Provided by: erlang-manpages_16.b.3-dfsg-1ubuntu2.2_all bug

NAME

       erl_syntax - Abstract Erlang syntax trees.

DESCRIPTION

       Abstract Erlang syntax trees.

       This  module  defines an abstract data type for representing Erlang source code as syntax trees, in a way
       that is backwards compatible with the data structures created  by  the  Erlang  standard  library  parser
       module  erl_parse (often referred to as "parse trees", which is a bit of a misnomer). This means that all
       erl_parse trees are valid abstract syntax trees, but the reverse is not true: abstract syntax  trees  can
       in general not be used as input to functions expecting an erl_parse tree. However, as long as an abstract
       syntax  tree represents a correct Erlang program, the function revert/1 should be able to transform it to
       the corresponding erl_parse representation.

       A recommended starting point for the first-time user is the documentation of the syntaxTree() data  type,
       and the function type/1.

       NOTES:

       This  module  deals  with the composition and decomposition of syntactic entities (as opposed to semantic
       ones); its purpose is to hide all direct references to  the  data  structures  used  to  represent  these
       entities.  With  few exceptions, the functions in this module perform no semantic interpretation of their
       inputs, and in general, the user is assumed to pass type-correct arguments - if this  is  not  done,  the
       effects are not defined.

       With  the  exception  of the erl_parse() data structures, the internal representations of abstract syntax
       trees are subject  to  change  without  notice,  and  should  not  be  documented  outside  this  module.
       Furthermore,  we do not give any guarantees on how an abstract syntax tree may or may not be represented,
       with the following exceptions: no syntax tree is represented by a single atom, such as none,  by  a  list
       constructor  [X  | Y], or by the empty list []. This can be relied on when writing functions that operate
       on syntax trees.

DATA TYPES

         encoding() = utf8 | unicode | latin1:

         erl_parse() = abstract_form() (see module erl_parse) | abstract_expr() (see module erl_parse):

           The representation built by the Erlang standard library parser erl_parse. This is  a  subset  of  the
           syntaxTree() type.

         forms() = syntaxTree() | [syntaxTree()]:

         guard() = none | syntaxTree() | [syntaxTree()] | [[syntaxTree()]]:

         padding() = none | integer():

         syntaxTree():

           An  abstract  syntax  tree.  The  erl_parse()  "parse  tree" representation is a proper subset of the
           syntaxTree() representation.

           Every abstract syntax tree node has a type,  given  by  the  function  type/1.  Each  node  also  has
           associated  attributes;  see  get_attrs/1  for  details. The functions make_tree/2 and subtrees/1 are
           generic constructor/decomposition functions for abstract syntax trees. The functions  abstract/1  and
           concrete/1  convert  between  constant  Erlang  terms and their syntactic representations. The set of
           syntax tree nodes is extensible through the tree/2 function.

           A syntax tree can be transformed to the erl_parse() representation with the revert/1 function.

         syntaxTreeAttributes():

           This is an abstract representation of syntax tree node attributes; see the function get_attrs/1.

EXPORTS

       abstract(T::term()) -> syntaxTree()

              Returns the syntax tree corresponding to an Erlang term. Term must be a literal  term,  i.e.,  one
              that  can  be represented as a source code literal. Thus, it may not contain a process identifier,
              port, reference, binary or function value as a subterm. The function recognises printable strings,
              in order to get a compact and readable representation. Evaluation fails with reason badarg if Term
              is not a literal term.

              See also: concrete/1, is_literal/1.

       add_ann(A::term(), Node::syntaxTree()) -> syntaxTree()

              Appends the term Annotation to the list of user annotations of Node.

              Note: this is equivalent to set_ann(Node, [Annotation  |  get_ann(Node)]),  but  potentially  more
              efficient.

              See also: get_ann/1, set_ann/2.

       add_postcomments(Cs::[syntaxTree()], Node::syntaxTree()) -> syntaxTree()

              Appends Comments to the post-comments of Node.

              Note:  This  is  equivalent  to  set_postcomments(Node,  get_postcomments(Node)  ++ Comments), but
              potentially more efficient.

              See also: add_precomments/2, comment/2, get_postcomments/1, join_comments/2, set_postcomments/2.

       add_precomments(Cs::[syntaxTree()], Node::syntaxTree()) -> syntaxTree()

              Appends Comments to the pre-comments of Node.

              Note:  This  is  equivalent  to  set_precomments(Node,  get_precomments(Node)  ++  Comments),  but
              potentially more efficient.

              See also: add_postcomments/2, comment/2, get_precomments/1, join_comments/2, set_precomments/2.

       application(Operator::syntaxTree(), Arguments::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  function  application expression. If Arguments is [A1, ..., An], the result
              represents "Operator(A1, ..., An)".

              See also: application/3, application_arguments/1, application_operator/1.

       application(Module::none | syntaxTree(), Name::syntaxTree(), Arguments::[syntaxTree()]) -> syntaxTree()

              Creates an abstract function application expression. If Module is none, this is call is equivalent
              to     application(Function,     Arguments),     otherwise      it      is      equivalent      to
              application(module_qualifier(Module, Function), Arguments).

              (This is a utility function.)

              See also: application/2, module_qualifier/2.

       application_arguments(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of argument subtrees of an application node.

              See also: application/2.

       application_operator(Node::syntaxTree()) -> syntaxTree()

              Returns the operator subtree of an application node.

              Note: if Node represents "M:F(...)", then the result is the subtree representing "M:F".

              See also: application/2, module_qualifier/2.

       arity_qualifier(Body::syntaxTree(), Arity::syntaxTree()) -> syntaxTree()

              Creates an abstract arity qualifier. The result represents "Body/Arity".

              See also: arity_qualifier_argument/1, arity_qualifier_body/1.

       arity_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument (the arity) subtree of an arity_qualifier node.

              See also: arity_qualifier/2.

       arity_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of an arity_qualifier node.

              See also: arity_qualifier/2.

       atom(Name::atom() | string()) -> syntaxTree()

              Creates an abstract atom literal. The print name of the atom is the character sequence represented
              by Name.

              See also: atom_literal/1, atom_name/1, atom_value/1, is_atom/2.

       atom_literal(Node::syntaxTree()) -> string()

              Returns  the  literal  string  represented by an atom node. This includes surrounding single-quote
              characters if necessary.

              Note that e.g. the result of atom("x\ny") represents any and all of `x\ny'',  `x\12y'',  `x\012y''
              and `x\^Jy\''; see string/1.

              See also: atom/1, string/1.

       atom_name(Node::syntaxTree()) -> string()

              Returns the printname of an atom node.

              See also: atom/1.

       atom_value(Node::syntaxTree()) -> atom()

              Returns the value represented by an atom node.

