Provided by: pdl_2.007-2build1_amd64 bug

NAME

       PDL::GSL::INTEG - PDL interface to numerical integration routines in GSL

DESCRIPTION

       This is an interface to the numerical integration package present in the GNU Scientific Library, which is
       an implementation of QUADPACK.

       Functions are named gslinteg_{algorithm} where {algorithm} is the QUADPACK naming convention. The
       available functions are:

       gslinteg_qng: Non-adaptive Gauss-Kronrod integration
       gslinteg_qag: Adaptive integration
       gslinteg_qags: Adaptive integration with singularities
       gslinteg_qagp: Adaptive integration with known singular points
       gslinteg_qagi: Adaptive integration on infinite interval of the form (-\infty,\infty)
       gslinteg_qagiu: Adaptive integration on infinite interval of the form (a,\infty)
       gslinteg_qagil: Adaptive integration on infinite interval of the form (-\infty,b)
       gslinteg_qawc: Adaptive integration for Cauchy principal values
       gslinteg_qaws: Adaptive integration for singular functions
       gslinteg_qawo: Adaptive integration for oscillatory functions
       gslinteg_qawf: Adaptive integration for Fourier integrals

       Each  algorithm  computes  an approximation to the integral, I, of the function f(x)w(x), where w(x) is a
       weight function (for general integrands w(x)=1). The user provides absolute  and  relative  error  bounds
       (epsabs,epsrel) which specify the following accuracy requirement:

       |RESULT - I|  <= max(epsabs, epsrel |I|)

       The  routines  will  fail  to  converge if the error bounds are too stringent, but always return the best
       approximation obtained up to that stage

       All functions return the result, and estimate of the absolute error and an error flag (which is  zero  if
       there  were no problems).  You are responsible for checking for any errors, no warnings are issued unless
       the option {Warn => 'y'} is specified in which case the reason of failure will be printed.

       You can nest integrals up to 20 levels. If you find yourself in the  unlikely  situation  that  you  need
       more,  you  can  change  the  value  of 'max_nested_integrals' in the first line of the file 'FUNC.c' and
       recompile.

       Please check the GSL documentation for more information.

SYNOPSIS

          use PDL;
          use PDL::GSL::INTEG;

          my $a = 1.2;
          my $b = 3.7;
          my $epsrel = 0;
          my $epsabs = 1e-6;

          # Non adaptive integration
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs);
          # Warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs,{Warn=>'y'});

          # Adaptive integration with warnings on
          my $limit = 1000;
          my $key = 5;
          my ($res,$abserr,$ierr) = gslinteg_qag(\&myf,$a,$b,$epsrel,
                                            $epsabs,$limit,$key,{Warn=>'y'});

          sub myf{
            my ($x) = @_;
            return exp(-$x**2);
          }

FUNCTIONS

   gslinteg_qng() -- Non-adaptive Gauss-Kronrod integration
       This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point  integration  rules  in
       succession  until  an  estimate of the integral of f over ($a,$b) is achieved within the desired absolute
       and relative error limits, $epsabs and $epsrel.  It is meant for fast integration of smooth functions. It
       returns an array with the result, an estimate of the absolute error, an error  flag  and  the  number  of
       function evaluations performed.

       Usage:

         ($res,$abserr,$ierr,$neval) = gslinteg_qng($function_ref,$a,$b,
                                                    $epsrel,$epsabs,[{Warn => $warn}]);

       Example:

          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9);
          # with warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9,{Warn => 'y'});

          sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qag() -- Adaptive integration
       This  function applies an integration rule adaptively until an estimate of the integral of f over ($a,$b)
       is achieved within the desired absolute and relative error limits, $epsabs and $epsrel. On each iteration
       the adaptive integration strategy bisects the interval with  the  largest  error  estimate;  the  maximum
       number  of  allowed subdivisions is given by the parameter $limit.  The integration rule is determined by
       the value of $key, which has to be one of (1,2,3,4,5,6) and correspond to the 15, 21, 31, 41, 51  and  61
       point Gauss-Kronrod rules respectively.  It returns an array with the result, an estimate of the absolute
       error and an error flag.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qag($function_ref,$a,$b,$epsrel,
                                             $epsabs,$limit,$key,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1);
         # with warnings on
         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qags() -- Adaptive integration with singularities
       This  function  applies  the  Gauss-Kronrod 21-point integration rule adaptively until an estimate of the
       integral of f over ($a,$b) is achieved within the desired absolute and relative error limits, $epsabs and
       $epsrel. The algorithm is such that it accelerates the convergence of the integral  in  the  presence  of
       discontinuities  and  integrable  singularities.   The maximum number of allowed subdivisions done by the
       adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qags($function_ref,$a,$b,$epsrel,
                                              $epsabs,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x)*log(1.0/$x);
          }

