Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       dsptrd.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dsptrd (UPLO, N, AP, D, E, TAU, INFO)
           DSPTRD

Function/Subroutine Documentation

   subroutine dsptrd (characterUPLO, integerN, double precision, dimension( * )AP, double precision, dimension(
       * )D, double precision, dimension( * )E, double precision, dimension( * )TAU, integerINFO)
       DSPTRD

       Purpose:

            DSPTRD reduces a real symmetric matrix A stored in packed form to
            symmetric tridiagonal form T by an orthogonal similarity
            transformation: Q**T * A * Q = T.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     of A are overwritten by the corresponding elements of the
                     tridiagonal matrix T, and the elements above the first
                     superdiagonal, with the array TAU, represent the orthogonal
                     matrix Q as a product of elementary reflectors; if UPLO
                     = 'L', the diagonal and first subdiagonal of A are over-
                     written by the corresponding elements of the tridiagonal
                     matrix T, and the elements below the first subdiagonal, with
                     the array TAU, represent the orthogonal matrix Q as a product
                     of elementary reflectors. See Further Details.

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T:
                     D(i) = A(i,i).

           E

                     E is DOUBLE PRECISION array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

           TAU

                     TAU is DOUBLE PRECISION array, dimension (N-1)
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Further Details:

             If UPLO = 'U', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(n-1) . . . H(2) H(1).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
             overwriting A(1:i-1,i+1), and tau is stored in TAU(i).

             If UPLO = 'L', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(1) H(2) . . . H(n-1).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
             overwriting A(i+2:n,i), and tau is stored in TAU(i).

       Definition at line 151 of file dsptrd.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2                                    Wed Feb 26 2014                                     dsptrd.f(3)