5, 0)
ref_doc.saveas(name)
return ref_doc
Create the DXF file:
make_dxf_xref_document("xref.dxf")
The XREF looks like this: [image]
Attach a DXF File
Create a host document to which the XREF will be attached:
host_doc = ezdxf.new(DXFVERSION, units=units.M)
Attach the XREF by the ezdxf.xref.attach() function and save the host DXF file:
xref.attach(host_doc, block_name="dxf_xref", insert=(0, 0), filename="attached_xref.dxf")
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("attach_host_dxf.dxf")
The attach() function is meant to simply attach an XREF once without any overhead, therefore the attach()
function creates the required block definition automatically and raises an XrefDefinitionError exception
if the block definition already exist. To attach additional XREF references use the method
add_blockref():
msp.add_blockref("dxf_xref", insert=another_location)
The attached DXF file in BricsCAD: [image]
IMPORTANT:
AutoCAD can not display DXF files as attached XREFs.
Attach a DWG File
Export the DXF file as DWG by the odafc add-on:
# It's not required to save the DXF file!
doc = make_dxf_xref_document("attached_xref.dxf")
try:
odafc.export_dwg(doc, "attached_xref.dwg", replace=True)
except odafc.ODAFCError as e:
print(str(e))
Attach the DWG file by the ezdxf.xref.attach() function and save the host DXF file:
host_doc = ezdxf.new(DXFVERSION, units=units.M)
xref.attach(host_doc, block_name="dwg_xref", filename="attached_xref.dwg", insert=(0, 0))
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("attached_dwg.dxf")
Attached DWG file in Autodesk DWG TrueView 2023: [image]
Detach an XREF
The detach() function writes the content of a block definition into the modelspace of a new DXF document
and convert the block to an external reference (XREF). The new DXF document has to be written/exported
by the caller. The function does not create any block references. These references should already exist
and do not need to be changed since references to blocks and XREFs are the same.
host_doc = ezdxf.new()
make_block(host_doc, "GEAR")
block_layout = host_doc.blocks.get("GEAR")
detached_block_doc = xref.detach(block_layout, xref_filename="detached_gear.dxf")
detached_block_doc.saveas("detached_gear.dxf")
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("detach_host_dxf_xref.dxf")
IMPORTANT:
Save the host document after detaching the block! Detaching a block definition modifies the host
document.
The detach() function returns a Drawing instance, so it’s possible to convert the DXF document to DWG by
the odafc add-on if necessary (e.g. for Autodesk products). It’s important that the argument
xref_filename match the filename of the exported DWG file:
host_doc = ezdxf.new()
make_block(host_doc, "GEAR")
block_layout = host_doc.blocks.get("GEAR")
detached_block_doc = xref.detach(block_layout, xref_filename="detached_gear.dwg")
try:
odafc.export_dwg(detached_block_doc, "detached_gear.dwg", replace=True)
except odafc.ODAFCError as e:
print(str(e))
host_doc.set_modelspace_vport(height=10, center=(0, 0))
host_doc.saveas("detach_host_dwg_xref.dxf")
It’s recommended to clean up the entity database of the host document afterwards:
host_doc.entitydb.purge()
For understanding, this is the make_block() function:
def make_block(doc: Drawing, name: str) -> None:
blk = doc.blocks.new(name, base_point=(5, 5, 0))
doc.layers.add("GEAR", color=colors.YELLOW)
gear = forms.gear(
16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
blk.add_lwpolyline(
forms.translate(gear, (5, 5)), close=True, dxfattribs={"layer": "GEAR"}
)
doc.modelspace().add_blockref(name, (0, 0))
Embed an XREF
The embed() function loads the content of the XREF into the block definition, this is the reverse
operation of detaching an XREF.
For loading the content of DWG files is a loading function required, which loads the DWG file as Drawing
document. The odafc add-on module provides such a function: readfile().
This example embeds the XREF “attached_xref.dwg” of the first example as content of the block definition
“GEAR”, the “attach_host_dwg.dxf” file is the host DXF document:
import ezdxf
from ezdxf.addons import odafc
doc = ezdxf.readfile("attach_host_dwg.dxf")
gear_xref = doc.blocks.get("GEAR")
try:
xref.embed(gear_xref, load_fn=odafc.readfile)
except FileNotFoundError as e:
print(str(e))
The default loading function for DXF files is the ezdxf.readfile() function and doesn’t have to be
specified. For the loading function from the recover module use a lambda function:
import ezdxf
from ezdxf import recover
doc = ezdxf.readfile("attach_host_dxf.dxf")
gear_xref = doc.blocks.get("GEAR")
try:
xref.embed(gear_xref, load_fn=lambda f: recover.readfile(f)[0])
except FileNotFoundError as e:
print(str(e))
Load Modelspace
The ezdxf.xref.load_modelspace() function loads the content of the modelspace of the source document into
a layout of the target document, the modelspace of the target document is the default target layout.
HINT:
Use this function to combine multiple existing DXF files. If the goal is just to add new entities to
an existing document, rather load the source document as a template by ezdxf.readfile(), add your
content and save the document as a new DXF file with the saveas() method.
Merge multiple DXF files:
import ezdxf
from ezdxf import colors, transform, xref
from ezdxf.math import Matrix44
from ezdxf.render import forms
def make_gear(name: str) -> None:
doc = ezdxf.new()
doc.layers.add("GEAR", color=colors.YELLOW)
msp = doc.modelspace()
gear = forms.gear(
16, top_width=0.25, bottom_width=0.75, height=0.5, outside_radius=2.5
)
msp.add_lwpolyline(gear, close=True, dxfattribs={"layer": "GEAR"})
doc.saveas(name)
make_gear("gear.dxf")
merged_doc = ezdxf.new()
for index in range(3):
sdoc = ezdxf.readfile("gear.dxf") # this could be different DXF files
transform.inplace(sdoc.modelspace(), Matrix44.translate(index * 10, 0, 0))
xref.load_modelspace(sdoc, merged_doc)
merged_doc.saveas("merged.dxf")
[image]
Load Paperspace
The function ezdxf.xref.load_paperspace() loads a paperspace layout as a new paperspace layout into the
target document. To be clear this function loads only the content of the paperspace layout, the content
of the modelspace isn’t loaded, therefore the loaded VIEWPORT entities show the content of the target
modelspace.
Write Block
The function ezdxf.xref.write_block() writes the given entities into the modelspace of a new DXF
document, this document can be, but doesn’t have to be used as an external referenced block.
Conflict Policies
Resources are definitions of layers, linetypes, text-, dimension-, mline- and mleader styles, materials
and blocks.
A resource conflict occurs when the source and target documents contain elements such as layers,
linetypes, text styles and so on that share the same name.
Many of the functions shown above support an argument to define the ezdxf.xref.ConflictPolicy, that gives
you the choice how to handle resource name conflicts.
ConflictPolicy.KEEP
Keeps the existing resource name of the target document and ignore the resource from the source document.
The loaded entities from the source document use the resources defined in the target document and may
alter their visual appearance, when the resources are different.
ConflictPolicy.XREF_PREFIX
This policy handles the resource import like CAD applications by always renaming the loaded resources to
<xref>$0$<name>, where xref is the name of source document, the $0$ part is a number to create a unique
resource name and <name> is the name of the resource itself.
IMPORTANT:
This policy ALWAYS renames the resource, even if the loaded resource doesn’t have a conflict in the
target document.
ConflictPolicy.NUM_PREFIX
This policy renames the loaded resources to $0$<name> only if the resource <name> already exists. The $0$
prefix is a number to create a unique resource name and <name> is the name of the resource itself.
IMPORTANT:
This policy renames the resource ONLY when the loaded resource has a conflict in the target document.
Load Table Resources
Resources are definitions of layers, linetypes, text-, dimension-, mline- and mleader styles, materials
and blocks.
The Loader class is the low level tool to build a loading operation from simple loading commands. Study
the source code of the xref module, most of loading commands used above are build upon the Loader class.
This example shows how to import layer, linetype, text- and dimension style definitions:
import ezdxf
from ezdxf import xref
sdoc = ezdxf.new(setup=True)
tdoc = ezdxf.new()
# The default conflict policy is ConflictPolicy.KEEP
loader = xref.Loader(sdoc, tdoc)
# Load all layers:
loader.load_layers([layer.dxf.name for layer in sdoc.layers])
# Load specific linetypes:
loader.load_linetypes(["CENTER", "DASHED", "DASHDOT"])
# Load specific text style:
loader.load_text_styles(["OpenSans", "LiberationMono"])
# Load all DIMENSION styles, this command loads also the dependent text styles:
loader.load_dim_styles([dimstyle.dxf.name for dimstyle in sdoc.dimstyles])
# execute all loading commands:
loader.execute()
tdoc.saveas("target.dxf")
NOTE:
Loading a layer does not load the entities which do reference this layer, a layer is not an entity
container, it’s just an DXF attribute, see also Basic Concepts: Layers.
Tutorial for Image Export
• Introduction
• Common Basics
• Frontend Configuration
• Page Layout
• Autodetect Page Size
• Scaling Content
• Limit Page Size
• SVG Export
• PDF Export
• PNG Export
• PLT/HPGL2 Export
• DXF Export
• Recorder Backend
Introduction
This tutorial shows how to export DXF content of the modelspace or a paperspace as images by the drawing
add-on.
