trusty (3) Math::PlanePath::DragonMidpoint.3pm.gz

Provided by: libmath-planepath-perl_113-1_all bug

NAME

       Math::PlanePath::DragonMidpoint -- dragon curve midpoints

SYNOPSIS

        use Math::PlanePath::DragonMidpoint;
        my $path = Math::PlanePath::DragonMidpoint->new;
        my ($x, $y) = $path->n_to_xy (123);

DESCRIPTION

       This is the midpoint of each segment of the dragon curve by Heighway, Harter, et al, per
       Math::PlanePath::DragonCurve.

                           17--16           9---8                5
                            |   |           |   |
                           18  15          10   7                4
                            |   |           |   |
                           19  14--13--12--11   6---5---4        3
                            |                           |
                           20--21--22                   3        2
                                    |                   |
           33--32          25--24--23                   2        1
            |   |           |                           |
           34  31          26                       0---1    <- Y=0
            |   |           |
           35  30--29--28--27                                   -1
            |
           36--37--38  43--44--45--46                           -2
                    |   |           |
                   39  42  49--48--47                           -3
                    |   |   |
                   40--41  50                                   -4
                            |
                           51                                   -5
                            |
                           52--53--54                           -6
                                    |
           ..--64          57--56--55                           -7
                |           |
               63          58                                   -8
                |           |
               62--61--60--59                                   -9

            ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^
           -10 -9  -8  -7  -6  -5  -4  -3  -2  -1  X=0  1

       The dragon curve begins as follows.  The midpoints of each segment are numbered starting from 0,

            +--8--+     +--4--+
            |     |     |     |
            9     7     5     3
            |     |     |     |                               |
            +-10--+--6--+     +--2--+       rotate 45 degrees |
                  |                 |                         v
                 11                 1
                  |                 |
            +-12--+           *--0--+       * = Origin
            |
           ...

       These midpoints are on fractions X=0.5,Y=0, X=1,Y=0.5, etc.  For this "DragonMidpoint" path they're
       turned clockwise 45 degrees and shrunk by sqrt(2) to be integer X,Y values a unit apart and initial
       direction to the right.

       The midpoints are distinct X,Y positions because the dragon curve traverses each edge only once.

       The dragon curve is self-similar in 2^level sections due to its unfolding.  This can be seen in the
       midpoints too as for example above N=0 to N=16 is the same shape as N=16 to N=32, with the latter rotated
       90 degrees and in reverse.

       Since the dragon curve always turns left or right, never straight ahead or reverse, its segments are
       alternately horizontal and vertical.  Rotated -45 degrees for the midpoints here this means alternately
       "opposite diagonal" and "leading diagonal".  They fall on X,Y alternately even or odd.  So the original
       dragon curve can be recovered from the midpoints by choosing leading/opposite diagonal segment according
       to either X,Y even/odd, and which is the same as N even/odd.

           DragonMidpoint                  dragon segment
           --------------                 -----------------
           "even" N==0 mod 2              opposite diagonal
             which is X+Y==0 mod 2 too

           "odd"  N==1 mod 2              leading diagonal
             which is X+Y==1 mod 2 too

                      /
                     3         0 at X=0,Y=0 "even", opposite diagonal
                    /          1 at X=1,Y=0 "odd", leading diagonal
                    \          etc
                     2
                      \
                \     /
                 0   1
                  \ /

   Arms
       Like the "DragonCurve" the midpoints fill a quarter of the plane and four copies mesh together perfectly
       when rotated by 90, 180 and 270 degrees.  The "arms" parameter can choose 1 to 4 curve arms, successively
       advancing.

       For example "arms => 4" begins as follows, with N=0,4,8,12,etc being the first arm (the same as the plain
       curve above), N=1,5,9,13 the second, N=2,6,10,14 the third and N=3,7,11,15 the fourth.

                           ...-107-103  83--79--75--71             6
                                     |   |           |
            68--64          36--32  99  87  59--63--67             5
             |   |           |   |   |   |   |
            72  60          40  28  95--91  55                     4
             |   |           |   |           |
            76  56--52--48--44  24--20--16  51                     3
             |                           |   |
            80--84--88  17--13---9---5  12  47--43--39 ...         2
                     |   |           |   |           |  |
           100--96--92  21   6---2   1   8  27--31--35 106         1
             |           |   |           |   |          |
           104  33--29--25  10   3   0---4  23  94--98-102    <- Y=0
             |   |           |   |           |   |
           ...  37--41--45  14   7--11--15--19  90--86--82        -1
                         |   |                           |
                        49  18--22--26  46--50--54--58  78        -2
                         |           |   |           |   |
                        53  89--93  30  42          62  74        -3
                         |   |   |   |   |           |   |
                65--61--57  85  97  34--38          66--70        -4
                 |           |   |
                69--73--77--81 101-105-...                        -5

                                     ^
            -6  -5  -4  -3  -2  -1  X=0  1   2   3   4   5

       With four arms like this every X,Y point is visited exactly once, because four arms of the "DragonCurve"
       traverse every edge exactly once.