              See also: atom/1.

       attribute(Name::syntaxTree()) -> syntaxTree()

              Equivalent to attribute(Name, none).

       attribute(Name::syntaxTree(), Args::none | [syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  program  attribute.  If  Arguments  is [A1, ..., An], the result represents
              "-Name(A1, ..., An).". Otherwise, if Arguments is none, the result represents "-Name.". The latter
              form makes it possible to represent preprocessor directives  such  as  "-endif.".  Attributes  are
              source code forms.

              Note:  The  preprocessor  macro  definition  directive  "-define(Name,  Body)." has relatively few
              requirements on the syntactical form of Body (viewed as a sequence of tokens). The text node  type
              can be used for a Body that is not a normal Erlang construct.

              See also: attribute/1, attribute_arguments/1, attribute_name/1, is_form/1, text/1.

       attribute_arguments(Node::syntaxTree()) -> none | [syntaxTree()]

              Returns  the  list of argument subtrees of an attribute node, if any. If Node represents "-Name.",
              the result is none. Otherwise, if  Node  represents  "-Name(E1,  ...,  En).",  [E1,  ...,  E1]  is
              returned.

              See also: attribute/1.

       attribute_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of an attribute node.

              See also: attribute/1.

       binary(List::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  binary-object  template.  If Fields is [F1, ..., Fn], the result represents
              "<<F1, ..., Fn>>".

              See also: binary_field/2, binary_fields/1.

       binary_comp(Template::syntaxTree(), Body::[syntaxTree()]) -> syntaxTree()

              Creates an abstract binary comprehension.  If  Body  is  [E1,  ...,  En],  the  result  represents
              "<<Template || E1, ..., En>>".

              See also: binary_comp_body/1, binary_comp_template/1, generator/2.

       binary_comp_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a binary_comp node.

              See also: binary_comp/2.

       binary_comp_template(Node::syntaxTree()) -> syntaxTree()

              Returns the template subtree of a binary_comp node.

              See also: binary_comp/2.

       binary_field(Body::syntaxTree()) -> syntaxTree()

              Equivalent to binary_field(Body, []).

       binary_field(Body::syntaxTree(), Types::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  binary  template  field.  If  Types  is  the  empty list, the result simply
              represents "Body", otherwise, if Types is [T1, ..., Tn], the result represents "Body/T1-...-Tn".

              See also:  binary/1,  binary_field/1,  binary_field/3,  binary_field_body/1,  binary_field_size/1,
              binary_field_types/1.

       binary_field(Body::syntaxTree(), Size::none | syntaxTree(), Types::[syntaxTree()]) -> syntaxTree()

              Creates   an   abstract   binary   template  field.  If  Size  is  none,  this  is  equivalent  to
              "binary_field(Body, Types)", otherwise  it  is  equivalent  to  "binary_field(size_qualifier(Body,
              Size), Types)".

              (This is a utility function.)

              See also: binary/1, binary_field/2, size_qualifier/2.

       binary_field_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a binary_field.

              See also: binary_field/2.

       binary_field_size(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the size specifier subtree of a binary_field node, if any. If Node represents "Body:Size"
              or "Body:Size/T1, ..., Tn", the result is Size, otherwise none is returned.

              (This is a utility function.)

              See also: binary_field/2, binary_field/3.

       binary_field_types(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of type-specifier subtrees of a binary_field node. If  Node  represents  ".../T1,
              ..., Tn", the result is [T1, ..., Tn], otherwise the result is the empty list.

              See also: binary_field/2.

       binary_fields(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of field subtrees of a binary node.

              See also: binary/1, binary_field/2.

       binary_generator(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract binary_generator. The result represents "Pattern <- Body".

              See also: binary_comp/2, binary_generator_body/1, binary_generator_pattern/1, list_comp/2.

       binary_generator_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a generator node.

              See also: binary_generator/2.

       binary_generator_pattern(Node::syntaxTree()) -> syntaxTree()

              Returns the pattern subtree of a generator node.

              See also: binary_generator/2.

       block_expr(Body::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract block expression. If Body is [B1, ..., Bn], the result represents "begin B1,
              ..., Bn end".

              See also: block_expr_body/1.

       block_expr_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a block_expr node.

              See also: block_expr/1.

       case_expr(Argument::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()

              Creates an abstract case-expression. If Clauses is [C1, ...,  Cn],  the  result  represents  "case
              Argument of C1; ...; Cn end". More exactly, if each Ci represents "(Pi) Gi -> Bi", then the result
              represents "case Argument of P1 G1 -> B1; ...; Pn Gn -> Bn end".

              See also: case_expr_argument/1, case_expr_clauses/1, clause/3, cond_expr/1, if_expr/1.

       case_expr_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree of a case_expr node.

              See also: case_expr/2.

       case_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a case_expr node.

              See also: case_expr/2.

       catch_expr(Expr::syntaxTree()) -> syntaxTree()

              Creates an abstract catch-expression. The result represents "catch Expr".

              See also: catch_expr_body/1.

       catch_expr_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a catch_expr node.

              See also: catch_expr/1.

       char(Char::char()) -> syntaxTree()

              Creates  an  abstract  character literal. The result represents "$Name", where Name corresponds to
              Value.

              Note: the literal corresponding to a particular character value is not uniquely defined. E.g., the
              character "a" can be written both as "$a" and "$\141", and a  Tab  character  can  be  written  as
              "$\11", "$\011" or "$\t".

              See also: char_literal/1, char_literal/2, char_value/1, is_char/2.

       char_literal(Node::syntaxTree()) -> nonempty_string()

              Returns  the  literal  string represented by a char node. This includes the leading "$" character.
              Characters beyond 255 will be escaped.

              See also: char/1.

       char_literal(Node::syntaxTree(), X2::encoding()) -> nonempty_string()

              Returns the literal string represented by a char node. This includes the  leading  "$"  character.
              Depending  on  the  encoding  a  character  beyond  255 will be escaped ('latin1') or copied as is
              ('utf8').

              See also: char/1.

       char_value(Node::syntaxTree()) -> char()

              Returns the value represented by a char node.

              See also: char/1.

       class_qualifier(Class::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract class qualifier. The result represents "Class:Body".

              See also: class_qualifier_argument/1, class_qualifier_body/1, try_expr/4.

       class_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument (the class) subtree of a class_qualifier node.

              See also: class_qualifier/2.

       class_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a class_qualifier node.

              See also: class_qualifier/2.

       clause(Guard::guard(), Body::[syntaxTree()]) -> syntaxTree()

              Equivalent to clause([], Guard, Body).

       clause(Patterns::[syntaxTree()], Guard::guard(), Body::[syntaxTree()]) -> syntaxTree()

              Creates an abstract clause. If Patterns is [P1, ..., Pn] and Body is [B1, ..., Bm], then if  Guard
              is  none, the result represents "(P1, ..., Pn) -> B1, ..., Bm", otherwise, unless Guard is a list,
              the result represents "(P1, ..., Pn) when Guard -> B1, ..., Bm".