The tutorial covers the new added backends in ezdxf version 1.1:
• ezdxf.addons.drawing.svg.SVGBackend class for SVG export
• ezdxf.addons.drawing.pymupdf.PyMuPdfBackend class for PDF and PNG export
• ezdxf.addons.drawing.hpgl2.PlotterBackend class for PLT/HPGL2 export
• ezdxf.addons.drawing.dxf.DXFBackend class for flattened DXF export
The tutorial does not cover the MatplotlibBackend and PyQtBackend, for information about these backends
see:
• Howtos for the Drawing Add-on
• FAQs at github: https://github.com/mozman/ezdxf/discussions/550
Common Basics
The rendering process is divided into multiple steps. The frontend resolves the DXF properties and breaks
down complex DXF entities into simple drawing primitives which are send to the backend that renders the
output format.
import ezdxf
from ezdxf.addons.drawing import Frontend, RenderContext, svg, layout
def example_doc():
doc = ezdxf.new()
msp = doc.modelspace()
x0, y0, x1, y1 = 0, 0, 10, 10
start = (x0, y0)
end = (x0 + 1, y0)
for color in range(1, 6):
msp.add_lwpolyline(
[start, (x0, y1), (x1, y1), (x1, y0), end], dxfattribs={"color": color}
)
x0 += 1
x1 -= 1
y0 += 1
y1 -= 1
start = end
end = (x0 + 1, y0)
return doc
def export(doc):
msp = doc.modelspace()
# 1. create the render context
context = RenderContext(doc)
# 2. create the backend
backend = svg.SVGBackend()
# 3. create the frontend
frontend = Frontend(context, backend)
# 4. draw the modelspace
frontend.draw_layout(msp)
# 5. create an A4 page layout, not required for all backends
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
# 6. get the SVG rendering as string - this step is backend dependent
svg_string = backend.get_string(page)
with open("output.svg", "wt", encoding="utf8") as fp:
fp.write(svg_string)
if __name__ == "__main__":
export(example_doc())
The exported SVG shows a spiral centered on an A4 page with a margin of 20mm, notice the background has a
dark color like the usual background of the modelspace: [image]
Frontend Configuration
The Configuration object configures the rendering process. This example changes the background color from
dark grey to white and renders all lines black.
Add the config module to imports:
from ezdxf.addons.drawing import Frontend, RenderContext, svg, layout, config
Create a new configuration and override the background and color policy between the 2nd and the 3rd step:
# 2. create the backend
backend = svg.SVGBackend()
# create a new configuration for a white background and and a black foreground color
cfg = config.Configuration(
background_policy=config.BackgroundPolicy.WHITE,
color_policy=config.ColorPolicy.BLACK,
)
# 3. create the frontend
frontend = Frontend(context, backend, config=cfg)
The new exported SVG has a white background and all lines are black: [image]
There are many configuration options:
• LineweightPolicy - relative, absolute or relative fixed lineweight
• LinePolicy - solid or accurate linetypes
• HatchPolicy - normal, ignore, only outlines or always solid fill
• ColorPolicy - color, black, white, monochrome, …
• BackgroundPolicy - default, black, white, off (transparent) and custom
• TextPolicy - filling, outline, ignore, …
• ProxyGraphicPolicy - ignore, show, prefer
• lineweight scaling factor
• minimal lineweight
• max_flattening_distance for curve approximation
• and more …
All configuration options are documented here: Configuration.
Page Layout
The Page object defines the output page for some backends (SVG, PDF, PNG, PLT).
A page is defined by width and height in a given length unit. The supported length units are millimeters
(mm), inch (in), point (1 pt is 1/72 in) and pixels (1 px is 1/96 in).
It’s possible to autodetect the page size from the content or fit the content onto the page. In both
cases the margin values are used to create space between the content and the page borders. The content is
centered in the remaining space without margins.
IMPORTANT:
None of the backends crop the content automatically, the margin values are just calculation values!
Autodetect Page Size
The required page size is auto-detected by setting the width and/or height to 0. By default the scaling
factor is 1, so 1 drawing unit is 1 page unit. The content is fit to page by default and the outcome is
shown in the previous examples.
This example shows the output when the scale should be 1:1, 1 drawing unit is 1 page unit (mm):
# auto-detect page size and 2mm margins on all sides
page = layout.Page(0, 0, layout.Units.mm, margins=layout.Margins.all(2))
# scale content by 1, do not fit content to page
svg_string = backend.get_string(
page, settings=layout.Settings(scale=1, fit_page=False)
)
The page has a size of 14x14mm, a content size of 10x10mm and 2mm margins on all sides. [image]
Scaling Content
Scaling the content by factor 10 means, 10 page units represent 1 drawing unit, which is a scale of 10:1
and only uniform scaling is supported.
def export_2(doc):
backend = make_backend(doc)
# auto-detect page size and 2mm margins on all sides
page = layout.Page(0, 0, layout.Units.mm, margins=layout.Margins.all(2))
# scale content by 10, do not fit content to page
svg_string = backend.get_string(
The page has a size of 104x104mm, a content size of 100x100mm and 2mm margins on all sides. [image]
Limit Page Size
The page arguments max_width and max_height can limit the page size in auto-detection mode, e.g. most
plotter devices can only print upto a width of 900mm.
SEE ALSO:
• Page class
• Margins class
• Settings class
SVG Export
The steps to export a SVG by the SVGBackend are show in the first example, the configuration of the
frontend and the page setup are shown in the previous sections.
1. Create the render context
2. Create the backend
3. Create and configure the frontend
4. Draw the content
5. Setup the page layout
6. Create the SVG output string
This is the same code as for the first example:
def export(doc):
msp = doc.modelspace()
# 1. create the render context
context = RenderContext(doc)
# 2. create the backend
backend = svg.SVGBackend()
# 3. create the frontend
frontend = Frontend(context, backend)
# 4. draw the modelspace
frontend.draw_layout(msp)
# 5. create an A4 page layout, not required for all backends
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
# 6. get the SVG rendering as string - this step is backend dependent
svg_string = backend.get_string(page)
with open("output.svg", "wt", encoding="utf8") as fp:
fp.write(svg_string)
The SVG backend flips the coordinates along the y-axis and transforms the content into a compact integer
coordinate space and produces therefore a small file size but therefore the output coordinates are
different to the DXF coordinates.
PDF Export
The PDF export requires the the PyMuPdf package to be installed.
The steps to export a PDF are very similar to SVG, except for the PyMuPdfBackend class and the backend
returns bytes and not a string:
1. Create the render context
2. Create the backend
3. Create and configure the frontend
4. Draw the content
5. Setup the page layout
6. Create the SVG output string
Import the pymupdf backend module:
from ezdxf.addons.drawing import Frontend, RenderContext, pymupdf, layout, config
The export function:
def export_dark_bg(doc):
msp = doc.modelspace()
# 1. create the render context
context = RenderContext(doc)
# 2. create the backend
backend = pymupdf.PyMuPdfBackend()
# 3. create the frontend
frontend = Frontend(context, backend)
# 4. draw the modelspace
frontend.draw_layout(msp)
# 5. create an A4 page layout
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
# 6. get the PDF rendering as bytes
pdf_bytes = backend.get_pdf_bytes(page)
with open("pdf_dark_bg.pdf", "wb") as fp:
fp.write(pdf_bytes)
[image]
The PDF has is dark background for the modelspace by default and color index 7 is white. Create a
frontend configuration and override the BackgroundPolicy to get a white background:
# 3. create and configure the frontend
cfg = config.Configuration(background_policy=config.BackgroundPolicy.WHITE)
frontend = Frontend(context, backend, config=cfg)
Now the exported PDF has a white background and color index 7 is black: [image]
PNG Export
The PNG export is done by the PyMuPdfBackend class and differs only in the method to get the PNG data
bytes:
# 6. get the PNG rendering as bytes
png_bytes = backend.get_pixmap_bytes(page, fmt="png", dpi=96)
with open("png_white_bg.png", "wb") as fp:
fp.write(png_bytes)
The pymupdf backend supports multiple image formats:
┌─────┬────────────────────────────────────┐
│ png │ Portable Network Graphics │
├─────┼────────────────────────────────────┤
│ ppm │ Portable Pixmap (no alpha channel) │
├─────┼────────────────────────────────────┤
│ pbm │ Portable Bitmap (no alpha channel) │
└─────┴────────────────────────────────────┘
PLT/HPGL2 Export
The PlotterBackend creates HPGL/2 plot files for output on raster plotters. The PlotterBackend is
designed to print on white paper, so the background color is always white and color index 7 is black by
default.
WARNING:
The plot files are only tested by the plot file viewer ViewCompanion Standard but not on real hardware
- please use with care and give feedback.
The PLT/HPGL2 export is very similar to the SVG export:
from ezdxf.addons.drawing import Frontend, RenderContext, hpgl2, layout
def export(doc):
msp = doc.modelspace()
# 1. create the render context
context = RenderContext(doc)
# 2. create the backend
backend = hpgl2.PlotterBackend()
# 3. create the frontend
frontend = Frontend(context, backend)
# 4. draw the modelspace
frontend.draw_layout(msp)
# 5. create an A4 page layout
page = layout.Page(210, 297, layout.Units.mm, margins=layout.Margins.all(20))
# 6. get the HPGL2 rendering as bytes
plt_bytes = backend.get_bytes(page)
with open("output_01.plt", "wb") as fp:
fp.write(plt_bytes)
[image]
The HPGL/2 viewer does not show the margins around the content, but most construction drawings draw the
page borders around the content.
