Provided by: pdl_2.007-2build1_amd64 bug

NAME

       PDL::GSL::INTEG - PDL interface to numerical integration routines in GSL

DESCRIPTION

       This is an interface to the numerical integration package present in the GNU Scientific
       Library, which is an implementation of QUADPACK.

       Functions are named gslinteg_{algorithm} where {algorithm} is the QUADPACK naming
       convention. The available functions are:

       gslinteg_qng: Non-adaptive Gauss-Kronrod integration
       gslinteg_qag: Adaptive integration
       gslinteg_qags: Adaptive integration with singularities
       gslinteg_qagp: Adaptive integration with known singular points
       gslinteg_qagi: Adaptive integration on infinite interval of the form (-\infty,\infty)
       gslinteg_qagiu: Adaptive integration on infinite interval of the form (a,\infty)
       gslinteg_qagil: Adaptive integration on infinite interval of the form (-\infty,b)
       gslinteg_qawc: Adaptive integration for Cauchy principal values
       gslinteg_qaws: Adaptive integration for singular functions
       gslinteg_qawo: Adaptive integration for oscillatory functions
       gslinteg_qawf: Adaptive integration for Fourier integrals

       Each algorithm computes an approximation to the integral, I, of the function f(x)w(x),
       where w(x) is a weight function (for general integrands w(x)=1). The user provides
       absolute and relative error bounds (epsabs,epsrel) which specify the following accuracy
       requirement:

       |RESULT - I|  <= max(epsabs, epsrel |I|)

       The routines will fail to converge if the error bounds are too stringent, but always
       return the best approximation obtained up to that stage

       All functions return the result, and estimate of the absolute error and an error flag
       (which is zero if there were no problems).  You are responsible for checking for any
       errors, no warnings are issued unless the option {Warn => 'y'} is specified in which case
       the reason of failure will be printed.

       You can nest integrals up to 20 levels. If you find yourself in the unlikely situation
       that you need more, you can change the value of 'max_nested_integrals' in the first line
       of the file 'FUNC.c' and recompile.

       Please check the GSL documentation for more information.

SYNOPSIS

          use PDL;
          use PDL::GSL::INTEG;

          my $a = 1.2;
          my $b = 3.7;
          my $epsrel = 0;
          my $epsabs = 1e-6;

          # Non adaptive integration
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs);
          # Warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&myf,$a,$b,$epsrel,$epsabs,{Warn=>'y'});

          # Adaptive integration with warnings on
          my $limit = 1000;
          my $key = 5;
          my ($res,$abserr,$ierr) = gslinteg_qag(\&myf,$a,$b,$epsrel,
                                            $epsabs,$limit,$key,{Warn=>'y'});

          sub myf{
            my ($x) = @_;
            return exp(-$x**2);
          }

FUNCTIONS

   gslinteg_qng() -- Non-adaptive Gauss-Kronrod integration
       This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point
       integration rules in succession until an estimate of the integral of f over ($a,$b) is
       achieved within the desired absolute and relative error limits, $epsabs and $epsrel.  It
       is meant for fast integration of smooth functions. It returns an array with the result, an
       estimate of the absolute error, an error flag and the number of function evaluations
       performed.

       Usage:

         ($res,$abserr,$ierr,$neval) = gslinteg_qng($function_ref,$a,$b,
                                                    $epsrel,$epsabs,[{Warn => $warn}]);

       Example:

          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9);
          # with warnings on
          my ($res,$abserr,$ierr,$neval) = gslinteg_qng(\&f,0,1,0,1e-9,{Warn => 'y'});

          sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qag() -- Adaptive integration
       This function applies an integration rule adaptively until an estimate of the integral of
       f over ($a,$b) is achieved within the desired absolute and relative error limits, $epsabs
       and $epsrel. On each iteration the adaptive integration strategy bisects the interval with
       the largest error estimate; the maximum number of allowed subdivisions is given by the
       parameter $limit.  The integration rule is determined by the value of $key, which has to
       be one of (1,2,3,4,5,6) and correspond to the 15, 21, 31, 41, 51 and 61  point Gauss-
       Kronrod rules respectively.  It returns an array with the result, an estimate of the
       absolute error and an error flag.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qag($function_ref,$a,$b,$epsrel,
                                             $epsabs,$limit,$key,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1);
         # with warnings on
         my ($res,$abserr,$ierr) = gslinteg_qag(\&f,0,1,0,1e-10,1000,1,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x**2.6)*log(1.0/$x);
          }