              For simplicity, the Guard argument may also be any of the following:

                * An empty list []. This is equivalent to passing none.

                * A nonempty list [E1, ..., Ej] of syntax trees. This is equivalent to passing  conjunction([E1,
                  ..., Ej]).

                * A  nonempty list of lists of syntax trees [[E1_1, ..., E1_k1], ..., [Ej_1, ..., Ej_kj]], which
                  is equivalent to passing disjunction([conjunction([E1_1, ..., E1_k1]), ..., conjunction([Ej_1,
                  ..., Ej_kj])]).

              See also: clause/2, clause_body/1, clause_guard/1, clause_patterns/1.

       clause_body(Node::syntaxTree()) -> [syntaxTree()]

              Return the list of body subtrees of a clause node.

              See also: clause/3.

       clause_guard(Node::syntaxTree()) -> none | syntaxTree()

              Returns the guard subtree of a clause node, if any. If Node represents "(P1, ..., Pn)  when  Guard
              -> B1, ..., Bm", Guard is returned. Otherwise, the result is none.

              See also: clause/3.

       clause_patterns(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of pattern subtrees of a clause node.

              See also: clause/3.

       comment(Strings::[string()]) -> syntaxTree()

              Equivalent to comment(none, Strings).

       comment(Pad::padding(), Strings::[string()]) -> syntaxTree()

              Creates an abstract comment with the given padding and text. If Strings is a (possibly empty) list
              ["Txt1", ..., "TxtN"], the result represents the source code text

                   %Txt1
                   ...
                   %TxtN

              Padding  states  the  number of empty character positions to the left of the comment separating it
              horizontally from source code on the same line (if any). If Padding is none,  a  default  positive
              number  is  used.  If  Padding  is  an  integer  less than 1, there should be no separating space.
              Comments are in themselves regarded as source program forms.

              See also: comment/1, is_form/1.

       comment_padding(Node::syntaxTree()) -> padding()

              Returns the amount of padding before the comment, or none. The latter means that a default padding
              may be used.

              See also: comment/2.

       comment_text(Node::syntaxTree()) -> [string()]

              Returns the lines of text of the abstract comment.

              See also: comment/2.

       compact_list(Node::syntaxTree()) -> syntaxTree()

              Yields the most compact form for an abstract list skeleton. The  result  either  represents  "[E1,
              ...,  En  |  Tail]",  where  Tail  is  not  a  list skeleton, or otherwise simply "[E1, ..., En]".
              Annotations on subtrees of Node that represent list skeletons may be lost, but  comments  will  be
              propagated to the result. Returns Node itself if Node does not represent a list skeleton.

              See also: list/2, normalize_list/1.

       concrete(Node::syntaxTree()) -> term()

              Returns  the Erlang term represented by a syntax tree. Evaluation fails with reason badarg if Node
              does not represent a literal term.

              Note: Currently, the set of syntax trees which have a concrete representation is larger  than  the
              set  of  trees  which  can  be  built using the function abstract/1. An abstract character will be
              concretised as an integer, while abstract/1 does not at present yield an  abstract  character  for
              any input. (Use the char/1 function to explicitly create an abstract character.)

              See also: abstract/1, char/1, is_literal/1.

       cond_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Creates  an abstract cond-expression. If Clauses is [C1, ..., Cn], the result represents "cond C1;
              ...; Cn end". More exactly, if each Ci represents "() Ei -> Bi", then the result represents  "cond
              E1 -> B1; ...; En -> Bn end".

              See also: case_expr/2, clause/3, cond_expr_clauses/1.

       cond_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a cond_expr node.

              See also: cond_expr/1.

       conjunction(Tests::[syntaxTree()]) -> syntaxTree()

              Creates an abstract conjunction. If List is [E1, ..., En], the result represents "E1, ..., En".

              See also: conjunction_body/1, disjunction/1.

       conjunction_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a conjunction node.

              See also: conjunction/1.

       cons(Head::syntaxTree(), Tail::syntaxTree()) -> syntaxTree()

              "Optimising"  list  skeleton cons operation. Creates an abstract list skeleton whose first element
              is Head and whose tail corresponds to Tail. This is similar to  list([Head],  Tail),  except  that
              Tail  may not be none, and that the result does not necessarily represent exactly "[Head | Tail]",
              but may depend on the Tail subtree. E.g., if Tail represents [X,  Y],  the  result  may  represent
              "[Head,  X,  Y]",  rather  than  "[Head | [X, Y]]". Annotations on Tail itself may be lost if Tail
              represents a list skeleton, but comments on Tail are propagated to the result.

              See also: list/2, list_head/1, list_tail/1.

       copy_ann(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Copies the list of user annotations from Source to Target.

              Note: this is equivalent to set_ann(Target, get_ann(Source)), but potentially more efficient.

              See also: get_ann/1, set_ann/2.

       copy_attrs(S::syntaxTree(), T::syntaxTree()) -> syntaxTree()

              Copies the attributes from Source to Target.

              Note: this is equivalent to set_attrs(Target, get_attrs(Source)), but potentially more efficient.

              See also: get_attrs/1, set_attrs/2.

       copy_comments(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Copies the pre- and postcomments from Source to Target.

              Note: This is  equivalent  to  set_postcomments(set_precomments(Target,  get_precomments(Source)),
              get_postcomments(Source)), but potentially more efficient.

              See also: comment/2, get_postcomments/1, get_precomments/1, set_postcomments/2, set_precomments/2.

       copy_pos(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Copies the position information from Source to Target.

              This is equivalent to set_pos(Target, get_pos(Source)), but potentially more efficient.

              See also: get_pos/1, set_pos/2.

       data(Tree::syntaxTree()) -> term()

              For  special  purposes  only.  Returns the associated data of a syntax tree node. Evaluation fails
              with reason badarg if is_tree(Node) does not yield true.

              See also: tree/2.

       disjunction(Tests::[syntaxTree()]) -> syntaxTree()

              Creates an abstract disjunction. If List is [E1, ..., En], the result represents "E1; ...; En".

              See also: conjunction/1, disjunction_body/1.

       disjunction_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a disjunction node.

              See also: disjunction/1.

       eof_marker() -> syntaxTree()

              Creates an abstract end-of-file marker. This represents the end of input when reading  a  sequence
              of  source code forms. An end-of-file marker is itself regarded as a source code form (namely, the
              last in any sequence in which it occurs). It has no defined lexical form.

              Note: this is retained only for backwards compatibility with existing parsers and tools.

              See also: error_marker/1, is_form/1, warning_marker/1.

       error_marker(Error::term()) -> syntaxTree()

              Creates an abstract error marker. The result represents an occurrence of an error  in  the  source
              code,  with  an  associated Erlang I/O ErrorInfo structure given by Error (see module io(3erl) for
              details). Error markers are regarded as source code forms, but have no defined lexical form.

