Provided by: mia-tools_2.0.13-1_amd64 bug

NAME

       mia-2dgroundtruthreg - Registration of a series of 2D images

SYNOPSIS

       mia-2dgroundtruthreg -i <in-file> -o <out-file> -A <alpha> -B <beta> -R <rho_thresh> [options]

DESCRIPTION

       mia-2dgroundtruthreg  This  program  implements the non-linear registration based on Pseudo Ground Thruth
       for motion compensation of series of myocardial perfusion images as decribed in Chao  Li  and  Ying  Sun,
       'Nonrigid  Registration  of  Myocardial Perfusion MRI Using Pseudo Ground Truth' , In Proc. Medical Image
       Computing and Computer-Assisted Intervention MICCAI 2009, 165-172, 2009. Note  that  for  this  nonlinear
       motion correction a preceding linear registration step is usually required.

OPTIONS

   File-IO
              -i --in-file=(required)
                     input perfusion data set

              -o --out-file=(required)
                     output perfusion data set

              -r --registered=reg
                     file name base for registered files

   Preconditions
              -s --skip=2
                     skip images at beginning of series

              -P --passes=4
                     number of registration passes

   Pseudo-Ground-Thruth
              -A --alpha=(required)
                     spacial neighborhood penalty weight

              -B --beta=(required)
                     temporal second derivative penalty weight

              -R --rho_thresh=(required)
                     crorrelation threshhold for neighborhood analysis

   Registration
              -O --optimizer=gsl:opt=gd,step=0.1
                     Optimizer used for minimization  For supported plugins see PLUGINS:minimizer/singlecost

              -p --interpolator=bspline:d=3
                     image interpolator kernel  For supported plugins see PLUGINS:1d/splinekernel

              -l --mr-levels=3
                     multi-resolution levels

              -d --divcurl=20
                     divcurl regularization weight

                 --divcurl-divider=4
                     divcurl weight scaling with each new pass

              -a --start-c-rate=32
                     start coefficinet rate in spines, gets divided by --c-rate-divider with every pass

                 --c-rate-divider=4
                     cofficient rate divider for each pass

              -w --imageweight=1
                     image cost weight

   Help & Info
              -V --verbose=warning
                     verbosity  of  output,  print  messages  of  given  level  and higher priorities. Supported
                     priorities starting at lowest level are:
                        info ‐ Low level messages
                        warning ‐ Warnings
                        error ‐ Report errors
                        fail ‐ Report test failures
                        message ‐ Normal messages
                        fatal ‐ Report only fatal errors

                 --copyright
                     print copyright information

              -h --help
                     print this help

              -? --usage
                     print a short help

                 --version
                     print the version number and exit

   Processing
                 --threads=-1
                     Maxiumum number of threads to use for processing,This number should be lower  or  equal  to
                     the number of logical processor cores in the machine. (-1: automatic estimation).

PLUGINS: 1d/splinekernel

       bspline   B-spline kernel creation , supported parameters are:

                     d = 3 (int)
                       Spline degree.  in [0, 5]

       omoms     OMoms-spline kernel creation, supported parameters are:

                     d = 3 (int)
                       Spline degree.  in [3, 3]

PLUGINS: minimizer/singlecost

       gdsq      Gradient descent with quadratic step estimation, supported parameters are:

                     ftolr = 0 (double)
                       Stop if the relative change of the criterion is below..  in [0, INF]

                     gtola = 0 (double)
                       Stop if the inf-norm of the gradient is below this value..  in [0, INF]

                     maxiter = 100 (uint)
                       Stopping criterion: the maximum number of iterations.  in [1, 2147483647]

                     scale = 2 (double)
                       Fallback fixed step size scaling.  in [1, INF]

                     step = 0.1 (double)
                       Initial step size.  in [0, INF]

                     xtola = 0 (double)
                       Stop if the inf-norm of x-update is below this value..  in [0, INF]

       gsl       optimizer  plugin  based  on  the  multimin  optimizers  ofthe  GNU  Scientific  Library  (GSL)
                 https://www.gnu.org/software/gsl/, supported parameters are:

                     eps = 0.01 (double)
                       gradient based optimizers: stop when |grad| < eps, simplex:  stop  when  simplex  size  <
                       eps..  in [1e-10, 10]

                     iter = 100 (int)
                       maximum number of iterations.  in [1, 2147483647]

                     opt = gd (dict)
                       Specific optimizer to be used..  Supported values are:
                           bfgs ‐ Broyden-Fletcher-Goldfarb-Shann
                           bfgs2 ‐ Broyden-Fletcher-Goldfarb-Shann (most efficient version)
                           cg-fr ‐ Flecher-Reeves conjugate gradient algorithm
                           gd ‐ Gradient descent.
                           simplex ‐ Simplex algorithm of Nelder and Mead
                           cg-pr ‐ Polak-Ribiere conjugate gradient algorithm

                     step = 0.001 (double)
                       initial step size.  in [0, 10]

                     tol = 0.1 (double)
                       some tolerance parameter.  in [0.001, 10]

       nlopt     Minimizer  algorithms  using  the NLOPT library, for a description of the optimizers please see
                 'http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms', supported parameters are:

                     ftola = 0 (double)
                       Stopping criterion: the absolute change of the objective value is below  this value.   in
                       [0, INF]

                     ftolr = 0 (double)
                       Stopping  criterion: the relative change of the objective value is below  this value.  in
                       [0, INF]

                     higher = inf (double)
                       Higher boundary (equal for all parameters).  in [INF, INF]