The PlotterBackend has some quality preset methods to get the HPGL/2 data:
• compatible()
• low_quality()
• normal_quality() (default)
• high_quality()
The difference are mostly the floating point precision and the usage of Bézier curves, but the Bézier
curves are approximated by plotter drivers (even by HP drivers), so there is no real quality improvement,
but curves need less space than approximated polylines so the file size is smaller.
Very old plotter may not support Bézier curves and floating point coordinates, for these plotters the
compatible() method exports only polylines and integer coordinates.
Usage:
# 6. get the HPGL2 rendering as bytes
plt_bytes = backend.high_quality(page)
DXF Export
The DXFBackend exports the content as DXF primitives: POINT, LINE, LWPOLYLINE, SPLINE and HATCH. All
blocks are exploded, text is rendered as filled polygons represented by the HATCH entity and arcs are
represented by SPLINE entities (internal Bèzier curve representation).
This backend was added to convert HPGL/2 files to DXF files, because the hpgl2 add-on reuses the backends
of the drawing add-on for export. Maybe it is useful for other tasks too.
This backend works different than the previous. There is no page setup and everything is rendered into a
given layout of a DXF document:
from ezdxf.addons.drawing import Frontend, RenderContext, dxf
def export(doc):
export_doc = ezdxf.new()
msp = doc.modelspace()
# 1. create the render context
context = RenderContext(doc)
# 2. create the backend
backend = dxf.DXFBackend(export_doc.modelspace())
# 3. create the frontend
frontend = Frontend(context, backend)
# 4. draw the modelspace
frontend.draw_layout(msp)
# 5. save or return DXF document
export_doc.saveas("output_01.dxf")
Recorder Backend
The Recorder backend is an intermediate layer to record the drawing commands of the Frontend class. The
Player object can replay this records on any other backend class but also provides some additional
features like bounding box detection, content transformation and cropping.
The SVG/PDF/PLT backends use this intermediate layer internally to transform and place the content.
Tutorial for Finding Chains and Loops
Added in version 1.4.
This tutorial shows how to find connected structures like open or closed polylines by the ezdxf.edgeminer
and the ezdxf.edgesmith modules.
Introduction
The main goal of the ezdxf.edgeminer module is to find connected edges in a heap of unordered edges.
The module is designed to work with anything that has a start- and end point and knows nothing about the
edge itself except for the optional length. Therefore intersection points between edges are not known.
1. Step: Create Edges
The companion module ezdxf.edgesmith creates the required edges from DXF primitives like LINE, ARC,
ELLIPSE, SPLINE and POLYLINE.
• ezdxf.edgesmith.make_edge_2d()
• ezdxf.edgesmith.edges_from_entities_2d()
The current implementation of the edgesmith module is restricted to work with 2D structures. Every edge
is projected onto the xy-plane of the WCS.
2. Step: Find Chains and Loops
The edgeminer module provides functions to search for open chains and closed loops:
• ezdxf.edgeminer.find_sequential_chain()
• ezdxf.edgeminer.find_all_sequential_chains()
• ezdxf.edgeminer.find_simple_chain()
• ezdxf.edgeminer.find_all_simple_chains()
• ezdxf.edgeminer.find_all_open_chains()
• ezdxf.edgeminer.find_loop()
• ezdxf.edgeminer.find_loop_by_edge()
• ezdxf.edgeminer.find_all_loops()
3. Step: Build Polylines and Paths
From the chains and loops found, you can build new polylines and boundary paths for hatches:
• ezdxf.edgesmith.lwpolyline_from_chain()
• ezdxf.edgesmith.polyline2d_from_chain()
• ezdxf.edgesmith.polyline_path_from_chain()
• ezdxf.edgesmith.edge_path_from_chain()
• ezdxf.edgesmith.path2d_from_chain()
Terminology
This is a short summary, for more information see: ezdxf.edgeminer
Edge A linear connection between two points.
Leaf A leaf is a loose end of an edge, which is not connected to other edges.
Junction
A junction has more than two adjacent edges.
Chain A chain has sequential connected edges. The end point of an edge is connected to the start point
of the following edge.
Simple Chain
A simple chain starts and ends with a leaf or a junction.
Open Chain
An open chain starts and ends with a leaf.
Loop A loop is a simple chain with connected start- and end vertices.
Join Ordered Entities to Polylines
The first example uses an exploded polyline to show how to search for connected edges, when the edges are
ordered.
import random
import ezdxf
from ezdxf import edgeminer, edgesmith
doc = ezdxf.new()
doc.header["$LWDISPLAY"] = 1
msp = doc.modelspace()
lwp = msp.add_lwpolyline(
[(0, 0), (5, 0, -0.5), (5, 5), (0, 5)],
format="xyb",
close=True,
dxfattribs={"layer": "SOURCE", "color": 2, "lineweight": 30},
)
# create lines and arcs from LWPOLYLINE
entities = lwp.explode()
The orientation of the entities looks like this: [image]
ARC entities are always counter-clockwise oriented, so the start- and end points of the adjacent lines
are not connected in start/end order.
The ezdxf.edgeminer.find_sequential_chain() function is the right tool for this task. It searches
sequential ordered edges and reverses those, where the start- and end point doesn’t match. The search
stops at the first edge that doesn’t have a matching start- or end point or a closed loop was found.
1. create edges from DXF entities
2. find connected edges
3. create LWPOLYLINE from connected edges
# 1. create edges from DXF entities
edges = list(edgesmith.edges_from_entities_2d(entities))
# 2. search for connected edges
chain = edgeminer.find_sequential_chain(edges)
# 3. create a LWPOLYLINE from connected edges
lwp2 = edgesmith.lwpolyline_from_chain(
chain, dxfattribs={"layer": "LWPOLYLINE", "color": 1, "lineweight": 30}
)
msp.add_entity(lwp2)
doc.saveas("result1.dxf")
The new created LWPOLYLINE in BricsCAD: [image]
Join Unordered Entities to Polylines
For the search in a heap of unordered edges is an additional object required. A ezdxf.edgeminer.Deposit
has a spatial search tree to optimize the search for unordered edges.
The ezdxf.edgeminer.find_simple_chain() function starts at an edge and searches in both directions via
the spatial search tree for connected edges. The search stops at a leaf, a junction or when a closed loop
was found.
# create a new doc
doc = ezdxf.new()
doc.header["$LWDISPLAY"] = 1
msp = doc.modelspace()
# reuse same entities from previous example
edges = list(edgesmith.edges_from_entities_2d(entities))
# shuffle the ordered edges
random.shuffle(edges)
# a deposit optimizes the search for unordered edges
deposit = edgeminer.Deposit(edges)
# start the search at an arbitrary edge
start = edges[0]
chain = edgeminer.find_simple_chain(deposit, start)
lwp3 = edgesmith.lwpolyline_from_chain(
chain, dxfattribs={"color": 1, "lineweight": 30}
)
msp.add_entity(lwp3)
doc.saveas("result2.dxf")
The result is the same as in “result1.dxf”.
The following functions are for situations when you don’t know where to start.
• ezdxf.edgeminer.find_all_simple_chains(): returns all chains that start and end with a leaf or a
junction
• ezdxf.edgeminer.find_all_open_chains(): returns all chains from the deposit that start and end with
a leaf. Warning: recursive backtracking!
• ezdxf.edgeminer.find_loop(): returns the first loop found in the deposit. Warning: recursive
backtracking!
• ezdxf.edgeminer.find_all_loops(): returns all possible loops found in the deposit. Warning:
recursive backtracking!
Join Entities to Hatches
Creating hatches from edges is similar to creating polylines.
1. create a Hatch
2. find connected edges
3. create boundary paths from connected edges
4. add boundary paths to Hatch
# create a new doc
doc = ezdxf.new()
doc.header["$LWDISPLAY"] = 1
msp = doc.modelspace()
# 1. create a HATCH
hatch = msp.add_hatch(color=2)
# reuse same entities from previous example
edges = list(edgesmith.edges_from_entities_2d(entities))
# shuffle the ordered edges
random.shuffle(edges)
# a deposit optimizes the search for unordered edges
deposit = edgeminer.Deposit(edges)
# start the search at an arbitrary edge
start = edges[0]
# 2. find edges
chain = edgeminer.find_simple_chain(deposit, start)
# 3. create a polyline boundary path from edges
boundary_path = edgesmith.polyline_path_from_chain(chain)
# 4.add boundary path to HATCH
hatch.paths.append(boundary_path)
doc.saveas("hatch1.dxf")
The new created HATCH in BricsCAD: [image]
How Are 3D Entities Handled?
The ezdxf.edgeminer module is designed to be as versatile as possible and uses 3D coordinates for all
vertices. So edges are only connected when the x-, y- and z-coordinates of their vertices are close
together.
The ezdxf.edgesmith module is designed to avoid the complexity of 3D entities and handles only 2D
entities by setting all z-coordinates to 0. Therefore all vertices are projected onto the xy-plane of
the WCS and if an entity can not represent such a projection the entity will be flattened into line
segments.