              Note: this is supported only for backwards compatibility with existing parsers and tools.

              See also: eof_marker/0, error_marker_info/1, is_form/1, warning_marker/1.

       error_marker_info(Node::syntaxTree()) -> term()

              Returns the ErrorInfo structure of an error_marker node.

              See also: error_marker/1.

       flatten_form_list(Node::syntaxTree()) -> syntaxTree()

              Flattens sublists of  a  form_list  node.  Returns  Node  with  all  subtrees  of  type  form_list
              recursively expanded, yielding a single "flat" abstract form sequence.

              See also: form_list/1.

       float(Value::float()) -> syntaxTree()

              Creates  an  abstract  floating-point literal. The lexical representation is the decimal floating-
              point numeral of Value.

              See also: float_literal/1, float_value/1.

       float_literal(Node::syntaxTree()) -> string()

              Returns the numeral string represented by a float node.

              See also: float/1.

       float_value(Node::syntaxTree()) -> float()

              Returns the value represented by a float node. Note that floating-point values should usually  not
              be compared for equality.

              See also: float/1.

       form_list(Forms::[syntaxTree()]) -> syntaxTree()

              Creates an abstract sequence of "source code forms". If Forms is [F1, ..., Fn], where each Fi is a
              form (see is_form/1, the result represents

                   F1
                   ...
                   Fn

              where the Fi are separated by one or more line breaks. A node of type form_list is itself regarded
              as a source code form; see flatten_form_list/1.

              Note: this is simply a way of grouping source code forms as a single syntax tree, usually in order
              to form an Erlang module definition.

              See also: flatten_form_list/1, form_list_elements/1, is_form/1.

       form_list_elements(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of subnodes of a form_list node.

              See also: form_list/1.

       fun_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract  fun-expression. If Clauses is [C1, ..., Cn], the result represents "fun C1;
              ...; Cn end". More exactly, if each Ci represents "(Pi1, ..., Pim) Gi  ->  Bi",  then  the  result
              represents "fun (P11, ..., P1m) G1 -> B1; ...; (Pn1, ..., Pnm) Gn -> Bn end".

              See also: fun_expr_arity/1, fun_expr_clauses/1.

       fun_expr_arity(Node::syntaxTree()) -> arity()

              Returns  the arity of a fun_expr node. The result is the number of parameter patterns in the first
              clause of the fun-expression; subsequent clauses are ignored.

              An exception is thrown if fun_expr_clauses(Node) returns an empty list, or if the first element of
              that list is not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

              See also: clause/3, clause_patterns/1, fun_expr/1, fun_expr_clauses/1.

       fun_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a fun_expr node.

              See also: fun_expr/1.

       function(Name::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()

              Creates an abstract function definition. If Clauses is [C1, ..., Cn], the result represents  "Name
              C1;  ...;  Name  Cn.".  More  exactly,  if each Ci represents "(Pi1, ..., Pim) Gi -> Bi", then the
              result represents "Name(P11, ..., P1m) G1 -> B1; ...; Name(Pn1, ..., Pnm)  Gn  ->  Bn.".  Function
              definitions are source code forms.

              See also: function_arity/1, function_clauses/1, function_name/1, is_form/1, rule/2.

       function_arity(Node::syntaxTree()) -> arity()

              Returns  the arity of a function node. The result is the number of parameter patterns in the first
              clause of the function; subsequent clauses are ignored.

              An exception is thrown if function_clauses(Node) returns an empty list, or if the first element of
              that list is not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

              See also: clause/3, clause_patterns/1, function/2, function_clauses/1.

       function_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a function node.

              See also: function/2.

       function_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a function node.

              See also: function/2.

       generator(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract generator. The result represents "Pattern <- Body".

              See also: binary_comp/2, generator_body/1, generator_pattern/1, list_comp/2.

       generator_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a generator node.

              See also: generator/2.

       generator_pattern(Node::syntaxTree()) -> syntaxTree()

              Returns the pattern subtree of a generator node.

              See also: generator/2.

       get_ann(Tree::syntaxTree()) -> [term()]

              Returns the list of user annotations associated with a syntax tree node. For a newly created node,
              this is the empty list. The annotations may be any terms.

              See also: get_attrs/1, set_ann/2.

       get_attrs(Tree::syntaxTree()) -> syntaxTreeAttributes()

              Returns a representation of the attributes associated with a syntax tree node. The attributes  are
              all  the  extra  information  that  can  be  attached to a node. Currently, this includes position
              information, source code comments, and user annotations. The result of  this  function  cannot  be
              inspected directly; only attached to another node (see set_attrs/2).

              For   accessing   individual   attributes,   see   get_pos/1,   get_ann/1,  get_precomments/1  and
              get_postcomments/1.

              See also: get_ann/1, get_pos/1, get_postcomments/1, get_precomments/1, set_attrs/2.

       get_pos(Tree::syntaxTree()) -> term()

              Returns the position information associated with Node.  This  is  usually  a  nonnegative  integer
              (indicating the source code line number), but may be any term. By default, all new tree nodes have
              their associated position information set to the integer zero.

              See also: get_attrs/1, set_pos/2.

       get_postcomments(Tree::syntaxTree()) -> [syntaxTree()]

              Returns  the  associated  post-comments  of  a  node.  This  is  a possibly empty list of abstract
              comments, in top-down textual order. When the  code  is  formatted,  post-comments  are  typically
              displayed to the right of and/or below the node. For example:

                   {foo, X, Y}     % Post-comment of tuple

              If possible, the comment should be moved past any following separator characters on the same line,
              rather than placing the separators on the following line. E.g.:

                   foo([X | Xs], Y) ->
                       foo(Xs, bar(X));     % Post-comment of 'bar(X)' node
                    ...

              (where the comment is moved past the rightmost ")" and the ";").

              See also: comment/2, get_attrs/1, get_precomments/1, set_postcomments/2.

       get_precomments(Tree::syntaxTree()) -> [syntaxTree()]

              Returns the associated pre-comments of a node. This is a possibly empty list of abstract comments,
              in  top-down  textual  order.  When  the  code  is formatted, pre-comments are typically displayed
              directly above the node. For example:

                   % Pre-comment of function
                   foo(X) -> {bar, X}.

              If possible, the comment should be moved before any preceding separator  characters  on  the  same
              line. E.g.:

                   foo([X | Xs]) ->
                       % Pre-comment of 'bar(X)' node
                       [bar(X) | foo(Xs)];
                   ...

              (where the comment is moved before the "[").

              See also: comment/2, get_attrs/1, get_postcomments/1, set_precomments/2.

       has_comments(Tree::syntaxTree()) -> boolean()

              Yields false if the node has no associated comments, and true otherwise.

