Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       dsyev.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dsyev (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)
            DSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for SY matrices

Function/Subroutine Documentation

   subroutine dsyev (characterJOBZ, characterUPLO, integerN, double precision, dimension( lda, *
       )A, integerLDA, double precision, dimension( * )W, double precision, dimension( * )WORK,
       integerLWORK, integerINFO)
        DSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY
       matrices

       Purpose:

            DSYEV computes all eigenvalues and, optionally, eigenvectors of a
            real symmetric matrix A.

       Parameters:
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA, N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the
                     leading N-by-N upper triangular part of A contains the
                     upper triangular part of the matrix A.  If UPLO = 'L',
                     the leading N-by-N lower triangular part of A contains
                     the lower triangular part of the matrix A.
                     On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     orthonormal eigenvectors of the matrix A.
                     If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     or the upper triangle (if UPLO='U') of A, including the
                     diagonal, is destroyed.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.  LWORK >= max(1,3*N-1).
                     For optimal efficiency, LWORK >= (NB+2)*N,
                     where NB is the blocksize for DSYTRD returned by ILAENV.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Definition at line 133 of file dsyev.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.