   Tiling
       Taking pairs of adjacent points N=2k and N=2k+1 gives little rectangles with the following tiling of the
       plane repeating in 4x4 blocks.

                +---+---+---+-+-+---+-+-+---+
                |   | | |   | | |   | | |   |
                +---+ | +---+ | +---+ | +---+
                |   | | |9 8| | |   | | |   |
                +-+-+---+-+-+-+-+-+-+-+-+-+-+
                | | |   | |7|   | | |   | | |
                | | +---+ | +---+ | +---+ | |
                | | |   | |6|5 4| | |   | | |
                +---+-+-+-+-+-+-+-+-+-+-+-+-+
                |   | | |   | |3|   | | |   |
                +---+ | +---+ | +---+ | +---+
                |   | | |   | |2|   | | |   |
                +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                | | |   | | |0 1| | |   | | |   <- Y=0
                | | +---+ | +---+ | +---+ | |
                | | |   | | |   | | |   | | |
                +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                |   | | |   | | |   | | |   |
                +---+ | +---+ | +---+ | +---+
                |   | | |   | | |   | | |   |
                +---+-+-+---+-+-+---+-+-+---+
                             ^
                            X=0

       The pairs follow this pattern both for the main curve N=0 etc shown, and also for the rotated copies per
       "Arms" above.  This tiling is in the tilingsearch database as

           <http://tilingsearch.org/HTML/data24/K02A.html>

       Taking pairs N=2k+1 and N=2k+2, being odd N and its successor, gives a regular pattern too, but this time
       repeating in blocks of 16x16.

           |||--||||||--||--||--||||||--||||||--||||||--||||||--||||||--|||
           |||--||||||--||--||--||||||--||||||--||||||--||||||--||||||--|||
           -||------||------||------||------||------||------||------||-----
           -||------||------||------||------||------||------||------||-----
           |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
           |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
           -----||------||------||------||------||------||------||------||-
           -----||------||------||------||------||------||------||------||-
           -||--||--||--||--||--||||||--||--||--||--||--||--||--||||||--||-
           -||--||--||--||--||--||||||--||--||--||--||--||--||--||||||--||-
           -||------||------||------||------||------||------||------||-----
           -||------||------||------||------||------||------||------||-----
           |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
           |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
           -----||------||------||------||------||------||------||------||-
           -----||------||------||------||------||------||------||------||-
           |||--||||||--||--||--||||||--||  ||--||||||--||--||--||||||--|||
           |||--||||||--||--||--||||||--||  ||--||||||--||--||--||||||--|||
           -||------||------||------||------||------||------||------||-----
           -||------||------||------||------||------||------||------||-----
           |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
           |||--||||||||||||||--||||||||||||||--||||||||||||||--|||||||||||
           -----||------||------||------||------||------||------||------||-
           -----||------||------||------||------||------||------||------||-
           -||--||||||--||--||--||--||--||--||--||||||--||--||--||--||--||-
           -||--||||||--||--||--||--||--||--||--||||||--||--||--||--||--||-
           -||------||------||------||------||------||------||------||-----
           -||------||------||------||------||------||------||------||-----
           |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
           |||||||||||--||||||||||||||--||||||||||||||--||||||||||||||--|||
           -----||------||------||------||------||------||------||------||-
           -----||------||------||------||------||------||------||------||-

FUNCTIONS

       See "FUNCTIONS" in Math::PlanePath for behaviour common to all path classes.

       "$path = Math::PlanePath::DragonMidpoint->new ()"
           Create and return a new path object.

       "($x,$y) = $path->n_to_xy ($n)"
           Return the X,Y coordinates of point number $n on the path.  Points begin at 0 and if "$n < 0" then
           the return is an empty list.

           Fractional positions give an X,Y position along a straight line between the integer positions.

       "$n = $path->n_start()"
           Return 0, the first N in the path.