This example includes an ARC and a SPLINE in 3D space: [image] [image]
doc = ezdxf.readfile("edges_3d.dxf")
msp = doc.modelspace()
# create edges and search index
edges = list(edgesmith.edges_from_entities_2d(msp))
deposit = edgeminer.Deposit(edges)
# find a chain
chain = edgeminer.find_simple_chain(deposit, edges[0])
# add a hatch and add the boundary path
hatch = msp.add_hatch(color=5)
boundary_path = edgesmith.polyline_path_from_chain(chain, max_sagitta=0.01)
hatch.paths.append(boundary_path)
doc.saveas("flattened_hatch.dxf")
The hatch is projected onto the xy-plane of the WCS: [image]
To process only 2D entities us the filter_2d_entities() function that returns only pure 2D entities and
ignores all entities placed outside or extending beyond the xy-plane.
Junctions
A junction is a vertex with a degree of 3 or more and adds complexity to the task of finding geometry.
There is not a single solution that fits all needs and some goals are not achievable by the
ezdxf.edgeminer module.
This is the starting point for the following examples, each red circle marks a junction: [image]
You can check the complexity of your problem by printing the degree-counter:
print(deposit.degree_counter())
Output:
Counter({2: 15, 3: 4})
There a 15 vertices of degree 2 (good) and 4 vertices of degree 3 (bad).
Find All Simple Chains
A simple chain starts and ends with a leaf or a junction, hence there are no decisions to make and and
finding them is also fast by using a spatial search index.
# load data
doc = ezdxf.readfile("junctions.dxf")
msp = doc.modelspace()
lines = msp.query("LINE")
# create edges and search index
edges = list(edgesmith.edges_from_entities_2d(lines))
deposit = edgeminer.Deposit(edges)
# find chains
chains = edgeminer.find_all_simple_chains(deposit)
# create a new output document
out = ezdxf.new()
msp = out.modelspace()
color = 1
for chain in chains:
polyline = edgesmith.lwpolyline_from_chain(
chain, dxfattribs={"color": color}
)
msp.add_entity(polyline)
color += 1
out.saveas("simple_chains.dxf")
Each color represents a separated LWPOLYLINE: [image]
Find All Loops
This task is harder and an edge can be part of multiple solutions:
# same code as in the previous example til here
# find chains
loops = edgeminer.find_all_loops(deposit)
# create a new output document
out = ezdxf.new()
msp = out.modelspace()
color = 1
for loop in loops:
layer = f"LOOP_{color}"
polyline = edgesmith.lwpolyline_from_chain(
loop, dxfattribs={"color": color, "layer": layer}
)
msp.add_entity(polyline)
color += 1
out.saveas("loops.dxf")
These are 6 of the 7 solutions, the 7th solution is the dashed line: [image]
The find_all_loops() function is a recursive backtracking algorithm and has a complexity of O(n!),
therefore all recursive search functions have a timeout argument to finish the task before the universe
ends.
These helper functions may help you to choose a solution, but the default length calculation for edges is
not precise!
• ezdxf.edgeminer.longest_chain()
• ezdxf.edgeminer.shortest_chain()
Find One Loop For a Given Edge
The find_loop_by_edge() function starts at a given edge and has a preferred clockwise or
counter-clockwise search order. The algorithm chooses the next edge at a junction in clockwise order if
the argument clockwise is True otherwise the first counter-clockwise edge. This is a fast non-recursive
algorithm.
edges = list(edgesmith.edges_from_entities_2d(lines))
deposit = edgeminer.Deposit(edges)
# choose an edge to start with
start = edges[0]
loop1 = edgeminer.find_loop_by_edge(deposit, start, clockwise=True)
loop2 = edgeminer.find_loop_by_edge(deposit, start, clockwise=False)
[image]
Red is the clockwise solution and yellow is the counter-clockwise solution: [image]
Find Loop by Pick-Point
The CAD functionality to select a HATCH boundary path by picking a point inside the boundary is a bit
tricky, but can be achieved by combining some tools.
1. find a starting edge near the pick-point
2. find candidates by the find_loop_by_edge() function for both search orders
3. sort candidates by area
4. take the smallest loop which contains the pick-point
[image]
The function intersecting_edges_2d() tests all edges for an intersection with a line starting at the
pick-point and ending outside the bounding box of all vertices. Any loop containing the pick-point has at
least one edge that intersects this line.
doc = ezdxf.readfile("junctions.dxf")
msp = doc.modelspace()
lines = msp.query("LINE")
edges = list(edgesmith.edges_from_entities_2d(lines))
pick_point = (110, 50)
# 1. find a starting edge near the pick-point
intersecting_edges = edgesmith.intersecting_edges_2d(edges, pick_point)
if not len(intersecting_edges):
print("no intersection found")
return
hatch = msp.add_hatch(color=2)
# The intersecting edges are sorted by ascending distance to the pick-point
# take the closest edge as starting edge:
start = intersecting_edges[0].edge
# 2. find the best loop candidates
deposit = edgeminer.Deposit(edges)
candidates = [
edgeminer.find_loop_by_edge(deposit, start, clockwise=True),
edgeminer.find_loop_by_edge(deposit, start, clockwise=False),
]
# 3. sort candidates by area
candidates.sort(key=edgesmith.loop_area)
for loop in candidates:
# 4. take the smallest loop which contains the pick-point
if edgesmith.is_inside_polygon_2d(loop, pick_point):
hatch.paths.append(edgesmith.polyline_path_from_chain(loop))
break
else: # for loop ended without break
print("no loop found")
return
doc.saveas("find_loop_by_pick_point.dxf")
I am not convinced that this is the best solution or that this solution works for all use cases,
therefore this is not (yet) a helper function in the edgesmith module.
Gaps and Design Inaccuracies
Most real-world DXF drawings have design inaccuracies, that means, there are gaps between the endpoints
of entities.
All search and test functions have an optional argument gap_tol or the gap tolerance is stored in the
Deposit class. The gap tolerance is the maximum distance between two edge vertices to consider them as
connected. It is important to use the same tolerance throughout a task, from creating the edges til
building new DXF entities from chains and loops.
Specialty Edge Paths
AutoCAD is very picky about edge paths in HATCH entities when it comes to considering them as closed.
Therefore the edge_path_from_chain() function adds additional line segments between edges when the gap is
larger than LEN_TOL, LEN_TOL is a constant value of 1e-9.
Coincident Edges
Coincident edges in the context of edgeminer are edges where the start- and the end vertex are
coincident, remember: the shape of the edge is not known. This is the reason why such edges are not
removed automatically, e.g. two arcs can create a closed loop as coincident edges: [image]
Coincident edges are a major nuisance and should be avoided at all costs. They create ambiguity and can
be the reason why the expected results are not found.
The filter_coincident_edges() function removes coincident edges. It takes a function to test if two
edges are coincident and the default function tests only if the end points are coincident, but you can
pass a more sophisticated function.
Set Operations
The ezdxf.edgeminer.Edge class implements the __hash__() method and can be used in sets, this allows set
operations like subtracting a found loop from the source edges:
edges = list(edgesmith.edges_from_entities_2d(lines))
deposit = edgeminer.Deposit(edges)
# returns the first loop found
first_loop = edgeminer.find_loop(deposit)
edges = list(set(edges) - set(first_loop))
# or use this helper function:
edges = edgeminer.subtract_edges(edges, first_loop)
The Deposit has to be recreated for the new list of edges!
HOWTO
The Howto section show how to accomplish specific tasks with ezdxf in a straight forward way without
teaching basics or internals, if you are looking for more information about the ezdxf internals look at
the Reference section or if you want to learn how to use ezdxf go to the Tutorials section or to the
Basic Concepts section.
General Document
General preconditions:
import sys
import ezdxf
try:
doc = ezdxf.readfile("your_dxf_file.dxf")
except IOError:
print(f"Not a DXF file or a generic I/O error.")
sys.exit(1)
except ezdxf.DXFStructureError:
print(f"Invalid or corrupted DXF file.")
sys.exit(2)
msp = doc.modelspace()
This works well with DXF files from trusted sources like AutoCAD or BricsCAD, for loading DXF files with
minor or major flaws look at the ezdxf.recover module.
Load DXF Files with Structure Errors
If you know the files you will process have most likely minor or major flaws, use the ezdxf.recover
module:
import sys
from ezdxf import recover
try: # low level structure repair:
doc, auditor = recover.readfile(name)
except IOError:
print(f"Not a DXF file or a generic I/O error.")
sys.exit(1)
except ezdxf.DXFStructureError:
print(f"Invalid or corrupted DXF file: {name}.")
sys.exit(2)
# DXF file can still have unrecoverable errors, but this is maybe
# just a problem when saving the recovered DXF file.
if auditor.has_errors:
print(f"Found unrecoverable errors in DXF file: {name}.")
auditor.print_error_report()
For more loading scenarios follow the link: ezdxf.recover
Set/Get Header Variables
ezdxf has an interface to get and set HEADER variables:
doc.header["VarName"] = value
value = doc.header["VarName"]
SEE ALSO:
HeaderSection and online documentation from Autodesk for available header variables.