   gslinteg_qagp() -- Adaptive integration with known singular points
       This function applies the adaptive integration algorithm used by gslinteg_qags taking  into  account  the
       location  of  singular  points until an estimate of the integral of f over ($a,$b) is achieved within the
       desired absolute and relative error limits, $epsabs and $epsrel.  Singular points  are  supplied  in  the
       piddle  $points,  whose  endpoints determine the integration range.  So, for example, if the function has
       singular points at x_1 and x_2 and the integral is desired from a to b (a < x_1 < x_2  <  b),  $points  =
       pdl(a,x_1,x_2,b).   The  maximum  number  of  allowed subdivisions done by the adaptive algorithm must be
       supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagp($function_ref,$points,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}])

       Example:

         my $points = pdl(0,1,sqrt(2),3);
         my ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           my $x2 = $x**2;
           my $x3 = $x**3;
           return $x3 * log(abs(($x2-1.0)*($x2-2.0)));
         }

   gslinteg_qagi() -- Adaptive integration on infinite interval
       This function estimates the integral of the function  f  over  the  infinite  interval  (-\infty,+\infty)
       within  the desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation, the
       algorithm of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The  maximum  number  of  allowed
       subdivisions done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagi($function_ref,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp(-$x - $x*$x) ;
         }

   gslinteg_qagiu() -- Adaptive integration on infinite interval
       This  function estimates the integral of the function f over the infinite interval (a,+\infty) within the
       desired absolute and relative error limits, $epsabs and $epsrel.  After a transformation,  the  algorithm
       of  gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed subdivisions
       done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagiu($function_ref,$a,$epsabs,
                                               $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my $alfa = 1;
         my ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if (($x==0) && ($alfa == 1)) {return 1;}
           if (($x==0) && ($alfa > 1)) {return 0;}
           return ($x**($alfa-1))/((1+10*$x)**2);
         }

   gslinteg_qagil() -- Adaptive integration on infinite interval
       This function estimates the integral of the function f over the infinite interval (-\infty,b) within  the
       desired  absolute  and relative error limits, $epsabs and $epsrel.  After a transformation, the algorithm
       of gslinteg_qags with a 15-point Gauss-Kronrod rule is used.  The maximum number of allowed  subdivisions
       done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagl($function_ref,$b,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp($x);
         }

   gslinteg_qawc() -- Adaptive integration for Cauchy principal values
       This  function computes the Cauchy principal value of the integral of f over (a,b), with a singularity at
       c, I = \int_a^b dx f(x)/(x - c). The integral is estimated within the desired absolute and relative error
       limits, $epsabs and $epsrel.  The maximum number of allowed subdivisions done by the  adaptive  algorithm
       must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawc($function_ref,$a,$b,$c,$epsabs,$epsrel,$limit)

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           return 1.0 / (5.0 * $x * $x * $x + 6.0) ;
         }

   gslinteg_qaws() -- Adaptive integration for singular functions
       The algorithm in gslinteg_qaws is designed for integrands with algebraic-logarithmic singularities at the
       end-points  of  an  integration  region.   Specifically, this function computes the integral given by I =
       \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x).  The integral is estimated within  the
       desired  absolute  and  relative  error  limits,  $epsabs  and  $epsrel.   The  maximum number of allowed
       subdivisions done by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) =
             gslinteg_qawc($function_ref,$alpha,$beta,$mu,$nu,$a,$b,
                           $epsabs,$epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{
             my $u = log($x);
             my $v = 1 + $u*$u;
             return 1.0/($v*$v);
           }
         }

   gslinteg_qawo() -- Adaptive integration for oscillatory functions
       This function uses an adaptive algorithm to compute the integral of f over (a,b) with the weight function
       sin(omega*x) or cos(omega*x) -- which of sine or cosine is used  is  determined  by  the  parameter  $opt
       ('cos'  or  'sin').   The  integral  is  estimated within the desired absolute and relative error limits,
       $epsabs and $epsrel.  The maximum number of allowed subdivisions done by the adaptive algorithm  must  be
       supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawo($function_ref,$omega,$sin_or_cos,
                                       $a,$b,$epsabs,$epsrel,$limit,[opt])

