Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       dlahrd.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dlahrd (N, K, NB, A, LDA, TAU, T, LDT, Y, LDY)
           DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements
           below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed
           to apply the transformation to the unreduced part of A.

Function/Subroutine Documentation

   subroutine dlahrd (integerN, integerK, integerNB, double precision, dimension( lda, * )A,
       integerLDA, double precision, dimension( nb )TAU, double precision, dimension( ldt, nb )T,
       integerLDT, double precision, dimension( ldy, nb )Y, integerLDY)
       DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements
       below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to
       apply the transformation to the unreduced part of A.

       Purpose:

            DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
            matrix A so that elements below the k-th subdiagonal are zero. The
            reduction is performed by an orthogonal similarity transformation
            Q**T * A * Q. The routine returns the matrices V and T which determine
            Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.

            This is an OBSOLETE auxiliary routine.
            This routine will be 'deprecated' in a  future release.
            Please use the new routine DLAHR2 instead.

       Parameters:
           N

                     N is INTEGER
                     The order of the matrix A.

           K

                     K is INTEGER
                     The offset for the reduction. Elements below the k-th
                     subdiagonal in the first NB columns are reduced to zero.

           NB

                     NB is INTEGER
                     The number of columns to be reduced.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N-K+1)
                     On entry, the n-by-(n-k+1) general matrix A.
                     On exit, the elements on and above the k-th subdiagonal in
                     the first NB columns are overwritten with the corresponding
                     elements of the reduced matrix; the elements below the k-th
                     subdiagonal, with the array TAU, represent the matrix Q as a
                     product of elementary reflectors. The other columns of A are
                     unchanged. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           TAU

                     TAU is DOUBLE PRECISION array, dimension (NB)
                     The scalar factors of the elementary reflectors. See Further
                     Details.

           T

                     T is DOUBLE PRECISION array, dimension (LDT,NB)
                     The upper triangular matrix T.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.  LDT >= NB.

           Y

                     Y is DOUBLE PRECISION array, dimension (LDY,NB)
                     The n-by-nb matrix Y.

           LDY

                     LDY is INTEGER
                     The leading dimension of the array Y. LDY >= N.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           September 2012

       Further Details:

             The matrix Q is represented as a product of nb elementary reflectors

                Q = H(1) H(2) . . . H(nb).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
             A(i+k+1:n,i), and tau in TAU(i).

             The elements of the vectors v together form the (n-k+1)-by-nb matrix
             V which is needed, with T and Y, to apply the transformation to the
             unreduced part of the matrix, using an update of the form:
             A := (I - V*T*V**T) * (A - Y*V**T).

             The contents of A on exit are illustrated by the following example
             with n = 7, k = 3 and nb = 2:

                ( a   h   a   a   a )
                ( a   h   a   a   a )
                ( a   h   a   a   a )
                ( h   h   a   a   a )
                ( v1  h   a   a   a )
                ( v1  v2  a   a   a )
                ( v1  v2  a   a   a )

             where a denotes an element of the original matrix A, h denotes a
             modified element of the upper Hessenberg matrix H, and vi denotes an
             element of the vector defining H(i).

       Definition at line 170 of file dlahrd.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.