Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all
NAME
chseqr.f -
SYNOPSIS
Functions/Subroutines subroutine chseqr (JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK, LWORK, INFO) CHSEQR
Function/Subroutine Documentation
subroutine chseqr (characterJOB, characterCOMPZ, integerN, integerILO, integerIHI, complex, dimension( ldh, * )H, integerLDH, complex, dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, complex, dimension( * )WORK, integerLWORK, integerINFO) CHSEQR Purpose: CHSEQR computes the eigenvalues of a Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition H = Z T Z**H, where T is an upper triangular matrix (the Schur form), and Z is the unitary matrix of Schur vectors. Optionally Z may be postmultiplied into an input unitary matrix Q so that this routine can give the Schur factorization of a matrix A which has been reduced to the Hessenberg form H by the unitary matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H. Parameters: JOB JOB is CHARACTER*1 = 'E': compute eigenvalues only; = 'S': compute eigenvalues and the Schur form T. COMPZ COMPZ is CHARACTER*1 = 'N': no Schur vectors are computed; = 'I': Z is initialized to the unit matrix and the matrix Z of Schur vectors of H is returned; = 'V': Z must contain an unitary matrix Q on entry, and the product Q*Z is returned. N N is INTEGER The order of the matrix H. N .GE. 0. ILO ILO is INTEGER IHI IHI is INTEGER It is assumed that H is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to CGEBAL, and then passed to ZGEHRD when the matrix output by CGEBAL is reduced to Hessenberg form. Otherwise ILO and IHI should be set to 1 and N respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. If N = 0, then ILO = 1 and IHI = 0. H H is COMPLEX array, dimension (LDH,N) On entry, the upper Hessenberg matrix H. On exit, if INFO = 0 and JOB = 'S', H contains the upper triangular matrix T from the Schur decomposition (the Schur form). If INFO = 0 and JOB = 'E', the contents of H are unspecified on exit. (The output value of H when INFO.GT.0 is given under the description of INFO below.) Unlike earlier versions of CHSEQR, this subroutine may explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. LDH LDH is INTEGER The leading dimension of the array H. LDH .GE. max(1,N). W W is COMPLEX array, dimension (N) The computed eigenvalues. If JOB = 'S', the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with W(i) = H(i,i). Z Z is COMPLEX array, dimension (LDZ,N) If COMPZ = 'N', Z is not referenced. If COMPZ = 'I', on entry Z need not be set and on exit, if INFO = 0, Z contains the unitary matrix Z of the Schur vectors of H. If COMPZ = 'V', on entry Z must contain an N-by-N matrix Q, which is assumed to be equal to the unit matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, if INFO = 0, Z contains Q*Z. Normally Q is the unitary matrix generated by CUNGHR after the call to CGEHRD which formed the Hessenberg matrix H. (The output value of Z when INFO.GT.0 is given under the description of INFO below.) LDZ LDZ is INTEGER The leading dimension of the array Z. if COMPZ = 'I' or COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1. WORK WORK is COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns an estimate of the optimal value for LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK .GE. max(1,N) is sufficient and delivers very good and sometimes optimal performance. However, LWORK as large as 11*N may be required for optimal performance. A workspace query is recommended to determine the optimal workspace size. If LWORK = -1, then CHSEQR does a workspace query. In this case, CHSEQR checks the input parameters and estimates the optimal workspace size for the given values of N, ILO and IHI. The estimate is returned in WORK(1). No error message related to LWORK is issued by XERBLA. Neither H nor Z are accessed. INFO INFO is INTEGER = 0: successful exit .LT. 0: if INFO = -i, the i-th argument had an illegal value .GT. 0: if INFO = i, CHSEQR failed to compute all of the eigenvalues. Elements 1:ilo-1 and i+1:n of WR and WI contain those eigenvalues which have been successfully computed. (Failures are rare.) If INFO .GT. 0 and JOB = 'E', then on exit, the remaining unconverged eigenvalues are the eigen- values of the upper Hessenberg matrix rows and columns ILO through INFO of the final, output value of H. If INFO .GT. 0 and JOB = 'S', then on exit (*) (initial value of H)*U = U*(final value of H) where U is a unitary matrix. The final value of H is upper Hessenberg and triangular in rows and columns INFO+1 through IHI. If INFO .GT. 0 and COMPZ = 'V', then on exit (final value of Z) = (initial value of Z)*U where U is the unitary matrix in (*) (regard- less of the value of JOB.) If INFO .GT. 0 and COMPZ = 'I', then on exit (final value of Z) = U where U is the unitary matrix in (*) (regard- less of the value of JOB.) If INFO .GT. 0 and COMPZ = 'N', then Z is not accessed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2013 Contributors: Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA Further Details: Default values supplied by ILAENV(ISPEC,'CHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). It is suggested that these defaults be adjusted in order to attain best performance in each particular computational environment. ISPEC=12: The CLAHQR vs CLAQR0 crossover point. Default: 75. (Must be at least 11.) ISPEC=13: Recommended deflation window size. This depends on ILO, IHI and NS. NS is the number of simultaneous shifts returned by ILAENV(ISPEC=15). (See ISPEC=15 below.) The default for (IHI-ILO+1).LE.500 is NS. The default for (IHI-ILO+1).GT.500 is 3*NS/2. ISPEC=14: Nibble crossover point. (See IPARMQ for details.) Default: 14% of deflation window size. ISPEC=15: Number of simultaneous shifts in a multishift QR iteration. If IHI-ILO+1 is ... greater than ...but less ... the or equal to ... than default is 1 30 NS = 2(+) 30 60 NS = 4(+) 60 150 NS = 10(+) 150 590 NS = ** 590 3000 NS = 64 3000 6000 NS = 128 6000 infinity NS = 256 (+) By default some or all matrices of this order are passed to the implicit double shift routine CLAHQR and this parameter is ignored. See ISPEC=12 above and comments in IPARMQ for details. (**) The asterisks (**) indicate an ad-hoc function of N increasing from 10 to 64. ISPEC=16: Select structured matrix multiply. If the number of simultaneous shifts (specified by ISPEC=15) is less than 14, then the default for ISPEC=16 is 0. Otherwise the default for ISPEC=16 is 2. References: K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance, SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002. K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002. Definition at line 299 of file chseqr.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.