Provided by: librheolef-dev_6.5-1build1_amd64 bug

NAME

       point - vertex of a mesh

DESCRIPTION

       Defines  geometrical  vertex  as  an  array  of coordinates.  This array is also used as a
       vector of the three dimensional physical space.

IMPLEMENTATION

       template <class T>
       class point_basic {
           public:

       // typedefs:

               typedef size_t size_type;
               typedef T      element_type;
               typedef T      scalar_type;
               typedef T      float_type;

       // allocators:

               explicit point_basic () { _x[0] = T();  _x[1] = T();  _x[2] = T(); }

               explicit point_basic (
                       const T& x0,
                       const T& x1 = 0,
                       const T& x2 = 0)
                               { _x[0] = x0; _x[1] = x1; _x[2] = x2; }

               template <class T1>
               point_basic<T>(const point_basic<T1>& p)
                       { _x[0] = p._x[0]; _x[1] = p._x[1]; _x[2] = p._x[2]; }

               template <class T1>
               point_basic<T>& operator = (const point_basic<T1>& p)
                       { _x[0] = p._x[0]; _x[1] = p._x[1]; _x[2] = p._x[2]; return *this; }

       #ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST
               point_basic (const std::initializer_list<T>& il);
       #endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST

       // accessors:

               T& operator[](int i_coord)              { return _x[i_coord%3]; }
               const T&  operator[](int i_coord) const { return _x[i_coord%3]; }
               T& operator()(int i_coord)              { return _x[i_coord%3]; }
               const T&  operator()(int i_coord) const { return _x[i_coord%3]; }

               // interface for CGAL library inter-operability:
               const T& x() const { return _x[0]; }
               const T& y() const { return _x[1]; }
               const T& z() const { return _x[2]; }
               T& x(){ return _x[0]; }
               T& y(){ return _x[1]; }
               T& z(){ return _x[2]; }

       // inputs/outputs:

               std::istream& get (std::istream& s, int d = 3)
               {
                   switch (d) {
                   case 0 : _x[0] = _x[1] = _x[2] = 0; return s;
                   case 1 : _x[1] = _x[2] = 0; return s >> _x[0];
                   case 2 : _x[2] = 0; return s >> _x[0] >> _x[1];
                   default: return s >> _x[0] >> _x[1] >> _x[2];
                   }
               }
               // output
               std::ostream& put (std::ostream& s, int d = 3) const;

       // algebra:

               bool operator== (const point_basic<T>& v) const
                       { return _x[0] == v[0] && _x[1] == v[1] && _x[2] == v[2]; }

               bool operator!= (const point_basic<T>& v) const
                       { return !operator==(v); }

               point_basic<T>& operator+= (const point_basic<T>& v)
                       { _x[0] += v[0]; _x[1] += v[1]; _x[2] += v[2]; return *this; }

               point_basic<T>& operator-= (const point_basic<T>& v)
                       { _x[0] -= v[0]; _x[1] -= v[1]; _x[2] -= v[2]; return *this; }

               point_basic<T>& operator*= (const T& a)
                       { _x[0] *= a; _x[1] *= a; _x[2] *= a; return *this; }

               point_basic<T>& operator/= (const T& a)
                       { _x[0] /= a; _x[1] /= a; _x[2] /= a; return *this; }

               point_basic<T> operator+ (const point_basic<T>& v) const
                       { return point_basic<T> (_x[0]+v[0], _x[1]+v[1], _x[2]+v[2]); }

               point_basic<T> operator- () const
                       { return point_basic<T> (-_x[0], -_x[1], -_x[2]); }

               point_basic<T> operator- (const point_basic<T>& v) const
                       { return point_basic<T> (_x[0]-v[0], _x[1]-v[1], _x[2]-v[2]); }

               point_basic<T> operator* (const T& a) const
                       { return point_basic<T> (a*_x[0], a*_x[1], a*_x[2]); }
               point_basic<T> operator* (int a) const
                       { return operator* (T(a)); }

               point_basic<T> operator/ (const T& a) const
                       { return operator* (T(1)/T(a)); }

               point_basic<T> operator/ (point_basic<T> v) const
                       { return point_basic<T> (_x[0]/v[0], _x[1]/v[1], _x[2]/v[2]); }

       // data:
       // protected:
               T _x[3];
       // internal:
               static T _my_abs(const T& x) { return (x > T(0)) ? x : -x; }
       };
       typedef point_basic<Float> point;

       // algebra:
       template<class T>
       inline
       point_basic<T>
       operator* (int a, const point_basic<T>& u)
       {
         return u.operator* (T(a));
       }
       template<class T>
       inline
       point_basic<T>
       operator* (const T& a, const point_basic<T>& u)
       {
         return u.operator* (a);
       }
       template<class T>
       inline
       point_basic<T>
       vect (const point_basic<T>& v, const point_basic<T>& w)
       {
         return point_basic<T> (
               v[1]*w[2]-v[2]*w[1],
               v[2]*w[0]-v[0]*w[2],
               v[0]*w[1]-v[1]*w[0]);
       }
       // metrics:
       template<class T>
       inline
       T dot (const point_basic<T>& x, const point_basic<T>& y)
       {
         return x[0]*y[0]+x[1]*y[1]+x[2]*y[2];
       }
       template<class T>
       inline
       T norm2 (const point_basic<T>& x)
       {
         return dot(x,x);
       }
       template<class T>
       inline
       T norm (const point_basic<T>& x)
       {
         return sqrt(norm2(x));
       }
       template<class T>
       inline
       T dist2 (const point_basic<T>& x,  const point_basic<T>& y)
       {
         return norm2(x-y);
       }
       template<class T>
       inline
       T dist (const point_basic<T>& x,  const point_basic<T>& y)
       {
         return norm(x-y);
       }
       template<class T>
       inline
       T dist_infty (const point_basic<T>& x,  const point_basic<T>& y)
       {
         return max(point_basic<T>::_my_abs(x[0]-y[0]),
                max(point_basic<T>::_my_abs(x[1]-y[1]),
                    point_basic<T>::_my_abs(x[2]-y[2])));
       }
       template <class T>
       T vect2d (const point_basic<T>& v, const point_basic<T>& w);

       template <class T>
       T mixt (const point_basic<T>& u, const point_basic<T>& v, const point_basic<T>& w);

       // robust(exact) floating point predicates: return the sign of the value as (0, > 0, < 0)
       // formally: orient2d(a,b,x) = vect2d(a-x,b-x)
       template <class T>
       int
       sign_orient2d (
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c);

       template <class T>
       int
       sign_orient3d (
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c,
         const point_basic<T>& d);

       // compute also the value:
       template <class T>
       T orient2d(
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c);

       // formally: orient3d(a,b,c,x) = mixt3d(a-x,b-x,c-x)
       template <class T>
       T orient3d(
         const point_basic<T>& a,
         const point_basic<T>& b,
         const point_basic<T>& c,
         const point_basic<T>& d);

       template <class T>
       std::string ptos (const point_basic<T>& x, int d = 3);

       // ccomparators: lexicographic order
       template<class T, size_t d>
       bool
       lexicographically_less (const point_basic<T>& a, const point_basic<T>& b)
       {
         for (typename point_basic<T>::size_type i = 0; i < d; i++) {
           if (a[i] < b[i]) return true;
           if (a[i] > b[i]) return false;
         }
         return false; // equality
       }