FORMULAS

   X,Y to N
       An X,Y point is turned into N by dividing out digits of a complex base i+1.  This base is per the
       doubling of the "DragonCurve" at each level.  In midpoint coordinates an adjustment subtracting 0 or 1
       must be applied to move an X,Y which is either N=2k or N=2k+1 to the position where dividing out i+1
       gives the N=k X,Y.

       The adjustment is in a repeating pattern of 4x4 blocks.  Points N=2k and N=2k+1 both move to the same
       place corresponding to N=k multiplied by i+1.  The adjustment pattern is a little like the pair tiling
       shown above, but for some pairs both the N=2k and N=2k+1 positions must move, it's not enough just to
       shift the N=2k+1 to the N=2k.

                   Xadj               Yadj
           Ymod4              Ymod4
             3 | 0 1 1 0        3 | 1 1 0 0
             2 | 1 0 0 1        2 | 1 1 0 0
             1 | 1 0 0 1        1 | 0 0 1 1
             0 | 0 1 1 0        0 | 0 0 1 1
               +--------          +--------
                 0 1 2 3            0 1 2 3
                  Xmod4              Xmod4

       The same tables work for both the main curve and for the rotated copies per "Arms" above.

           until -1<=X<=0 and 0<=Y<=1

             Xm = X - Xadj(X mod 4, Y mod 4)
             Ym = Y - Yadj(X mod 4, Y mod 4)

             new X,Y = (Xm+i*Ym) / (i+1)
                     = (Xm+i*Ym) * (1-i)/2
                     = (Xm+Ym)/2, (Ym-Xm)/2     # Xm+Ym and Ym-Xm are both even

             Nbit = Xadj xor Yadj               # bits of N low to high

       The X,Y reduction stops at one of the start points for the four arms

           X,Y endpoint   Arm        +---+---+
           ------------   ---        | 2 | 1 |  Y=1
               0, 0        0         +---+---+
               0, 1        1         | 3 | 0 |  Y=0
              -1, 1        2         +---+---+
              -1, 0        3         X=-1 X=0

       For arms 1 and 3 the N bits must be flipped 0<->1.  The arm number and hence whether this flip is needed
       is not known until reaching the endpoint.

       For bignum calculations there's no need to apply the "/2" shift in newX=(Xm+Ym)/2 and newY=(Ym-Xm)/2.
       Instead keep a bit position which is the logical low end and pick out two bits from there for the
       Xadj,Yadj lookup.  A whole word can be dropped when the bit position becomes a multiple of 32 or 64 or
       whatever.

OEIS

       The "DragonMidpoint" is in Sloane's Online Encyclopedia of Integer Sequences as

           <http://oeis.org/A073089> (etc)

           A073089   abs(dY) of n-1 to n, so 0=horizontal,1=vertical
                       (extra initial 0)
           A077860   Y at N=2^k, being Re(-(i+1)^k + i-1)

       For A073089, the midpoint curve is vertical when the "DragonCurve" has a vertical followed by a left
       turn, or horizontal followed by a right turn.  "DragonCurve" verticals are whenever N is odd, and the
       turn is the bit above the lowest 0 in N, as described in "Turn" in Math::PlanePath::DragonCurve.  So

           abs(dY) = lowbit(N) XOR bit-above-lowest-zero(N)

       The n in A073089 is offset by 2 from the N numbering of the path here, being n=N+2.  The initial value at
       n=1 in A073089 has no corresponding N (it would be N=-1).

       The mod-16 definitions in A073089 express combinations of N odd/even and bit-above-low-0 which are the
       vertical midpoint segments.  The recurrence a(8n+1)=a(4n+1) acts to strip strip of zeros above a low 1
       bit, ie. n=0b...00001 -> 0b...01.  In terms of N=n-2 it reduces N=0b.zz111 to 0b..zz11 in order to seek a
       lowest 0 in range of the mod-16 conditions.

SEE ALSO

       Math::PlanePath, Math::PlanePath::DragonCurve, Math::PlanePath::DragonRounded

       Math::PlanePath::AlternatePaperMidpoint, Math::PlanePath::R5DragonMidpoint,
       Math::PlanePath::TerdragonMidpoint

HOME PAGE

       <http://user42.tuxfamily.org/math-planepath/index.html>

LICENSE

       Copyright 2011, 2012, 2013 Kevin Ryde

       Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the GNU
       General Public License as published by the Free Software Foundation; either version 3, or (at your
       option) any later version.

       Math-PlanePath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
       the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
       License for more details.

       You should have received a copy of the GNU General Public License along with Math-PlanePath.  If not, see
       <http://www.gnu.org/licenses/>.