Provided by: vowpal-wabbit_7.3-1ubuntu1_amd64
NAME
vw - Vowpal Wabbit -- fast online learning tool
DESCRIPTION
VW options: -h [ --help ] Look here: http://hunch.net/~vw/ and click on Tutorial. --active_learning active learning mode --active_simulation active learning simulation mode --active_mellowness arg active learning mellowness parameter c_0. Default 8 --binary report loss as binary classification on -1,1 --autolink arg create link function with polynomial d --sgd use regular stochastic gradient descent update. --adaptive use adaptive, individual learning rates. --invariant use safe/importance aware updates. --normalized use per feature normalized updates --exact_adaptive_norm use current default invariant normalized adaptive update rule -a [ --audit ] print weights of features -b [ --bit_precision ] arg number of bits in the feature table --bfgs use bfgs optimization -c [ --cache ] Use a cache. The default is <data>.cache --cache_file arg The location(s) of cache_file. --compressed use gzip format whenever possible. If a cache file is being created, this option creates a compressed cache file. A mixture of raw-text & compressed inputs are supported with autodetection. --no_stdin do not default to reading from stdin --conjugate_gradient use conjugate gradient based optimization --csoaa arg Use one-against-all multiclass learning with <k> costs --wap arg Use weighted all-pairs multiclass learning with <k> costs --csoaa_ldf arg Use one-against-all multiclass learning with label dependent features. Specify singleline or multiline. --wap_ldf arg Use weighted all-pairs multiclass learning with label dependent features. Specify singleline or multiline. --cb arg Use contextual bandit learning with <k> costs --l1 arg l_1 lambda --l2 arg l_2 lambda -d [ --data ] arg Example Set --daemon persistent daemon mode on port 26542 --num_children arg number of children for persistent daemon mode --pid_file arg Write pid file in persistent daemon mode --decay_learning_rate arg Set Decay factor for learning_rate between passes --input_feature_regularizer arg Per feature regularization input file -f [ --final_regressor ] arg Final regressor --readable_model arg Output human-readable final regressor --hash arg how to hash the features. Available options: strings, all --hessian_on use second derivative in line search --version Version information --ignore arg ignore namespaces beginning with character <arg> --keep arg keep namespaces beginning with character <arg> -k [ --kill_cache ] do not reuse existing cache: create a new one always --initial_weight arg Set all weights to an initial value of 1. -i [ --initial_regressor ] arg Initial regressor(s) --initial_pass_length arg initial number of examples per pass --initial_t arg initial t value --lda arg Run lda with <int> topics --span_server arg Location of server for setting up spanning tree --min_prediction arg Smallest prediction to output --max_prediction arg Largest prediction to output --mem arg memory in bfgs --nn arg Use sigmoidal feedforward network with <k> hidden units --noconstant Don't add a constant feature --noop do no learning --oaa arg Use one-against-all multiclass learning with <k> labels --ect arg Use error correcting tournament with <k> labels --output_feature_regularizer_binary arg Per feature regularization output file --output_feature_regularizer_text arg Per feature regularization output file, in text --port arg port to listen on --power_t arg t power value -l [ --learning_rate ] arg Set Learning Rate --passes arg Number of Training Passes --termination arg Termination threshold -p [ --predictions ] arg File to output predictions to -q [ --quadratic ] arg Create and use quadratic features --cubic arg Create and use cubic features --quiet Don't output diagnostics --rank arg rank for matrix factorization. --random_weights arg make initial weights random --random_seed arg seed random number generator -r [ --raw_predictions ] arg File to output unnormalized predictions to --ring_size arg size of example ring --examples arg number of examples to parse --save_per_pass Save the model after every pass over data --save_resume save extra state so learning can be resumed later with new data --sendto arg send examples to <host> --searn arg use searn, argument=maximum action id --searnimp arg use searn, argument=maximum action id or 0 for LDF -t [ --testonly ] Ignore label information and just test --loss_function arg (=squared) Specify the loss function to be used, uses squared by default. Currently available ones are squared, classic, hinge, logistic and quantile. --quantile_tau arg (=0.5) Parameter \tau associated with Quantile loss. Defaults to 0.5 --unique_id arg unique id used for cluster parallel jobs --total arg total number of nodes used in cluster parallel job --node arg node number in cluster parallel job --sort_features turn this on to disregard order in which features have been defined. This will lead to smaller cache sizes --ngram arg Generate N grams --skips arg Generate skips in N grams. This in conjunction with the ngram tag can be used to generate generalized n-skip-k-gram.