              Note:  This is equivalent to (get_precomments(Node) == []) and (get_postcomments(Node) == []), but
              potentially more efficient.

              See also: get_postcomments/1, get_precomments/1, remove_comments/1.

       if_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Creates an abstract if-expression. If Clauses is [C1, ..., Cn], the result represents "if C1; ...;
              Cn end". More exactly, if each Ci represents "() Gi -> Bi", then the result represents "if  G1  ->
              B1; ...; Gn -> Bn end".

              See also: case_expr/2, clause/3, if_expr_clauses/1.

       if_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of an if_expr node.

              See also: if_expr/1.

       implicit_fun(Name::syntaxTree()) -> syntaxTree()

              Creates  an  abstract  "implicit  fun"  expression.  The result represents "fun Name". Name should
              represent either F/A or M:F/A

              See    also:    arity_qualifier/2,    implicit_fun/2,     implicit_fun/3,     implicit_fun_name/1,
              module_qualifier/2.

       implicit_fun(Name::syntaxTree(), Arity::none | syntaxTree()) -> syntaxTree()

              Creates  an  abstract  "implicit  fun"  expression.  If  Arity  is  none,  this  is  equivalent to
              implicit_fun(Name), otherwise it is equivalent to implicit_fun(arity_qualifier(Name, Arity)).

              (This is a utility function.)

              See also: implicit_fun/1, implicit_fun/3.

       implicit_fun(Module::none | syntaxTree(), Name::syntaxTree(), Arity::syntaxTree()) -> syntaxTree()

              Creates an abstract module-qualified "implicit  fun"  expression.  If  Module  is  none,  this  is
              equivalent     to     implicit_fun(Name,     Arity),     otherwise    it    is    equivalent    to
              implicit_fun(module_qualifier(Module, arity_qualifier(Name, Arity)).

              (This is a utility function.)

              See also: implicit_fun/1, implicit_fun/2.

       implicit_fun_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of an implicit_fun node.

              Note: if Node represents "fun N/A" or "fun M:N/A", then the result  is  the  subtree  representing
              "N/A" or "M:N/A", respectively.

              See also: arity_qualifier/2, implicit_fun/1, module_qualifier/2.

       infix_expr(Left::syntaxTree(), Operator::syntaxTree(), Right::syntaxTree()) -> syntaxTree()

              Creates an abstract infix operator expression. The result represents "Left Operator Right".

              See also: infix_expr_left/1, infix_expr_operator/1, infix_expr_right/1, prefix_expr/2.

       infix_expr_left(Node::syntaxTree()) -> syntaxTree()

              Returns the left argument subtree of an infix_expr node.

              See also: infix_expr/3.

       infix_expr_operator(Node::syntaxTree()) -> syntaxTree()

              Returns the operator subtree of an infix_expr node.

              See also: infix_expr/3.

       infix_expr_right(Node::syntaxTree()) -> syntaxTree()

              Returns the right argument subtree of an infix_expr node.

              See also: infix_expr/3.

       integer(Value::integer()) -> syntaxTree()

              Creates  an  abstract integer literal. The lexical representation is the canonical decimal numeral
              of Value.

              See also: integer_literal/1, integer_value/1, is_integer/2.

       integer_literal(Node::syntaxTree()) -> string()

              Returns the numeral string represented by an integer node.

              See also: integer/1.

       integer_value(Node::syntaxTree()) -> integer()

              Returns the value represented by an integer node.

              See also: integer/1.

       is_atom(Node::syntaxTree(), Value::atom()) -> boolean()

              Returns true if Node has type atom and represents Value, otherwise false.

              See also: atom/1.

       is_char(Node::syntaxTree(), Value::char()) -> boolean()

              Returns true if Node has type char and represents Value, otherwise false.

              See also: char/1.

       is_form(Node::syntaxTree()) -> boolean()

              Returns true if Node is a syntax tree representing  a  so-called  "source  code  form",  otherwise
              false.  Forms  are  the  Erlang  source code units which, placed in sequence, constitute an Erlang
              program. Current form types are:

              attribute comment error_marker eof_marker form_list
              function rule warning_marker text

              See also: attribute/2, comment/2, eof_marker/0, error_marker/1, form_list/1,  function/2,  rule/2,
              type/1, warning_marker/1.

       is_integer(Node::syntaxTree(), Value::integer()) -> boolean()

              Returns true if Node has type integer and represents Value, otherwise false.

              See also: integer/1.

       is_leaf(Node::syntaxTree()) -> boolean()

              Returns  true  if  Node  is a leaf node, otherwise false. The currently recognised leaf node types
              are:

              atom char comment eof_marker error_marker
              float integer nil operator string
              text underscore variable warning_marker

              A node of type tuple is a leaf node if and only if its arity is zero.

              Note: not all literals are leaf nodes, and  vice  versa.  E.g.,  tuples  with  nonzero  arity  and
              nonempty  lists  may  be  literals, but are not leaf nodes. Variables, on the other hand, are leaf
              nodes but not literals.

              See also: is_literal/1, type/1.

       is_list_skeleton(Node::syntaxTree()) -> boolean()

              Returns true if Node has type list or nil, otherwise false.

              See also: list/2, nil/0.

       is_literal(T::syntaxTree()) -> boolean()

              Returns true if Node represents a literal term, otherwise false. This function returns true if and
              only if the value of concrete(Node) is defined.

              See also: abstract/1, concrete/1.

       is_proper_list(Node::syntaxTree()) -> boolean()

              Returns true if Node represents a proper list, and false  otherwise.  A  proper  list  is  a  list
              skeleton either on the form "[]" or "[E1, ..., En]", or "[... | Tail]" where recursively Tail also
              represents a proper list.

              Note:  Since  Node  is a syntax tree, the actual run-time values corresponding to its subtrees may
              often be partially or completely unknown. Thus, if Node represents e.g. "[... | Ns]" (where Ns  is
              a variable), then the function will return false, because it is not known whether Ns will be bound
              to  a  list  at  run-time.  If  Node  instead  represents e.g. "[1, 2, 3]" or "[A | []]", then the
              function will return true.

              See also: list/2.

       is_string(Node::syntaxTree(), Value::string()) -> boolean()

              Returns true if Node has type string and represents Value, otherwise false.

              See also: string/1.

       is_tree(Tree::syntaxTree()) -> boolean()

              For special purposes only. Returns true if Tree is an abstract syntax tree and false otherwise.

              Note: this function yields false for all "old-style" erl_parse-compatible "parse trees".

              See also: tree/2.

       join_comments(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()

              Appends the comments of Source to the current comments of Target.

              Note:      This      is       equivalent       to       add_postcomments(get_postcomments(Source),
              add_precomments(get_precomments(Source), Target)), but potentially more efficient.