   gslinteg_qags() -- Adaptive integration with singularities
       This function applies the Gauss-Kronrod 21-point integration rule adaptively until an
       estimate of the integral of f over ($a,$b) is achieved within the desired absolute and
       relative error limits, $epsabs and $epsrel. The algorithm is such that it accelerates the
       convergence of the integral in the presence of discontinuities and integrable
       singularities.  The maximum number of allowed subdivisions done by the adaptive algorithm
       must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qags($function_ref,$a,$b,$epsrel,
                                              $epsabs,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qags(\&f,0,1,0,1e-10,1000,{Warn => 'y'});

         sub f{
            my ($x) = @_;
            return ($x)*log(1.0/$x);
          }

   gslinteg_qagp() -- Adaptive integration with known singular points
       This function applies the adaptive integration algorithm used by gslinteg_qags taking into
       account the location of singular points until an estimate of the integral of f over
       ($a,$b) is achieved within the desired absolute and relative error limits, $epsabs and
       $epsrel.  Singular points are supplied in the piddle $points, whose endpoints determine
       the integration range.  So, for example, if the function has singular points at x_1 and
       x_2 and the integral is desired from a to b (a < x_1 < x_2 < b), $points =
       pdl(a,x_1,x_2,b).  The maximum number of allowed subdivisions done by the adaptive
       algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagp($function_ref,$points,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}])

       Example:

         my $points = pdl(0,1,sqrt(2),3);
         my ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagp(\&f,$points,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           my $x2 = $x**2;
           my $x3 = $x**3;
           return $x3 * log(abs(($x2-1.0)*($x2-2.0)));
         }

   gslinteg_qagi() -- Adaptive integration on infinite interval
       This function estimates the integral of the function f over the infinite interval
       (-\infty,+\infty) within the desired absolute and relative error limits, $epsabs and
       $epsrel.  After a transformation, the algorithm of gslinteg_qags with a 15-point Gauss-
       Kronrod rule is used.  The maximum number of allowed subdivisions done by the adaptive
       algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagi($function_ref,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagi(\&myfn,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp(-$x - $x*$x) ;
         }

   gslinteg_qagiu() -- Adaptive integration on infinite interval
       This function estimates the integral of the function f over the infinite interval
       (a,+\infty) within the desired absolute and relative error limits, $epsabs and $epsrel.
       After a transformation, the algorithm of gslinteg_qags with a 15-point Gauss-Kronrod rule
       is used.  The maximum number of allowed subdivisions done by the adaptive algorithm must
       be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagiu($function_ref,$a,$epsabs,
                                               $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my $alfa = 1;
         my ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagiu(\&f,99.9,1e-7,0,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if (($x==0) && ($alfa == 1)) {return 1;}
           if (($x==0) && ($alfa > 1)) {return 0;}
           return ($x**($alfa-1))/((1+10*$x)**2);
         }

   gslinteg_qagil() -- Adaptive integration on infinite interval
       This function estimates the integral of the function f over the infinite interval
       (-\infty,b) within the desired absolute and relative error limits, $epsabs and $epsrel.
       After a transformation, the algorithm of gslinteg_qags with a 15-point Gauss-Kronrod rule
       is used.  The maximum number of allowed subdivisions done by the adaptive algorithm must
       be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qagl($function_ref,$b,$epsabs,
                                              $epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qagil(\&myfn,1.0,1e-7,0,1000,{Warn => 'y'});

         sub myfn{
           my ($x) = @_;
           return exp($x);
         }

   gslinteg_qawc() -- Adaptive integration for Cauchy principal values
       This function computes the Cauchy principal value of the integral of f over (a,b), with a
       singularity at c, I = \int_a^b dx f(x)/(x - c). The integral is estimated within the
       desired absolute and relative error limits, $epsabs and $epsrel.  The maximum number of
       allowed subdivisions done by the adaptive algorithm must be supplied in the parameter
       $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawc($function_ref,$a,$b,$c,$epsabs,$epsrel,$limit)

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawc(\&f,-1,5,0,0,1e-3,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           return 1.0 / (5.0 * $x * $x * $x + 6.0) ;
         }

   gslinteg_qaws() -- Adaptive integration for singular functions
       The algorithm in gslinteg_qaws is designed for integrands with algebraic-logarithmic
       singularities at the end-points of an integration region.  Specifically, this function
       computes the integral given by I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a)
       log^nu (b-x).  The integral is estimated within the desired absolute and relative error
       limits, $epsabs and $epsrel.  The maximum number of allowed subdivisions done by the
       adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) =
             gslinteg_qawc($function_ref,$alpha,$beta,$mu,$nu,$a,$b,
                           $epsabs,$epsrel,$limit,[{Warn => $warn}]);

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qaws(\&f,0,0,1,0,0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{
             my $u = log($x);
             my $v = 1 + $u*$u;
             return 1.0/($v*$v);
           }
         }

   gslinteg_qawo() -- Adaptive integration for oscillatory functions
       This function uses an adaptive algorithm to compute the integral of f over (a,b) with the
       weight function sin(omega*x) or cos(omega*x) -- which of sine or cosine is used is
       determined by the parameter $opt ('cos' or 'sin').  The integral is estimated within the
       desired absolute and relative error limits, $epsabs and $epsrel.  The maximum number of
       allowed subdivisions done by the adaptive algorithm must be supplied in the parameter
       $limit.

