Provided by: manpages-dev_3.54-1ubuntu1_all bug

NAME

       pipe, pipe2 - create pipe

SYNOPSIS

       #include <unistd.h>

       int pipe(int pipefd[2]);

       #define _GNU_SOURCE             /* See feature_test_macros(7) */
       #include <fcntl.h>              /* Obtain O_* constant definitions */
       #include <unistd.h>

       int pipe2(int pipefd[2], int flags);

DESCRIPTION

       pipe()  creates  a  pipe,  a unidirectional data channel that can be used for interprocess
       communication.  The array pipefd is used to return two file descriptors referring  to  the
       ends  of the pipe.  pipefd[0] refers to the read end of the pipe.  pipefd[1] refers to the
       write end of the pipe.  Data written to the write end of  the  pipe  is  buffered  by  the
       kernel until it is read from the read end of the pipe.  For further details, see pipe(7).

       If  flags  is  0, then pipe2() is the same as pipe().  The following values can be bitwise
       ORed in flags to obtain different behavior:

       O_NONBLOCK  Set the O_NONBLOCK file status flag on the two  new  open  file  descriptions.
                   Using this flag saves extra calls to fcntl(2) to achieve the same result.

       O_CLOEXEC   Set  the close-on-exec (FD_CLOEXEC) flag on the two new file descriptors.  See
                   the description of the same flag in  open(2)  for  reasons  why  this  may  be
                   useful.

RETURN VALUE

       On success, zero is returned.  On error, -1 is returned, and errno is set appropriately.

ERRORS

       EFAULT pipefd is not valid.

       EINVAL (pipe2()) Invalid value in flags.

       EMFILE Too many file descriptors are in use by the process.

       ENFILE The system limit on the total number of open files has been reached.

VERSIONS

       pipe2()  was  added  to  Linux in version 2.6.27; glibc support is available starting with
       version 2.9.

CONFORMING TO

       pipe(): POSIX.1-2001.

       pipe2() is Linux-specific.

EXAMPLE

       The following program creates a pipe, and then fork(2)s to create  a  child  process;  the
       child inherits a duplicate set of file descriptors that refer to the same pipe.  After the
       fork(2), each process closes the descriptors that  it  doesn't  need  for  the  pipe  (see
       pipe(7)).   The  parent  then  writes  the  string contained in the program's command-line
       argument to the pipe, and the child reads this string a byte at a time from the  pipe  and
       echoes it on standard output.

       #include <sys/wait.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <unistd.h>
       #include <string.h>

       int
       main(int argc, char *argv[])
       {
           int pipefd[2];
           pid_t cpid;
           char buf;

           if (argc != 2) {
            fprintf(stderr, "Usage: %s <string>\n", argv[0]);
            exit(EXIT_FAILURE);
           }

           if (pipe(pipefd) == -1) {
               perror("pipe");
               exit(EXIT_FAILURE);
           }

           cpid = fork();
           if (cpid == -1) {
               perror("fork");
               exit(EXIT_FAILURE);
           }

           if (cpid == 0) {    /* Child reads from pipe */
               close(pipefd[1]);          /* Close unused write end */

               while (read(pipefd[0], &buf, 1) > 0)
                   write(STDOUT_FILENO, &buf, 1);

               write(STDOUT_FILENO, "\n", 1);
               close(pipefd[0]);
               _exit(EXIT_SUCCESS);

           } else {            /* Parent writes argv[1] to pipe */
               close(pipefd[0]);          /* Close unused read end */
               write(pipefd[1], argv[1], strlen(argv[1]));
               close(pipefd[1]);          /* Reader will see EOF */
               wait(NULL);                /* Wait for child */
               exit(EXIT_SUCCESS);
           }
       }

SEE ALSO

       fork(2), read(2), socketpair(2), write(2), popen(3), pipe(7)

COLOPHON

       This  page  is  part of release 3.54 of the Linux man-pages project.  A description of the
       project,    and    information    about    reporting    bugs,    can    be    found     at
       http://www.kernel.org/doc/man-pages/.