Set DXF Drawing Units
The header variable $INSUNITS defines the drawing units for the modelspace and therefore for the DXF
document if no further settings are applied. The most common units are 6 for meters and 1 for inches.
Use this HEADER variables to setup the default units for CAD applications opening the DXF file. This
setting is not relevant for ezdxf API calls, which are unitless for length values and coordinates and
decimal degrees for angles (in most cases).
Sets drawing units:
doc.header["$INSUNITS"] = 6
For more information see section DXF Units.
Explore the DXF File Structure
DXF files are plain text files, you can open this files with every text editor which handles bigger
files. But it is not really easy to get quick the information you want.
Use the DXF structure browser:
# Call as executable script from the command line:
ezdxf browse FILE
# Call as module on Windows:
py -m ezdxf browse FILE
# Call as module on Linux/Mac
python3 -m ezdxf browse FILE
This command requires PySide6 or PyQt5 to be installed. It opens a desktop window with a selection panel
for all DXF entities in the document, and handles int the entity view are links between DXF entities,
this simplifies the navigation between the DXF entities. Read the docs for the Browse command for more
information.
[image]
Calculate Extents for the Modelspace
Since ezdxf v0.16 exist a ezdxf.bbox module to calculate bounding boxes for DXF entities. This module
makes the extents calculation very easy, but read the documentation for the bbox module to understand its
limitations.
import ezdxf
from ezdxf import bbox
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
extents = bbox.extents(msp)
The returned extents is a ezdxf.math.BoundingBox object.
Set Initial View/Zoom for the Modelspace
To show an arbitrary location of the modelspace centered in the CAD application window, set the '*Active'
VPORT to this location. The DXF attribute dxf.center defines the location in the modelspace, and the
dxf.height specifies the area of the modelspace to view. Shortcut function:
doc.set_modelspace_vport(height=10, center=(10, 10))
SEE ALSO:
The ezdxf.zoom module is another way to set the initial modelspace view.
Setting the initial view to the extents of all entities in the modelspace:
import ezdxf
from ezdxf import zoom
doc = ezdxf.readfile("your.dxf")
msp = doc.modelspace()
zoom.extents(msp)
Setting the initial view to the extents of just some entities:
lines = msp.query("LINES")
zoom.objects(lines)
The zoom module also works for paperspace layouts.
IMPORTANT:
The zoom module uses the bbox module to calculate the bounding boxes for DXF entities. Read the
documentation for the bbox module to understand its limitations and the bounding box calculation for
large documents can take a while!
Hide the UCS Icon
The visibility of the UCS icon is controlled by the DXF ucs_icon attribute of the VPort entity:
• bit 0: 0=hide, 1=show
• bit 1: 0=display in lower left corner, 1=display at origin
The state of the UCS icon can be set in conjunction with the initial VPort of the model space, this code
turns off the UCS icon:
doc.set_modelspace_vport(10, center=(10, 10), dxfattribs={"ucs_icon": 0})
Alternative: turn off UCS icons for all VPort entries in the active viewport configuration:
for vport in doc.viewports.get_config("*Active"):
vport.dxf.ucs_icon = 0
Show Lineweights in DXF Viewers
By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable
$LWDISPLAY to 1 the DXF viewer should display lineweights, if supported by the viewer.
doc.header["$LWDISPLAY"] = 1
Add ezdxf Resources to Existing DXF Document
Add all ezdxf specific resources (line types, text- and dimension styles) to an existing DXF document:
import ezdxf
from ezdxf.tools.standards import setup_drawing
doc = ezdxf.readfile("your.dxf")
setup_drawing(doc, topics="all")
Set Logging Level of ezdxf
Set the logging level of the ezdxf package to a higher level to minimize logging messages from ezdxf. At
level ERROR only severe errors will be logged and WARNING, INFO and DEBUG messages will be suppressed:
import logging
logging.getLogger("ezdxf").setLevel(logging.ERROR)
DXF Viewer
A360 Viewer Problems
AutoDesk web service A360 seems to be more picky than the AutoCAD desktop applications, may be it helps
to use the latest DXF version supported by ezdxf, which is DXF R2018 (AC1032) in the year of writing this
lines (2018).
DXF Entities Are Not Displayed in the Viewer
ezdxf does not automatically locate the main viewport of the modelspace at the entities, you have to
perform the “Zoom to Extends” command, here in TrueView 2020: [image]
And here in the Autodesk Online Viewer: [image]
Add this line to your code to relocate the main viewport, adjust the center (in modelspace coordinates)
and the height (in drawing units) arguments to your needs:
doc.set_modelspace_vport(height=10, center=(0, 0))
Show IMAGES/XREFS on Loading in AutoCAD
If you are adding XREFS and IMAGES with relative paths to existing drawings and they do not show up in
AutoCAD immediately, change the HEADER variable $PROJECTNAME='' to (not really) solve this problem. The
ezdxf templates for DXF R2004 and later have $PROJECTNAME='' as default value.
Thanks to David Booth:
If the filename in the IMAGEDEF contains the full path (absolute in AutoCAD) then it shows on loading,
otherwise it won’t display (reports as unreadable) until you manually reload using XREF manager.
A workaround (to show IMAGES on loading) appears to be to save the full file path in the DXF or save
it as a DWG.
Thanks to Zac Luzader:
Has anyone else noticed that very short simple image file names seem to avoid this problem? Once I
ensured that the image file’s name was short and had no special characters (letters, numbers and
underscores only) the problem seemed to go away. I didn’t rigorously analyze the behavior as its very
time consuming.
Also: You can safely put the image in a subdirectory and use a relative path. The name of the
subdirectory does not seem to trigger this problem, provided that the image file name itself is very
short and simple.
Also pro tip: The XRef manager exists in DWG TrueView 2023, but access to it is only possible if you
have a completely broken reference. Create a DXF with a reference to a non-existent file, then the
error dialog will let you open the XRef Manager. Once it is open you can pin it and it will be open
next time, even if you have no broken references.
SEE ALSO:
Discussion on github: Images don’t show in AutoCAD until …
Set Initial View/Zoom for the Modelspace
See section “General Document”: Set Initial View/Zoom for the Modelspace
Show Lineweights in DXF Viewers
By default lines and curves are shown without lineweights in DXF viewers. By setting the header variable
$LWDISPLAY to 1 the DXF viewer should display lineweights, if supported by the viewer.
doc.header["$LWDISPLAY"] = 1
DXF Content
General preconditions:
import sys
import ezdxf
try:
doc = ezdxf.readfile("your_dxf_file.dxf")
except IOError:
print(f'Not a DXF file or a generic I/O error.')
sys.exit(1)
except ezdxf.DXFStructureError:
print(f'Invalid or corrupted DXF file.')
sys.exit(2)
msp = doc.modelspace()
Get/Set Entity Color
The entity color is stored as ACI (AutoCAD Color Index):
aci = entity.dxf.color
Default value is 256 which means BYLAYER:
layer = doc.layers.get(entity.dxf.layer)
aci = layer.get_color()
The special get_color() method is required, because the color attribute Layer.dxf.color is misused as
layer on/off flag, a negative color value means the layer is off.
ACI value 0 means BYBLOCK, which means the color from the block reference (INSERT entity).
Set color as ACI value as int in range [0, 256]:
entity.dxf.color = 1
The ACI value 7 has a special meaning, it is white on dark backgrounds and white on light backgrounds.
Get/Set Entity RGB Color
RGB true color values are supported since DXF R13 (AC1012), the 24-bit RGB value is stored as integer in
the DXF attribute true_color:
# 24 bit binary value: 0bRRRRRRRRGGGGGGGGBBBBBBBB or hex value: 0xRRGGBB
# set true color value to red
entity.dxf.true_color = 0xFF0000
Use the helper functions from the ezdxf.colors module for RGB integer value handling:
from ezdxf import colors
entity.dxf.true_color = colors.rgb2int((0xFF, 0, 0))
r, g, b = colors.int2rgb(entity.dxf.true_color)
The RGB values of the AutoCAD default colors are not officially documented, but an accurate translation
table is included in ezdxf:
# Warning: ACI value 256 (BYLAYER) raises an IndexError!
rgb24 = colors.DXF_DEFAULT_COLORS[aci]
print(f"RGB Hex Value: #{rgb24:06X}")
r, g, b = colors.int2rgb(rgb24)
print(f"RGB Channel Values: R={r:02X} G={g:02X} b={b:02X}")
If color and true_color values are set, BricsCAD and AutoCAD use the true_color value as display color
for the entity.
Get/Set True Color as RGB-Tuple
Get/Set the true color value as (r, g, b)-tuple by the rgb property of the DXFGraphic entity:
# set true color value to red
entity.rgb = (0xFF, 0, 0)
# get true color values
r, g, b = entity.rgb
Get/Set Block Reference Attributes
Block references (Insert) can have attached attributes (Attrib), these are simple text annotations with
an associated tag appended to the block reference.