              See also: add_postcomments/2, add_precomments/2, comment/2, get_postcomments/1, get_precomments/1.

       list(List::[syntaxTree()]) -> syntaxTree()

              Equivalent to list(List, none).

       list(Elements::[syntaxTree()], Tail::none | syntaxTree()) -> syntaxTree()

              Constructs  an abstract list skeleton. The result has type list or nil. If List is a nonempty list
              [E1, ..., En], the result has type list and represents either "[E1, ..., En]", if Tail is none, or
              otherwise "[E1, ..., En | Tail]". If List is the empty list, Tail must be none, and in  that  case
              the result has type nil and represents "[]" (see nil/0).

              The  difference  between lists as semantic objects (built up of individual "cons" and "nil" terms)
              and the various syntactic forms for denoting lists  may  be  bewildering  at  first.  This  module
              provides  functions  both  for  exact  control  of the syntactic representation as well as for the
              simple composition and deconstruction in terms of cons and head/tail operations.

              Note: in list(Elements, none), the "nil"  list  terminator  is  implicit  and  has  no  associated
              information  (see  get_attrs/1),  while in the seemingly equivalent list(Elements, Tail) when Tail
              has type nil, the list terminator subtree Tail may have  attached  attributes  such  as  position,
              comments, and annotations, which will be preserved in the result.

              See  also:  compact_list/1,  cons/2,  get_attrs/1,  is_list_skeleton/1,  is_proper_list/1, list/1,
              list_elements/1, list_head/1, list_length/1,  list_prefix/1,  list_suffix/1,  list_tail/1,  nil/0,
              normalize_list/1.

       list_comp(Template::syntaxTree(), Body::[syntaxTree()]) -> syntaxTree()

              Creates an abstract list comprehension. If Body is [E1, ..., En], the result represents "[Template
              || E1, ..., En]".

              See also: generator/2, list_comp_body/1, list_comp_template/1.

       list_comp_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a list_comp node.

              See also: list_comp/2.

       list_comp_template(Node::syntaxTree()) -> syntaxTree()

              Returns the template subtree of a list_comp node.

              See also: list_comp/2.

       list_elements(Node::syntaxTree()) -> [syntaxTree()]

              Returns  the list of element subtrees of a list skeleton. Node must represent a proper list. E.g.,
              if Node represents "[X1, X2 | [X3, X4 | []]", then list_elements(Node) yields the  list  [X1,  X2,
              X3, X4].

              See also: is_proper_list/1, list/2.

       list_head(Node::syntaxTree()) -> syntaxTree()

              Returns  the head element subtree of a list node. If Node represents "[Head ...]", the result will
              represent "Head".

              See also: cons/2, list/2, list_tail/1.

       list_length(Node::syntaxTree()) -> non_neg_integer()

              Returns the number of element subtrees of a list skeleton. Node  must  represent  a  proper  list.
              E.g.,  if  Node  represents  "[X1  | [X2, X3 | [X4, X5, X6]]]", then list_length(Node) returns the
              integer 6.

              Note: this is equivalent to length(list_elements(Node)), but potentially more efficient.

              See also: is_proper_list/1, list/2, list_elements/1.

       list_prefix(Node::syntaxTree()) -> [syntaxTree()]

              Returns the prefix element subtrees of a list node. If Node represents "[E1, ...,  En]"  or  "[E1,
              ..., En | Tail]", the returned value is [E1, ..., En].

              See also: list/2.

       list_suffix(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the  suffix  subtree  of  a  list node, if one exists. If Node represents "[E1, ..., En |
              Tail]", the returned value is Tail, otherwise, i.e., if Node represents "[E1, ..., En]",  none  is
              returned.

              Note  that  even if this function returns some Tail that is not none, the type of Tail can be nil,
              if the tail has been given  explicitly,  and  the  list  skeleton  has  not  been  compacted  (see
              compact_list/1).

              See also: compact_list/1, list/2, nil/0.

       list_tail(Node::syntaxTree()) -> syntaxTree()

              Returns  the  tail of a list node. If Node represents a single-element list "[E]", then the result
              has type nil, representing "[]". If Node represents "[E1, E2 ...]", the result will represent "[E2
              ...]", and if Node represents "[Head | Tail]", the result will represent "Tail".

              See also: cons/2, list/2, list_head/1.

       macro(Name::syntaxTree()) -> syntaxTree()

              Equivalent to macro(Name, none).

       macro(Name::syntaxTree(), Arguments::none | [syntaxTree()]) -> syntaxTree()

              Creates an abstract macro application. If  Arguments  is  none,  the  result  represents  "?Name",
              otherwise, if Arguments is [A1, ..., An], the result represents "?Name(A1, ..., An)".

              Notes:  if Arguments is the empty list, the result will thus represent "?Name()", including a pair
              of matching parentheses.

              The only syntactical  limitation  imposed  by  the  preprocessor  on  the  arguments  to  a  macro
              application  (viewed  as  sequences  of  tokens)  is  that  they  must be balanced with respect to
              parentheses, brackets, begin ... end, case ... end, etc.  The  text  node  type  can  be  used  to
              represent arguments which are not regular Erlang constructs.

              See also: macro/1, macro_arguments/1, macro_name/1, text/1.

       macro_arguments(Node::syntaxTree()) -> none | [syntaxTree()]

              Returns the list of argument subtrees of a macro node, if any. If Node represents "?Name", none is
              returned. Otherwise, if Node represents "?Name(A1, ..., An)", [A1, ..., An] is returned.

              See also: macro/2.

       macro_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a macro node.

              See also: macro/2.

       make_tree(X1::atom(), X2::[[syntaxTree()]]) -> syntaxTree()

              Creates a syntax tree with the given type and subtrees. Type must be a node type name (see type/1)
              that does not denote a leaf node type (see is_leaf/1). Groups must be a nonempty list of groups of
              syntax  trees,  representing  the  subtrees of a node of the given type, in left-to-right order as
              they would occur in the printed program text, grouped by category as done by subtrees/1.

              The  result  of  copy_attrs(Node,  make_tree(type(Node),  subtrees(Node)))   (see   update_tree/2)
              represents  the  same source code text as the original Node, assuming that subtrees(Node) yields a
              nonempty list. However, it does not necessarily have the same data representation as Node.

              See also: copy_attrs/2, is_leaf/1, subtrees/1, type/1, update_tree/2.

       match_expr(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract match-expression. The result represents "Pattern = Body".

              See also: match_expr_body/1, match_expr_pattern/1.

       match_expr_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a match_expr node.

              See also: match_expr/2.

       match_expr_pattern(Node::syntaxTree()) -> syntaxTree()

              Returns the pattern subtree of a match_expr node.

