Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all
NAME
dlags2.f -
SYNOPSIS
Functions/Subroutines subroutine dlags2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ) DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.
Function/Subroutine Documentation
subroutine dlags2 (logicalUPPER, double precisionA1, double precisionA2, double precisionA3, double precisionB1, double precisionB2, double precisionB3, double precisionCSU, double precisionSNU, double precisionCSV, double precisionSNV, double precisionCSQ, double precisionSNQ) DLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel. Purpose: DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U**T *A*Q = U**T *( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V**T*B*Q = V**T*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z**T denotes the transpose of Z. Parameters: UPPER UPPER is LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 A1 is DOUBLE PRECISION A2 A2 is DOUBLE PRECISION A3 A3 is DOUBLE PRECISION On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A. B1 B1 is DOUBLE PRECISION B2 B2 is DOUBLE PRECISION B3 B3 is DOUBLE PRECISION On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B. CSU CSU is DOUBLE PRECISION SNU SNU is DOUBLE PRECISION The desired orthogonal matrix U. CSV CSV is DOUBLE PRECISION SNV SNV is DOUBLE PRECISION The desired orthogonal matrix V. CSQ CSQ is DOUBLE PRECISION SNQ SNQ is DOUBLE PRECISION The desired orthogonal matrix Q. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 152 of file dlags2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.