Provided by: grass-doc_6.4.3-3_all
NAME
i.topo.corr - Computes topographic correction of reflectance.
KEYWORDS
imagery, terrain, topographic correction
SYNOPSIS
i.topo.corr i.topo.corr help i.topo.corr [-i] [input=name[,name,...]] output=name basemap=name zenith=float [azimuth=float] [method=string] [--overwrite] [--verbose] [--quiet] Flags: -i Output sun illumination terrain model --overwrite Allow output files to overwrite existing files --verbose Verbose module output --quiet Quiet module output Parameters: input=name[,name,...] Name of reflectance raster maps to be corrected topographically output=name Name (flag -i) or prefix for output raster maps basemap=name Name of input base raster map (elevation or illumination) zenith=float Solar zenith in degrees azimuth=float Solar azimuth in degrees (only if flag -i) method=string Topographic correction method Options: cosine,minnaert,c-factor,percent Default: c-factor
DESCRIPTION
i.topo.corr is used to topographically correct reflectance from imagery files, e.g. obtained with i.landsat.toar, using a sun illumination terrain model. This illumination model represents the cosine of the incident angle, i.e. the angle between the normal to the ground and the sun rays. It can be obtained with r.sun (parameter incidout), and then calculating its cosine with float precision. Using the -i flag and given an elevation basemap (metric), i.topo.corr creates a simple illumination model using the formula: cos_i = cos(s) * cos(z) + sin(s) * sin(z) * cos(a - o) where, s is the terrain slope angle, z is the solar zenith angle, a the solar azimuth angle, o the terrain aspect angle. For each band file, the corrected reflectance (ref_c) is calculate from the original reflectance (ref_o) using one of the four offered methods (one lambertian and two non- lambertian). Method: cosine ref_c = ref_o * cos_z / cos_i Method: minnaert ref_c = ref_o * (cos_z / cos_i) ^k where, k is obtained by linear regression of ln(ref_o) = ln(ref_c) - k ln(cos_i/cos_z) Method: c-factor ref_c = ref_o * (cos_z + c)/ (cos_i + c) where, c is a/m from ref_o = a + m * cos_i Method: percent We can use cos_i to estimate the percent of solar incidence on the surface, then the transformation (cos_i + 1)/2 varied from 0 (surface in the side in opposition to the sun: infinite correction) to 1 (direct exhibition to the sun: no correction) and the corrected reflectance can be calculated as ref_c = ref_o * 2 / (cos_i + 1)
NOTES
1 The illumination model (cos_i) with flag -i uses the actual region as limits and the resolution of the elevation map. 2 The topographic correction use the full reflectance file (null remain null) and its resolution. 3 The elevation map to calculate the illumination model should be metric.
EXAMPLES
First, make a illumination model from the elevation map (here, SRTM). Then make perform the topographic correction of e.g. the bands toar.5, toar.4 and toar.3 with output as tcor.toar.5, tcor.toar.4, and tcor.toar.3 using c-factor (= c-correction) method: i.topo.corr -i base=SRTM zenith=33.3631 azimuth=59.8897 out=SRTM.illumination i.topo.corr base=SRTM.illumination input=toar.5,toar.4,toar.3 out=tcor \ zenith=33.3631 method=c-factor
REFERENCES
Law K.H. and Nichol J, 2004. Topographic Correction For Differential Illumination Effects On Ikonos Satellite Imagery. International Archives of Photogrammetry Remote Sensing and Spatial Information, pp. 641-646. Meyer, P. and Itten, K.I. and Kellenberger, KJ and Sandmeier, S. and Sandmeier, R., 1993. Radiometric corrections of topographically induced effects on Landsat TM data in alpine terrain. Photogrammetric Engineering and Remote Sensing 48(17). Riaño, D. and Chuvieco, E. and Salas, J. and Aguado, I., 2003. Assessment of Different Topographic Corrections in Landsat-TM Data for Mapping Vegetation Types. IEEE Transactions On Geoscience And Remote Sensing, Vol. 41, No. 5 Twele A. and Erasmi S, 2005. Evaluating topographic correction algorithms for improved land cover discrimination in mountainous areas of Central Sulawesi. Göttinger Geographische Abhandlungen, vol. 113.
SEE ALSO
i.landsat.toar, r.mapcalc, r.sun
AUTHOR
E. Jorge Tizado (ej.tizado unileon es) Dept. Biodiversity and Environmental Management, University of León, Spain Last changed: $Date: 2013-04-17 22:56:53 -0700 (Wed, 17 Apr 2013) $ Full index © 2003-2013 GRASS Development Team