              See also: match_expr/2.

       meta(T::syntaxTree()) -> syntaxTree()

              Creates a meta-representation of a  syntax  tree.  The  result  represents  an  Erlang  expression
              "MetaTree"  which,  if  evaluated,  will yield a new syntax tree representing the same source code
              text as  Tree  (although  the  actual  data  representation  may  be  different).  The  expression
              represented  by  MetaTree is implementation independent with regard to the data structures used by
              the abstract syntax tree implementation. Comments attached to nodes of Tree will be preserved, but
              other attributes are lost.

              Any node in Tree whose node type is variable (see type/1), and  whose  list  of  annotations  (see
              get_ann/1)  contains  the  atom meta_var, will remain unchanged in the resulting tree, except that
              exactly one occurrence of meta_var is removed from its annotation list.

              The main use of the function meta/1 is to transform a data  structure  Tree,  which  represents  a
              piece  of program code, into a form that is representation independent when printed. E.g., suppose
              Tree represents a variable named "V". Then  (assuming  a  function  print/1  for  printing  syntax
              trees),  evaluating  print(abstract(Tree))  -  simply  using  abstract/1  to  map  the actual data
              structure onto a syntax tree representation - would output a string that might look something like
              "{tree, variable, ..., "V", ...}", which is obviously  dependent  on  the  implementation  of  the
              abstract  syntax trees. This could e.g. be useful for caching a syntax tree in a file. However, in
              some situations like  in  a  program  generator  generator  (with  two  "generator"),  it  may  be
              unacceptable.  Using  print(meta(Tree))  instead  would output a representation independent syntax
              tree generating expression; in the above case, something like "erl_syntax:variable("V")".

              See also: abstract/1, get_ann/1, type/1.

       module_qualifier(Module::syntaxTree(), Body::syntaxTree()) -> syntaxTree()

              Creates an abstract module qualifier. The result represents "Module:Body".

              See also: module_qualifier_argument/1, module_qualifier_body/1.

       module_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument (the module) subtree of a module_qualifier node.

              See also: module_qualifier/2.

       module_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a module_qualifier node.

              See also: module_qualifier/2.

       nil() -> syntaxTree()

              Creates an abstract empty list. The result represents "[]". The empty list is traditionally called
              "nil".

              See also: is_list_skeleton/1, list/2.

       normalize_list(Node::syntaxTree()) -> syntaxTree()

              Expands an abstract list skeleton to its most explicit form. If Node represents "[E1,  ...,  En  |
              Tail]",  the  result  represents  "[E1  |  ...  [En  | Tail1] ... ]", where Tail1 is the result of
              normalize_list(Tail). If Node represents "[E1, ..., En]", the result simply represents "[E1 |  ...
              [En | []] ... ]". If Node does not represent a list skeleton, Node itself is returned.

              See also: compact_list/1, list/2.

       operator(Name::atom() | string()) -> syntaxTree()

              Creates  an  abstract  operator. The name of the operator is the character sequence represented by
              Name. This is analogous to the print name of an atom, but an  operator  is  never  written  within
              single-quotes; e.g., the result of operator(++')' represents "++" rather than "`++''".

              See also: atom/1, operator_literal/1, operator_name/1.

       operator_literal(Node::syntaxTree()) -> string()

              Returns  the literal string represented by an operator node. This is simply the operator name as a
              string.

              See also: operator/1.

       operator_name(Node::syntaxTree()) -> atom()

              Returns the name of an operator node. Note that the name is returned as an atom.

              See also: operator/1.

       parentheses(Expr::syntaxTree()) -> syntaxTree()

              Creates an abstract parenthesised expression. The result represents "(Body)", independently of the
              context.

              See also: parentheses_body/1.

       parentheses_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a parentheses node.

              See also: parentheses/1.

       prefix_expr(Operator::syntaxTree(), Argument::syntaxTree()) -> syntaxTree()

              Creates an abstract prefix operator expression. The result represents "Operator Argument".

              See also: infix_expr/3, prefix_expr_argument/1, prefix_expr_operator/1.

       prefix_expr_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree of a prefix_expr node.

              See also: prefix_expr/2.

       prefix_expr_operator(Node::syntaxTree()) -> syntaxTree()

              Returns the operator subtree of a prefix_expr node.

              See also: prefix_expr/2.

       receive_expr(Clauses::[syntaxTree()]) -> syntaxTree()

              Equivalent to receive_expr(Clauses, none, []).

       receive_expr(Clauses::[syntaxTree()],   Timeout::none   |   syntaxTree(),   Action::[syntaxTree()])    ->
       syntaxTree()

              Creates  an  abstract  receive-expression.  If Timeout is none, the result represents "receive C1;
              ...; Cn end" (the Action argument is ignored). Otherwise, if Clauses is [C1, ..., Cn]  and  Action
              is  [A1,  ...,  Am], the result represents "receive C1; ...; Cn after Timeout -> A1, ..., Am end".
              More exactly, if each Ci represents "(Pi) Gi -> Bi", then the result represents "receive P1 G1  ->
              B1; ...; Pn Gn -> Bn ... end".

              Note  that  in  Erlang,  a  receive-expression must have at least one clause if no timeout part is
              specified.

              See also: case_expr/2, clause/3,  receive_expr/1,  receive_expr_action/1,  receive_expr_clauses/1,
              receive_expr_timeout/1.

       receive_expr_action(Node::syntaxTree()) -> [syntaxTree()]

              Returns  the  list of action body subtrees of a receive_expr node. If Node represents "receive C1;
              ...; Cn end", this is the empty list.

              See also: receive_expr/3.

       receive_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a receive_expr node.

              See also: receive_expr/3.

       receive_expr_timeout(Node::syntaxTree()) -> none | syntaxTree()

              Returns the timeout subtree of a receive_expr node, if any. If Node represents "receive  C1;  ...;
              Cn end", none is returned. Otherwise, if Node represents "receive C1; ...; Cn after Timeout -> ...
              end", Timeout is returned.

              See also: receive_expr/3.

       record_access(Argument::syntaxTree(), Field::syntaxTree()) -> syntaxTree()

              Equivalent to record_access(Argument, none, Field).

       record_access(Argument::syntaxTree(), Type::none | syntaxTree(), Field::syntaxTree()) -> syntaxTree()

              Creates  an  abstract  record  field access expression. If Type is not none, the result represents
              "Argument#Type.Field".

              If Type is none, the result represents "Argument.Field". This  is  a  special  form  only  allowed
              within Mnemosyne queries.

              See  also: record_access/2, record_access_argument/1, record_access_field/1, record_access_type/1,
              record_expr/3.

       record_access_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree of a record_access node.

              See also: record_access/3.

       record_access_field(Node::syntaxTree()) -> syntaxTree()

              Returns the field subtree of a record_access node.

              See also: record_access/3.

       record_access_type(Node::syntaxTree()) -> none | syntaxTree()

              Returns the type subtree of a record_access node, if any.  If  Node  represents  "Argument.Field",
              none is returned, otherwise if Node represents "Argument#Type.Field", Type is returned.