Iterate over all appended attributes:
# get all INSERT entities with entity.dxf.name == "Part12"
blockrefs = msp.query('INSERT[name=="Part12"]')
if len(blockrefs):
entity = blockrefs[0] # process first entity found
for attrib in entity.attribs:
if attrib.dxf.tag == "diameter": # identify attribute by tag
attrib.dxf.text = "17mm" # change attribute content
Get attribute by tag:
diameter = entity.get_attrib('diameter')
if diameter is not None:
diameter.dxf.text = "17mm"
Adding XDATA to Entities
Adding XDATA as list of tuples (group code, value) by set_xdata(), overwrites data if already present:
doc.appids.new('YOUR_APPID') # IMPORTANT: create an APP ID entry
circle = msp.add_circle((10, 10), 100)
circle.set_xdata(
'YOUR_APPID',
[
(1000, 'your_web_link.org'),
(1002, '{'),
(1000, 'some text'),
(1002, '{'),
(1071, 1),
(1002, '}'),
(1002, '}')
])
For group code meaning see DXF reference section DXF Group Codes in Numerical Order Reference, valid
group codes are in the range 1000 - 1071.
Method get_xdata() returns the extended data for an entity as Tags object.
SEE ALSO:
Tutorial: Storing Custom Data in DXF Files
Get Overridden DIMSTYLE Values from DIMENSION
In general the Dimension styling and config attributes are stored in the Dimstyle entity, but every
attribute can be overridden for each DIMENSION entity individually, get overwritten values by the
DimstyleOverride object as shown in the following example:
for dimension in msp.query('DIMENSION'):
dimstyle_override = dimension.override() # requires v0.12
dimtol = dimstyle_override['dimtol']
if dimtol:
print(f'{str(dimension)} has tolerance values:')
dimtp = dimstyle_override['dimtp']
dimtm = dimstyle_override['dimtm']
print(f'Upper tolerance: {dimtp}')
print(f'Lower tolerance: {dimtm}')
The DimstyleOverride object returns the value of the underlying DIMSTYLE objects if the value in
DIMENSION was not overwritten, or None if the value was neither defined in DIMSTYLE nor in DIMENSION.
Override DIMSTYLE Values for DIMENSION
Same as above, the DimstyleOverride object supports also overriding DIMSTYLE values. But just overriding
this values have no effect on the graphical representation of the DIMENSION entity, because CAD
applications just show the associated anonymous block which contains the graphical representation on the
DIMENSION entity as simple DXF entities. Call the render method of the DimstyleOverride object to
recreate this graphical representation by ezdxf, but ezdxf does not support all DIMENSION types and
DIMVARS yet, and results will differ from AutoCAD or BricsCAD renderings.
dimstyle_override = dimension.override()
dimstyle_override.set_tolerance(0.1)
# delete associated geometry block
del doc.blocks[dimension.dxf.geometry]
# recreate geometry block
dimstyle_override.render()
How to Change the HATCH Pattern Origin Point
This code sets the origin of the first pattern line to the given origin and the origins of all remaining
pattern lines relative to the first pattern line origin.
from ezdxf.entities import Hatch, Pattern
from ezdxf.math import Vec2
def shift_pattern_origin(hatch: Hatch, offset: Vec2):
if isinstance(hatch.pattern, Pattern):
for pattern_line in hatch.pattern.lines:
pattern_line.base_point += offset
def reset_pattern_origin_of_first_pattern_line(hatch: Hatch, origin: Vec2):
if isinstance(hatch.pattern, Pattern) and len(hatch.pattern.lines):
first_pattern_line = hatch.pattern.lines[0]
offset = origin - first_pattern_line.base_point
shift_pattern_origin(hatch, offset)
SEE ALSO:
• Discussion #769
How to Get the Length of a Spline or Polyline
There exist no analytical function to calculate the length of a B-spline, you have to approximate the
curve and calculate the length of the polyline. The construction tool ezdxf.math.ConstructionPolyline is
may be useful for that.
import ezdxf
from ezdxf.math import ConstructionPolyline
doc = ezdxf.new()
msp = doc.modelspace()
fit_points = [(0, 0, 0), (750, 500, 0), (1750, 500, 0), (2250, 1250, 0)]
spline = msp.add_spline(fit_points)
# Adjust the max. sagitta distance to your needs or run the calculation in a loop
# reducing the distance until the difference to the previous run is smaller
# than your expected precision:
polyline = ConstructionPolyline(spline.flattening(distance=0.1))
print(f"approximated length = {polyline.length:.2f}")
How to Resolve DXF Properties
Graphical properties of DXF entities (color, lineweight, …) are sometimes hard to resolve because of the
complex possibilities to inherit properties from layers or blocks, or overriding them by ctb files.
The drawing add-on provides the RenderContext class that can be used to resolve properties of entities in
the context of their use:
import ezdxf
from ezdxf.addons.drawing.properties import RenderContext
doc = ezdxf.new()
doc.layers.add("LINE", color=ezdxf.colors.RED)
msp = doc.modelspace()
line = msp.add_line((0, 0), (1, 0), dxfattribs={"layer": "LINE"})
ctx = RenderContext(doc)
ctx.set_current_layout(msp)
print(f"resolved RGB value: {ctx.resolve_color(line)}")
Output:
resolved RGB value: #ff0000
This works in most simple cases, resolving properties of objects in viewports or nested blocks requires
additional information that is beyond the scope of a simple guide.
How to Find XREF Definitions
XREFs are normal block definitions and can be found in the BLOCKS section:
for block_layout in doc.blocks:
block = block_layout.block # the BLOCK entity
if block.is_xref:
handle_xref(block_layout)
elif block.is_xref_overlay:
handle_xref_overlay(block_layout)
SEE ALSO:
• documentation of the ezdxf.xref module
• ezdxf.layouts.BlockLayout
How to Find XREF References
An XREF reference is a block reference (INSERT entity) to the block definition of the XREF:
for insert in msp.query("INSERT"):
if insert.is_xref:
handle_xref_reference(insert)
# ... or get the XREF definition
block_layout = insert.block()
if block_layout is not None:
block = block_layout.block
if block.is_xref:
handle_xref(block_layout)
elif block.is_xref_overlay:
handle_xref_overlay(block_layout)
Like any normal block, an XREF can be inserted multiple times.
SEE ALSO:
• documentation of the ezdxf.xref module
• ezdxf.layouts.BlockLayout
Fonts
Rendering SHX Fonts
The SHX font format is not documented nor supported by many libraries/packages like Matplotlib and Qt,
therefore only SHX fonts which have corresponding TTF-fonts can be rendered by these backends. The
mapping from/to SHX/TTF fonts is hard coded in the source code file: fonts.py
Since ezdxf v1.1 is the rendering of SHX fonts supported if the path to these fonts is added to the
support_dirs in the Config Files.
Adding New Font Directories
When you add new directories to the support_dirs in your config file, you have to rebuild the font cache
to use these fonts with ezdxf, see section Rebuild Font Manager Cache
Adding New Fonts
When you add new fonts to any of the support directories, you have to rebuild the font cache to use these
fonts with ezdxf, see section Rebuild Font Manager Cache
Rebuild Font Manager Cache
If you want to use new installed fonts or fonts from a new added font directory which is not included in
the current cache file of ezdxf you have to rebuild the cache file:
import ezdxf
from ezdxf.fonts import fonts
fonts.build_system_font_cache()
or call the ezdxf launcher to do that:
ezdxf --fonts
Drawing Add-on
This section consolidates the FAQ about the drawing add-on from the github forum.
All Backends
How to Set Background and Foreground Colors
Override the default background and foreground colors. The foreground color is the AutoCAD Color Index
(ACI) 7, which is white/black depending on the background color. If the foreground color is not
specified, the foreground color is white for dark backgrounds and black for light backgrounds. The
required color format is a hex string “#RRGGBBAA”.
from ezdxf.addons.drawing.properties import LayoutProperties
# -x-x-x snip -x-x-x-
fig: plt.Figure = plt.figure()
ax: plt.Axes = fig.add_axes((0, 0, 1, 1))
ctx = RenderContext(doc)
# get the modelspace properties
msp_properties = LayoutProperties.from_layout(msp)
# set light gray background color and black foreground color
msp_properties.set_colors("#eaeaea")
out = MatplotlibBackend(ax)
# override the layout properties and render the modelspace
Frontend(ctx, out).draw_layout(
msp,
finalize=True,
layout_properties=msp_properties,
)
fig.savefig("image.png")
A light background “#eaeaea” has a black foreground color by default: [image]
A dark background “#0a0a0a” has a white foreground color by default:
# -x-x-x snip -x-x-x-
msp_properties.set_colors("#0a0a0a")
# -x-x-x snip -x-x-x-
[image]
How to Set a Transparent Background Color
The override color include an alpha transparency “#RRGGBBAA” value. An alpha value of “00” is opaque and
“ff” is fully transparent. A transparent background color still defines the foreground color!
HINT:
The savefig() function of the matplotlib backend requires the transparent argument to be set to True
to support transparency.
A light and fully transparent background “#eaeaeaff” has a black foreground color by default:
# -x-x-x snip -x-x-x-
msp_properties.set_colors("#eaeaeaff")
# -x-x-x snip -x-x-x-
fig.savefig("image.png", transparent=True)
[image]
A dark and fully transparent background “#0a0a0aff” has a white foreground color by default:
# -x-x-x snip -x-x-x-
msp_properties.set_colors("#0a0a0aff")
# -x-x-x snip -x-x-x-
fig.savefig("image.png", transparent=True)
[image]
How to Exclude DXF Entities from Rendering
• If all unwanted entities are on the same layer switch off the layer.