       Please check the GSL documentation for more information.

       Usage:

         ($res,$abserr,$ierr) = gslinteg_qawo($function_ref,$omega,$sin_or_cos,
                                       $a,$b,$epsabs,$epsrel,$limit,[opt])

       Example:

         my $PI = 3.14159265358979323846264338328;
         my ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = PDL::GSL::INTEG::gslinteg_qawo(\&f,10*$PI,'sin',0,1,0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if($x==0){return 0;}
           else{ return log($x);}
         }

   gslinteg_qawf() -- Adaptive integration for Fourier integrals
       This function attempts to compute a Fourier integral of the function f over the semi-
       infinite interval [a,+\infty). Specifically, it attempts tp compute I = \int_a^{+\infty}
       dx f(x)w(x), where w(x) is sin(omega*x) or cos(omega*x) -- which of sine or cosine is used
       is determined by the parameter $opt ('cos' or 'sin').  The integral is estimated within
       the desired absolute error limit $epsabs.  The maximum number of allowed subdivisions done
       by the adaptive algorithm must be supplied in the parameter $limit.

       Please check the GSL documentation for more information.

       Usage:

         gslinteg_qawf($function_ref,$omega,$sin_or_cos,$a,$epsabs,$limit,[opt])

       Example:

         my ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000);
         # with warnings on
         ($res,$abserr,$ierr) = gslinteg_qawf(\&f,$PI/2.0,'cos',0,1e-7,1000,{Warn => 'y'});

         sub f{
           my ($x) = @_;
           if ($x == 0){return 0;}
           return 1.0/sqrt($x)
         }

BUGS

       Feedback is welcome. Log bugs in the PDL bug database (the database is always linked from
       <http://pdl.perl.org>).

SEE ALSO

       PDL

       The GSL documentation is online at

         http://www.gnu.org/software/gsl/manual/

AUTHOR

       This file copyright (C) 2003,2005 Andres Jordan <ajordan@eso.org> All rights reserved.
       There is no warranty. You are allowed to redistribute this software documentation under
       certain conditions. For details, see the file COPYING in the PDL distribution. If this
       file is separated from the PDL distribution, the copyright notice should be included in
       the file.

       The GSL integration routines were written by Brian Gough. QUADPACK was written by
       Piessens, Doncker-Kapenga, Uberhuber and Kahaner.

FUNCTIONS

   qng_meat
         Signature: (double a(); double b(); double epsabs();
                          double epsrel(); double [o] result(); double [o] abserr();
                          int [o] neval(); int [o] ierr(); int warn(); SV* funcion)

       info not available

       qng_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qag_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          int key(); double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qag_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qags_meat
         Signature: (double a(); double b(); double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qags_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qagp_meat
         Signature: (double pts(l); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qagp_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qagi_meat
         Signature: (double epsabs();double epsrel(); int limit();
                          double [o] result(); double [o] abserr(); int n(); int [o] ierr();int warn();; SV* funcion)

       info not available

       qagi_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qagiu_meat
         Signature: (double a(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qagiu_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qagil_meat
         Signature: (double b(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qagil_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qawc_meat
         Signature: (double a(); double b(); double c(); double epsabs();double epsrel();int limit();
                          double [o] result(); double [o] abserr();int n();int [o] ierr();int warn();; SV* funcion)

       info not available

       qawc_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qaws_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        double alpha(); double beta(); int mu(); int nu();int [o] ierr();int warn();; SV* funcion)

       info not available

       qaws_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qawo_meat
         Signature: (double a(); double b();double epsabs();double epsrel();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); double L(); int nlevels();int [o] ierr();int warn();; SV* funcion)

       info not available

       qawo_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.

   qawf_meat
         Signature: (double a(); double epsabs();int limit();
                        double [o] result(); double [o] abserr();int n();
                        int sincosopt(); double omega(); int nlevels();int [o] ierr();int warn();; SV* funcion)

       info not available

       qawf_meat does not process bad values.  It will set the bad-value flag of all output
       piddles if the flag is set for any of the input piddles.