Provided by: manpages-dev_3.54-1ubuntu1_all bug

NAME

       spu_run - execute an SPU context

SYNOPSIS

       #include <sys/spu.h>

       int spu_run(int fd, unsigned int *npc, unsigned int *event);

       Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

       The  spu_run()  system  call is used on PowerPC machines that implement the Cell Broadband
       Engine Architecture in order  to  access  Synergistic  Processor  Units  (SPUs).   The  fd
       argument  is  a  file  descriptor  returned by spu_create(2) that refers to a specific SPU
       context.  When the context gets scheduled to a physical SPU, it starts  execution  at  the
       instruction pointer passed in npc.

       Execution  of  SPU code happens synchronously, meaning that spu_run() blocks while the SPU
       is still running.  If there is a need to execute SPU code in parallel with other  code  on
       either  the main CPU or other SPUs, a new thread of execution must be created first (e.g.,
       using pthread_create(3)).

       When spu_run() returns, the current value of the SPU program counter is written to npc, so
       successive calls to spu_run() can use the same npc pointer.

       The  event argument provides a buffer for an extended status code.  If the SPU context was
       created with the SPU_CREATE_EVENTS_ENABLED flag, then this  buffer  is  populated  by  the
       Linux kernel before spu_run() returns.

       The status code may be one (or more) of the following constants:

       SPE_EVENT_DMA_ALIGNMENT
              A DMA alignment error occurred.

       SPE_EVENT_INVALID_DMA
              An invalid MFC DMA command was attempted.

       SPE_EVENT_SPE_DATA_STORAGE
              A DMA storage error occurred.

       SPE_EVENT_SPE_ERROR
              An illegal instruction was executed.

       NULL  is  a  valid  value  for  the  event argument.  In this case, the events will not be
       reported to the calling process.

RETURN VALUE

       On success, spu_run() returns the value of the spu_status register.  On error  it  returns
       -1 and sets errno to one of the error codes listed below.

       The  spu_status  register value is a bit mask of status codes and optionally a 14-bit code
       returned from the stop-and-signal instruction on the SPU.  The bit masks  for  the  status
       codes are:

       0x02   SPU was stopped by a stop-and-signal instruction.

       0x04   SPU was stopped by a halt instruction.

       0x08   SPU is waiting for a channel.

       0x10   SPU is in single-step mode.

       0x20   SPU has tried to execute an invalid instruction.

       0x40   SPU has tried to access an invalid channel.

       0x3fff0000
              The  bits  masked  with this value contain the code returned from a stop-and-signal
              instruction.  These bits are valid only if the 0x02 bit is set.

       If spu_run() has not returned an error, one or more bits among the lower  eight  ones  are
       always set.

ERRORS

       EBADF  fd is not a valid file descriptor.

       EFAULT npc is not a valid pointer, or event is non-NULL and an invalid pointer.

       EINTR  A  signal  occurred  while spu_run() was in progress; see signal(7).  The npc value
              has been updated to the new program counter value if necessary.

       EINVAL fd is not a valid file descriptor returned from spu_create(2).

       ENOMEM There was not enough memory available to handle  a  page  fault  resulting  from  a
              Memory Flow Controller (MFC) direct memory access.

       ENOSYS The  functionality  is  not  provided  by  the  current  system, because either the
              hardware does not provide SPUs or the spufs module is not loaded.

VERSIONS

       The spu_run() system call was added to Linux in kernel 2.6.16.

CONFORMING TO

       This call is Linux-specific and implemented only by the  PowerPC  architecture.   Programs
       using this system call are not portable.

NOTES

       Glibc  does  not  provide  a wrapper for this system call; call it using syscall(2).  Note
       however, that spu_run() is meant to be used from libraries that implement a more  abstract
       interface  to  SPUs,  not  to  be  used from regular applications.  See ⟨http://www.bsc.es
       /projects/deepcomputing/linuxoncell/⟩ for the recommended libraries.

EXAMPLE

       The following is an example of running a simple,  one-instruction  SPU  program  with  the
       spu_run() system call.

       #include <stdlib.h>
       #include <stdint.h>
       #include <unistd.h>
       #include <stdio.h>
       #include <sys/types.h>
       #include <fcntl.h>

       #define handle_error(msg) \
           do { perror(msg); exit(EXIT_FAILURE); } while (0)

       int main(void)
       {
           int context, fd, spu_status;
           uint32_t instruction, npc;

           context = spu_create("/spu/example-context", 0, 0755);
           if (context == -1)
               handle_error("spu_create");

           /* write a 'stop 0x1234' instruction to the SPU's
            * local store memory
            */
           instruction = 0x00001234;

           fd = open("/spu/example-context/mem", O_RDWR);
           if (fd == -1)
               handle_error("open");
           write(fd, &instruction, sizeof(instruction));

           /* set npc to the starting instruction address of the
            * SPU program. Since we wrote the instruction at the
            * start of the mem file, the entry point will be 0x0
            */
           npc = 0;

           spu_status = spu_run(context, &npc, NULL);
           if (spu_status == -1)
               handle_error("open");

           /* we should see a status code of 0x1234002:
            *   0x00000002 (spu was stopped due to stop-and-signal)
            * | 0x12340000 (the stop-and-signal code)
            */
           printf("SPU Status: 0x%08x\n", spu_status);

           exit(EXIT_SUCCESS);
       }

SEE ALSO

       close(2), spu_create(2), capabilities(7), spufs(7)

COLOPHON

       This  page  is  part of release 3.54 of the Linux man-pages project.  A description of the
       project,    and    information    about    reporting    bugs,    can    be    found     at
       http://www.kernel.org/doc/man-pages/.