• If the document is not saved later, you can delete the entities or set them invisible.
• Filter the unwanted entities by a filter function.
The argument filter_func of the Frontend.draw_layout() method expects a function which takes a graphical
DXF entity as input and returns True if the entity should be rendered or False to exclude the entity from
rendering.
This filter function excludes all DXF entities with an ACI color value of 2:
from ezdxf.entities import DXFGraphic
def my_filter(e: DXFGraphic) -> bool:
return e.dxf.color != 2
# -x-x-x snip -x-x-x-
Frontend(ctx, out).draw_layout(msp, finalize=True, filter_func=my_filter)
IMPORTANT:
Not all attributes have a default value if the attribute does not exist. If you are not sure about
this, use the get() method:
def my_filter(e: DXFGraphic) -> bool:
return e.dxf.get("color", 7) != 2
How to Override Properties of DXF Entities
Create a custom Frontend class and override the the override_properties() method:
class MyFrontend(Frontend):
def override_properties(self, entity: DXFGraphic, properties: Properties) -> None:
# remove alpha channel from all entities, "#RRGGBBAA"
properties.color = properties.color[:7]
# -x-x-x snip -x-x-x-
MyFrontend(ctx, out).draw_layout(msp, finalize=True)
SEE ALSO:
• ezdxf.addons.drawing.properties.Properties
Matplotlib Backend
SEE ALSO:
• Matplotlib package: https://matplotlib.org/stable/api/matplotlib_configuration_api.html
• Figure API: https://matplotlib.org/stable/api/figure_api.html
• Axes API: https://matplotlib.org/stable/api/axis_api.html
How to Get the Pixel Coordinates of DXF Entities
SEE ALSO:
• Source: https://github.com/mozman/ezdxf/discussions/219
Transformation from modelspace coordinates to image coordinates:
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
import ezdxf
from ezdxf.math import Matrix44
from ezdxf.addons.drawing import RenderContext, Frontend
from ezdxf.addons.drawing.matplotlib import MatplotlibBackend
def get_wcs_to_image_transform(
ax: plt.Axes, image_size: tuple[int, int]
) -> Matrix44:
"""Returns the transformation matrix from modelspace coordinates to image
coordinates.
"""
x1, x2 = ax.get_xlim()
y1, y2 = ax.get_ylim()
data_width, data_height = x2 - x1, y2 - y1
image_width, image_height = image_size
return (
Matrix44.translate(-x1, -y1, 0)
@ Matrix44.scale(
image_width / data_width, -image_height / data_height, 1.0
)
# +1 to counteract the effect of the pixels being flipped in y
@ Matrix44.translate(0, image_height + 1, 0)
)
# create the DXF document
doc = ezdxf.new()
msp = doc.modelspace()
msp.add_lwpolyline([(0, 0), (1, 0), (1, 1), (0, 1)], close=True)
msp.add_line((0, 0), (1, 1))
# export the pixel image
fig: plt.Figure = plt.figure()
ax: plt.Axes = fig.add_axes([0, 0, 1, 1])
ctx = RenderContext(doc)
out = MatplotlibBackend(ax)
Frontend(ctx, out).draw_layout(msp, finalize=True)
fig.savefig("cad.png")
plt.close(fig)
# reload the pixel image by Pillow (PIL)
img = Image.open("cad.png")
draw = ImageDraw.Draw(img)
# add some annotations to the pixel image by using modelspace coordinates
m = get_wcs_to_image_transform(ax, img.size)
a, b, c = (
(v.x, v.y) # draw.line() expects tuple[float, float] as coordinates
# transform modelspace coordinates to image coordinates
for v in m.transform_vertices([(0.25, 0.75), (0.75, 0.25), (1, 1)])
)
draw.line([a, b, c, a], fill=(255, 0, 0))
# show the image by the default image viewer
img.show()
How to Get Modelspace Coordinates from Pixel Coordinates
This is the reverse operation of the previous how-to: How to Get the Pixel Coordinates of DXF Entities
SEE ALSO:
• Full example script: wcs_to_image_coordinates.py
• Source: https://github.com/mozman/ezdxf/discussions/269
def get_image_to_wcs_transform(
ax: plt.Axes, image_size: tuple[int, int]
) -> Matrix44:
m = get_wcs_to_image_transform(ax, image_size)
m.inverse()
return m
# -x-x-x snip -x-x-x-
img2wcs = get_image_to_wcs_transform(ax, img.size)
print(f"0.25, 0.75 == {img2wcs.transform(a).round(2)}")
print(f"0.75, 0.25 == {img2wcs.transform(b).round(2)}")
print(f"1.00, 1.00 == {img2wcs.transform(c).round(2)}")
How to Export a Specific Area of the Modelspace
This code exports the specified modelspace area from (5, 3) to (7, 8) as a 2x5 inch PNG image to maintain
the aspect ratio of the source area.
Use case: render only a specific area of the modelspace.
SEE ALSO:
• Full example script: export_specific_area.py
• Source: https://github.com/mozman/ezdxf/discussions/451
# -x-x-x snip -x-x-x-
# export the pixel image
fig: plt.Figure = plt.figure()
ax: plt.Axes = fig.add_axes([0, 0, 1, 1])
ctx = RenderContext(doc)
out = MatplotlibBackend(ax)
Frontend(ctx, out).draw_layout(msp, finalize=True)
# setting the export area:
xmin, xmax = 5, 7
ymin, ymax = 3, 8
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
# set the output size to get the expected aspect ratio:
fig.set_size_inches(xmax - xmin, ymax - ymin)
fig.savefig("x5y3_to_x7y8.png")
plt.close(fig)
How to Render Without Margins
To remove the empty space at the image borders set the margins of the Axes object to zero:
ax.margins(0)
fig.savefig("image_without_margins.png")
plt.close(fig)
SEE ALSO:
• Matplotlib docs about margins
How to Set the Pixel Count per Drawing Unit
This code exports the modelspace with an extent of 5 x 3 drawing units with 100 pixels per drawing unit
as a 500 x 300 pixel image.
Use case: render the content with a fixed number of pixels for a drawing unit, e.g. a drawing unit of 1
inch should be rendered by 100 pixels.
SEE ALSO:
• Full example script: export_image_pixel_size.py
• Source: https://github.com/mozman/ezdxf/discussions/357
# -x-x-x snip -x-x-x-
def set_pixel_density(fig: plt.Figure, ax: plt.Axes, ppu: int):
"""Argument `ppu` is pixels per drawing unit."""
xmin, xmax = ax.get_xlim()
width = xmax - xmin
ymin, ymax = ax.get_ylim()
height = ymax - ymin
dpi = fig.dpi
width_inch = width * ppu / dpi
height_inch = height * ppu / dpi
fig.set_size_inches(width_inch, height_inch)
# -x-x-x snip -x-x-x-
# export image with 100 pixels per drawing unit = 500x300 pixels
set_pixel_density(fig, ax, 100)
fig.savefig("box_500x300.png")
plt.close(fig)
How to Export a Specific Image Size in Pixels
This code exports the modelspace with an extent of 5 x 3 drawing units as a 1000 x 600 pixel Image.
Use case: render the content with a fixed image size in pixels.
SEE ALSO:
• Full example script: export_image_pixel_size.py
• Source: https://github.com/mozman/ezdxf/discussions/357
# -x-x-x snip -x-x-x-
def set_pixel_size(fig: plt.Figure, size: tuple[int, int]):
x, y = size
fig.set_size_inches(x / fig.dpi, y / fig.dpi)
# -x-x-x snip -x-x-x-
# export image with a size of 1000x600 pixels
set_pixel_size(fig, (1000, 600))
fig.savefig("box_1000x600.png")
plt.close(fig)
How to Set the Page Size in Inches
The page- or image size in inches is set by the set_size_inches() method of the Figure class. The content
within the Axes limits will be scaled to fill the page.
Use case: render the whole content to a PDF document with a specific paper size without worrying about
scale.
fig.set_size_inches(8, 11)
How to Render at a Specific Scale
This code exports the modelspace at a specific scale and paper size.
Use case: render the content to a PDF document with a specific paper size and scale, but not all content
may be rendered.
SEE ALSO:
• Full example script: render_to_scale.py
• Source: https://github.com/mozman/ezdxf/discussions/665
# -x-x-x snip -x-x-x-
def render_limits(
origin: tuple[float, float],
size_in_inches: tuple[float, float],
scale: float,
) -> tuple[float, float, float, float]:
"""Returns the final render limits in drawing units.
Args:
origin: lower left corner of the modelspace area to render
size_in_inches: paper size in inches
scale: render scale, e.g. scale=100 means 1:100, 1m is
rendered as 0.01m or 1cm on paper
"""
min_x, min_y = origin
max_x = min_x + size_in_inches[0] * scale
max_y = min_y + size_in_inches[1] * scale
return min_x, min_y, max_x, max_y
def export_to_scale(
paper_size: tuple[float, float] = (8.5, 11),
origin: tuple[float, float] = (0, 0),
scale: float = 1,
dpi: int = 300,
):
"""Render the modelspace content with to a specific paper size and scale.