                     local-opt = none (dict)
                       local minimization algorithm that may be required for the main  minimization  algorithm..
                       Supported values are:
                           gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased)
                           gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased)
                           gn-isres ‐ Improved Stochastic Ranking Evolution Strategy
                           ld-tnewton ‐ Truncated Newton
                           gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized)
                           ln-newuoa  ‐  Derivative-free  Unconstrained  Optimization by Iteratively Constructed
                           Quadratic Approximation
                           gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized)
                           gn-orig-direct ‐ Dividing Rectangles (original implementation)
                           ld-tnewton-precond ‐ Preconditioned Truncated Newton
                           ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting
                           gn-direct ‐ Dividing Rectangles
                           ln-neldermead ‐ Nelder-Mead simplex algorithm
                           ln-cobyla ‐ Constrained Optimization BY Linear Approximation
                           gn-crs2-lm ‐ Controlled Random Search with Local Mutation
                           ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2
                           ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1
                           ld-mma ‐ Method of Moving Asymptotes
                           ld-lbfgs-nocedal ‐ None
                           ld-lbfgs ‐ Low-storage BFGS
                           gn-direct-l ‐ Dividing Rectangles (locally biased)
                           none ‐ don't specify algorithm
                           ln-bobyqa ‐ Derivative-free Bound-constrained Optimization
                           ln-sbplx ‐ Subplex variant of Nelder-Mead
                           ln-newuoa-bound  ‐  Derivative-free  Bound-constrained  Optimization  by  Iteratively
                           Constructed Quadratic Approximation
                           ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method
                           gn-direct-noscal ‐ Dividing Rectangles (unscaled)
                           ld-tnewton-precond-restart  ‐  Preconditioned  Truncated Newton with steepest-descent
                           restarting

                     lower = -inf (double)
                       Lower boundary (equal for all parameters).  in [INF, INF]

                     maxiter = 100 (int)
                       Stopping criterion: the maximum number of iterations.  in [1, 2147483647]

                     opt = ld-lbfgs (dict)
                       main minimization algorithm.  Supported values are:
                           gn-orig-direct-l ‐ Dividing Rectangles (original implementation, locally biased)
                           g-mlsl-lds ‐  Multi-Level  Single-Linkage  (low-discrepancy-sequence,  require  local
                           gradient based optimization and bounds)
                           gn-direct-l-noscal ‐ Dividing Rectangles (unscaled, locally biased)
                           gn-isres ‐ Improved Stochastic Ranking Evolution Strategy
                           ld-tnewton ‐ Truncated Newton
                           gn-direct-l-rand ‐ Dividing Rectangles (locally biased, randomized)
                           ln-newuoa  ‐  Derivative-free  Unconstrained  Optimization by Iteratively Constructed
                           Quadratic Approximation
                           gn-direct-l-rand-noscale ‐ Dividing Rectangles (unscaled, locally biased, randomized)
                           gn-orig-direct ‐ Dividing Rectangles (original implementation)
                           ld-tnewton-precond ‐ Preconditioned Truncated Newton
                           ld-tnewton-restart ‐ Truncated Newton with steepest-descent restarting
                           gn-direct ‐ Dividing Rectangles
                           auglag-eq ‐ Augmented Lagrangian algorithm with equality constraints only
                           ln-neldermead ‐ Nelder-Mead simplex algorithm
                           ln-cobyla ‐ Constrained Optimization BY Linear Approximation
                           gn-crs2-lm ‐ Controlled Random Search with Local Mutation
                           ld-var2 ‐ Shifted Limited-Memory Variable-Metric, Rank 2
                           ld-var1 ‐ Shifted Limited-Memory Variable-Metric, Rank 1
                           ld-mma ‐ Method of Moving Asymptotes
                           ld-lbfgs-nocedal ‐ None
                           g-mlsl ‐ Multi-Level Single-Linkage (require local optimization and bounds)
                           ld-lbfgs ‐ Low-storage BFGS
                           gn-direct-l ‐ Dividing Rectangles (locally biased)
                           ln-bobyqa ‐ Derivative-free Bound-constrained Optimization
                           ln-sbplx ‐ Subplex variant of Nelder-Mead
                           ln-newuoa-bound  ‐  Derivative-free  Bound-constrained  Optimization  by  Iteratively
                           Constructed Quadratic Approximation
                           auglag ‐ Augmented Lagrangian algorithm
                           ln-praxis ‐ Gradient-free Local Optimization via the Principal-Axis Method
                           gn-direct-noscal ‐ Dividing Rectangles (unscaled)
                           ld-tnewton-precond-restart  ‐  Preconditioned  Truncated Newton with steepest-descent
                           restarting
                           ld-slsqp ‐ Sequential Least-Squares Quadratic Programming

                     step = 0 (double)
                       Initial step size for gradient free methods.  in [0, INF]

                     stop = -inf (double)
                       Stopping criterion: function value falls below this value.  in [INF, INF]

                     xtola = 0 (double)
                       Stopping criterion: the absolute change of all x-values is below   this  value.   in  [0,
                       INF]

                     xtolr = 0 (double)
                       Stopping  criterion:  the  relative  change of all x-values is below  this value.  in [0,
                       INF]

EXAMPLE

       Register the perfusion series given by images imageXXXX.exr by using Pseudo Ground Truth estimation. Skip
       two images at the beginning and otherwiese use  the  default  parameters.  Store  the  result  images  to
       'regXXXX.exr'.

       mia-2dgroundtruthreg -i imageXXXX.exr -o regXXXX.exr -k 2

AUTHOR(s)

       Gert Wollny

COPYRIGHT

       This  software is Copyright (c) 1999‐2013 Leipzig, Germany and Madrid, Spain.  It comes  with  ABSOLUTELY
       NO WARRANTY  and  you  may redistribute it under the terms of the GNU GENERAL PUBLIC  LICENSE  Version  3
       (or later). For more information run the program with the option '--copyright'.

2.0.10                                           25 January 2014                         mia-2dgroundtruthreg(1)