       Example:

         my $PI = 3.14159265358979323846264338328;
         my ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{ return log($x);}
         }

   gslinteg_qawf() -- Adaptive integration for Fourier integrals
       This  function  attempts  to compute a Fourier integral of the function f over the semi-infinite interval
       [a,+\infty). Specifically, it attempts tp compute  I  =  \int_a^{+\infty}  dx  f(x)w(x),  where  w(x)  is
       sin(omega*x)  or  cos(omega*x)  --  which  of  sine or cosine is used is determined by the parameter $opt
       ('cos' or 'sin').  The integral is estimated within  the  desired  absolute  error  limit  $epsabs.   The
       maximum  number  of allowed subdivisions done by the adaptive algorithm must be supplied in the parameter
       $limit.

       Please check the GSL documentation for more information.

       Usage:

         gslinteg_qawf($function_ref,$omega,$sin_or_cos,$a,$epsabs,$limit,[opt])

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if ($x == 0){return 0;}
           return 1.0/sqrt($x)
         }

BUGS

       Feedback  is  welcome.  Log  bugs  in  the  PDL  bug  database  (the  database  is  always  linked   from
       <http://pdl.perl.org>).

SEE ALSO

       PDL

       The GSL documentation is online at

         http://www.gnu.org/software/gsl/manual/

AUTHOR

       This  file  copyright  (C)  2003,2005  Andres  Jordan  <ajordan@eso.org> All rights reserved. There is no
       warranty. You are allowed to redistribute this  software  documentation  under  certain  conditions.  For
       details,  see  the  file  COPYING  in  the  PDL  distribution.  If  this  file  is separated from the PDL
       distribution, the copyright notice should be included in the file.

       The GSL integration routines were written by Brian Gough. QUADPACK  was  written  by  Piessens,  Doncker-
       Kapenga, Uberhuber and Kahaner.

FUNCTIONS

   qng_meat
         Signature: (double a(); double b(); double epsabs();
                          double epsrel(); double [o] result(); double [o] abserr();
                          int [o] neval(); int [o] ierr(); int warn(); SV* funcion)

       info not available

       qng_meat  does  not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qag_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          int key(); double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qag_meat does not process bad values.  It will set the bad-value flag of all output piddles if  the  flag
       is set for any of the input piddles.

   qags_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qags_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagp_meat
         Signature: (double pts(l); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qagp_meat does not process bad values.  It will set the bad-value flag of all output piddles if the  flag
       is set for any of the input piddles.

   qagi_meat
         Signature: (double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr(); int n(); int [o] ierr();int warn();; SV* funcion)

       info not available

       qagi_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagiu_meat
         Signature: (double a(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qagiu_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qagil_meat
         Signature: (double b(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qagil_meat does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qawc_meat
         Signature: (double a(); double b(); double c(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qawc_meat does not process bad values.  It will set the bad-value flag of all output piddles if the  flag
       is set for any of the input piddles.

   qaws_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        double alpha(); double beta(); int mu(); int nu();int [o] ierr();int warn();; SV* funcion)

       info not available

       qaws_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

   qawo_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); double L(); int nlevels();int [o] ierr();int warn();; SV* funcion)

       info not available

       qawo_meat does not process bad values.  It will set the bad-value flag of all output piddles if the  flag
       is set for any of the input piddles.

   qawf_meat
         Signature: (double a(); double epsabs();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); int nlevels();int [o] ierr();int warn();; SV* funcion)

       info not available

       qawf_meat  does not process bad values.  It will set the bad-value flag of all output piddles if the flag
       is set for any of the input piddles.

perl v5.18.2                                       2014-02-27                                         INTEG(3pm)