Args:
paper_size: paper size in inches
origin: lower left corner of the modelspace area to render
scale: render scale, e.g. scale=100 means 1:100, 1m is
rendered as 0.01m or 1cm on paper
dpi: pixel density on paper as dots per inch
"""
# -x-x-x snip -x-x-x-
ctx = RenderContext(doc)
fig: plt.Figure = plt.figure(dpi=dpi)
ax: plt.Axes = fig.add_axes([0, 0, 1, 1])
# disable all margins
ax.margins(0)
# get the final render limits in drawing units:
min_x, min_y, max_x, max_y = render_limits(
origin, paper_size, scale
)
ax.set_xlim(min_x, max_x)
ax.set_ylim(min_y, max_y)
out = MatplotlibBackend(ax)
# finalizing invokes auto-scaling by default!
Frontend(ctx, out).draw_layout(msp, finalize=False)
# set output size in inches:
fig.set_size_inches(paper_size[0], paper_size[1], forward=True)
fig.savefig(f"image_scale_1_{scale}.pdf", dpi=dpi)
plt.close(fig)
How to Control the Line Width
The DXF lineweight attribute defines the line width as absolute width on the output medium (e.g. 25 =
0.25mm) and therefore depends only on the DPI (dots per inch) setting of the Figure class and the
savefig() method.
There are two additional settings in the Configuration class which influences the line width:
• min_lineweight sets the minimum line width in 1/300 inch - a value of 300 is a line width of 1 inch
• lineweight_scaling, multiply the line width by a this factor
The following table shows the line width in pixels for all valid DXF lineweights for a resolution of 72,
100, 200 and 300 dpi: [image]
SEE ALSO:
Discussion: https://github.com/mozman/ezdxf/discussions/797
FAQ
These are the old FAQ until late 2023, new FAQs will only be added to the Knowledge Graph.
What is the Relationship between ezdxf, dxfwrite and dxfgrabber?
In 2010 I started my first Python package for creating DXF documents called dxfwrite, this package can’t
read DXF files and writes only the DXF R12 (AC1009) version. While dxfwrite works fine, I wanted a more
versatile package, that can read and write DXF files and maybe also supports newer DXF formats than DXF
R12.
This was the start of the ezdxf package in 2011, but the progress was so slow, that I created a spin off
in 2012 called dxfgrabber, which implements only the reading part of ezdxf, which I needed for my work
and I wasn’t sure if ezdxf will ever be usable. Luckily in 2014 the first usable version of ezdxf could
be released. The ezdxf package has all the features of dxfwrite and dxfgrabber and much more, but with a
different API. So ezdxf is not a drop-in replacement for dxfgrabber or dxfwrite.
Since ezdxf can do all the things that dxfwrite and dxfgrabber can do, I focused on the development of
ezdxf, dxfwrite and dxfgrabber are in maintenance-only mode and will not get any new features, just
bugfixes.
There are no advantages of dxfwrite over ezdxf, dxfwrite has a smaller memory footprint, but the
r12writer add-on does the same job as dxfwrite without any in-memory structures by writing direct to a
stream or file and there is also no advantage of dxfgrabber over ezdxf for ordinary DXF files, the
smaller memory footprint of dxfgrabber is not noticeable and for really big files the iterdxf add-on does
a better job.
Imported ezdxf package has no content. (readfile, new)
1. AttributeError: partially initialized module ‘ezdxf’ has no attribute ‘readfile’ (most likely due to a
circular import)
Did you name your file/script “ezdxf.py”? This causes problems with circular imports. Renaming your
file/script should solve this issue.
2. AttributeError: module ‘ezdxf’ has no attribute ‘readfile’
This could be a hidden permission error, for more information about this issue read Petr Zemeks
article: https://blog.petrzemek.net/2020/11/17/when-you-import-a-python-package-and-it-is-empty/
How to add/edit ACIS based entities like 3DSOLID, REGION or SURFACE?
The BODY, 3DSOLID, SURFACE, REGION and so on, are stored as ACIS data embedded in the DXF file. The ACIS
data is stored as SAT (text) format in the entity itself for DXF R2000-R2010 and as SAB (binary) format
in the ACDSDATA section for DXF R2013+. Ezdxf can read SAT and SAB data, but only write SAT data.
The ACIS data is a proprietary format from Spatial Inc., and there exist no free available documentation
or open source libraries to create or edit SAT or SAB data, and also ezdxf provides no functionality for
creating or editing ACIS data.
The ACIS support provided by ezdxf is only useful for users which have access to the ACIS SDK from ‐
Spatial Inc..
Are OLE/OLE2 entities supported?
TLDR; NO!
The Wikipedia definition of OLE: Object Linking & Embedding (OLE) is a proprietary technology developed
by Microsoft that allows embedding and linking to documents and other objects. For developers, it brought
OLE Control Extension (OCX), a way to develop and use custom user interface elements. On a technical
level, an OLE object is any object that implements the IOleObject interface, possibly along with a wide
range of other interfaces, depending on the object’s needs.
Therefore ezdxf does not support this entities in any way, this only work on Windows and with the
required editing application installed. The binary data stored in the OLE objects cannot be used without
the editing application.
In my opinion, using OLE objects in a CAD drawing is a very bad design decision that can and will cause
problems opening these files in the future, even in AutoCAD on Windows when the required editing
application is no longer available or the underlying technology is no longer supported.
All of this is unacceptable for a data storage format that should be accessed for many years or decades
(e.g. construction drawings for buildings or bridges).
Rendering SHX fonts
The SHX font format is not documented nor supported by many libraries/packages like Matplotlib and Qt,
therefore only SHX fonts which have corresponding TTF-fonts can be rendered by these backends. See also
how-tos about Fonts
Drawing Add-on
There is a dedicated how-to section for the Drawing Add-on.
Is the AutoCAD command XYZ available?
TLDR; Would you expect Photoshop features from a JPG library?
The package is designed as an interface to the DXF format and therefore does not offer any advanced
features of interactive CAD applications. First, some tasks are difficult to perform without human
guidance, and second, in complex situations, it’s not that easy to tell a “headless” system what exactly
to do, so it’s very likely that not many users would ever use these features, despite the fact that a lot
of time and effort would have to be spent on development, testing and long-term support.
Recognize New Installed Fonts
• Knowledge Graph
Why are ARC coordinates wrong?
• Knowledge Graph
• Github FAQ #1266
GLOSSARY
ACI AutoCAD Color Index (ACI)
ACIS The 3D ACIS Modeler (ACIS) is a geometric modeling kernel developed by Spatial Corp. ® (formerly
Spatial Technology) and now part of Dassault Systems. All ACIS based DXF entities store their
geometry as SAT or SAB data. These are not open data formats and a license has to be purchased to
get access to their SDK, therefore ezdxf can not provide any support for creating, processing or
transforming of ACIS based DXF entities.
bulge The Bulge value is used to create arc shaped line segments in Polyline and LWPolyline entities.
CAD Computer-Assisted Drafting or Computer-Aided Design
CTB Color dependent plot style table (ColorDependentPlotStyles)
DWG Proprietary file format of AutoCAD ®. Documentation for this format is available from the Open
Design Alliance (ODA) at their Downloads section. This documentation is created by reverse
engineering therefore not perfect nor complete.
DXF Drawing eXchange Format is a file format used by AutoCAD ® to interchange data with other CAD
applications. DXF is a trademark of Autodesk ®. See also What is DXF?
proxy-graphic
The proxy-graphic is an internal data format to add a graphical representation to DXF entities
which are unknown (custom DXF entities), not documented or very complex so CAD applications can
display them without knowledge about the internal structure of these entities.
raw-color
Raw color value as stored in DWG files, this integer value can represent ACI values as well as and
true-color values
reliable CAD application
CAD applications which create valid DXF documents in the meaning and interpretation of Autodesk.
See also What is DXF?
SAB ACIS file format (Standard ACIS Binary), binary stored data
SAT ACIS file format (Standard ACIS Text), data stored as ASCII text
STB Named plot style table (NamedPlotStyles)
true-color
RGB color representation, a combination red, green and blue values to define a color.
KNOWLEDGE GRAPH
I have started managing notes and documents that are not included in the ezdxf documentation in Logseq in
late 2023. It works like a wiki but does not require a backend server. The Information is edited as
Markdown files, which is much more intuitive than reStructured Text, and the content is stored in local
files.
The notes are included in the source code repository on Github in the notes folder.
A published edition of this Knowledge Graph is included on the ezdxf website and is accessible by the
link https://ezdxf.mozman.at/notes.
The Knowledge Graph includes:
• Release Notes of future releases and some versions back
• CHANGELOG
• IDEAS for future releases
• FAQ and the HOWTO sections from this documentation
• all my notes to ezdxf
• In the future the DXF Internals section from this documentation may also move to the Knowledge Graph.
Logseq’s outline structure is not ideal for all the documents I want to include, but I chose Logseq over
Obsidian.md because it is open source and can publish the knowledge graph as a static website, static in
the sense of no server-side code execution.
This feature is important to me for hosting the content of the Knowledge Graph on the ezdxf` website and
cannot be achieved for free with Obsidian.md.
Logseq is an Electron application that runs on all platforms, with the disadvantage: it’s an Electron
application.
INDICES AND TABLES
• Index
• Search Page
AUTHOR
Manfred Moitzi
COPYRIGHT
2011-2025, Manfred Moitzi
1.4.1 May 05, 2025 EZDXF(1)