              See also: record_access/3.

       record_expr(Type::syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()

              Equivalent to record_expr(none, Type, Fields).

       record_expr(Argument::none | syntaxTree(), Type::syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()

              Creates  an  abstract record expression. If Fields is [F1, ..., Fn], then if Argument is none, the
              result represents "#Type{F1, ..., Fn}", otherwise it represents "Argument#Type{F1, ..., Fn}".

              See   also:   record_access/3,   record_expr/2,   record_expr_argument/1,    record_expr_fields/1,
              record_expr_type/1, record_field/2, record_index_expr/2.

       record_expr_argument(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the argument subtree of a record_expr node, if any. If Node represents "#Type{...}", none
              is returned. Otherwise, if Node represents "Argument#Type{...}", Argument is returned.

              See also: record_expr/3.

       record_expr_fields(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of field subtrees of a record_expr node.

              See also: record_expr/3.

       record_expr_type(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtree of a record_expr node.

              See also: record_expr/3.

       record_field(Name::syntaxTree()) -> syntaxTree()

              Equivalent to record_field(Name, none).

       record_field(Name::syntaxTree(), Value::none | syntaxTree()) -> syntaxTree()

              Creates an abstract record field specification. If Value is none,  the  result  represents  simply
              "Name", otherwise it represents "Name = Value".

              See also: record_expr/3, record_field_name/1, record_field_value/1.

       record_field_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a record_field node.

              See also: record_field/2.

       record_field_value(Node::syntaxTree()) -> none | syntaxTree()

              Returns  the  value  subtree  of  a  record_field node, if any. If Node represents "Name", none is
              returned. Otherwise, if Node represents "Name = Value", Value is returned.

              See also: record_field/2.

       record_index_expr(Type::syntaxTree(), Field::syntaxTree()) -> syntaxTree()

              Creates an abstract record field index expression. The result represents "#Type.Field".

              (Note: the function name record_index/2 is reserved by the Erlang compiler, which is why that name
              could not be used for this constructor.)

              See also: record_expr/3, record_index_expr_field/1, record_index_expr_type/1.

       record_index_expr_field(Node::syntaxTree()) -> syntaxTree()

              Returns the field subtree of a record_index_expr node.

              See also: record_index_expr/2.

       record_index_expr_type(Node::syntaxTree()) -> syntaxTree()

              Returns the type subtree of a record_index_expr node.

              See also: record_index_expr/2.

       remove_comments(Node::syntaxTree()) -> syntaxTree()

              Clears the associated comments of Node.

              Note: This is equivalent to set_precomments(set_postcomments(Node, []), []), but potentially  more
              efficient.

              See also: set_postcomments/2, set_precomments/2.

       revert(Node::syntaxTree()) -> syntaxTree()

              Returns an erl_parse-compatible representation of a syntax tree, if possible. If Tree represents a
              well-formed  Erlang program or expression, the conversion should work without problems. Typically,
              is_tree/1 yields true if conversion failed (i.e., the result is still an  abstract  syntax  tree),
              and false otherwise.

              The   is_tree/1   test   is  not  completely  foolproof.  For  a  few  special  node  types  (e.g.
              arity_qualifier), if such a node occurs in a context where it is not expected,  it  will  be  left
              unchanged  as a non-reverted subtree of the result. This can only happen if Tree does not actually
              represent legal Erlang code.

              See also: erl_parse(3erl), revert_forms/1.

       revert_forms(Forms::forms()) -> [erl_parse()]

              Reverts a sequence of Erlang source code forms. The sequence can be given either  as  a  form_list
              syntax  tree  (possibly  nested),  or as a list of "program form" syntax trees. If successful, the
              corresponding flat list of erl_parse-compatible syntax trees is returned (see revert/1).  If  some
              program  form  could  not  be  reverted,  {error, Form} is thrown. Standalone comments in the form
              sequence are discarded.

              See also: form_list/1, is_form/1, revert/1.

       rule(Name::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()

              Creates an abstract Mnemosyne rule. If Clauses is [C1, ..., Cn], the results represents "Name  C1;
              ...;  Name  Cn.".  More exactly, if each Ci represents "(Pi1, ..., Pim) Gi -> Bi", then the result
              represents "Name(P11, ..., P1m) G1 :- B1; ...; Name(Pn1, ..., Pnm) Gn :- Bn.".  Rules  are  source
              code forms.

              See also: function/2, is_form/1, rule_arity/1, rule_clauses/1, rule_name/1.

       rule_arity(Node::syntaxTree()) -> arity()

              Returns  the  arity  of  a  rule node. The result is the number of parameter patterns in the first
              clause of the rule; subsequent clauses are ignored.

              An exception is thrown if rule_clauses(Node) returns an empty list, or if  the  first  element  of
              that list is not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

              See also: clause/3, clause_patterns/1, rule/2, rule_clauses/1.

       rule_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of clause subtrees of a rule node.

              See also: rule/2.

       rule_name(Node::syntaxTree()) -> syntaxTree()

              Returns the name subtree of a rule node.

              See also: rule/2.

       set_ann(Node::syntaxTree(), As::[term()]) -> syntaxTree()

              Sets the list of user annotations of Node to Annotations.

              See also: add_ann/2, copy_ann/2, get_ann/1.

       set_attrs(Node::syntaxTree(), Attr::syntaxTreeAttributes()) -> syntaxTree()

              Sets the attributes of Node to Attributes.

              See also: copy_attrs/2, get_attrs/1.

       set_pos(Node::syntaxTree(), Pos::term()) -> syntaxTree()

              Sets the position information of Node to Pos.

              See also: copy_pos/2, get_pos/1.

       set_postcomments(Node::syntaxTree(), Cs::[syntaxTree()]) -> syntaxTree()

              Sets  the  post-comments of Node to Comments. Comments should be a possibly empty list of abstract
              comments, in top-down textual order

              See also: add_postcomments/2,  comment/2,  copy_comments/2,  get_postcomments/1,  join_comments/2,
              remove_comments/1, set_precomments/2.

       set_precomments(Node::syntaxTree(), Cs::[syntaxTree()]) -> syntaxTree()

              Sets  the  pre-comments  of Node to Comments. Comments should be a possibly empty list of abstract
              comments, in top-down textual order.

              See  also:  add_precomments/2,  comment/2,  copy_comments/2,  get_precomments/1,  join_comments/2,
              remove_comments/1, set_postcomments/2.

       size_qualifier(Body::syntaxTree(), Size::syntaxTree()) -> syntaxTree()

              Creates an abstract size qualifier. The result represents "Body:Size".

              See also: size_qualifier_argument/1, size_qualifier_body/1.

       size_qualifier_argument(Node::syntaxTree()) -> syntaxTree()

              Returns the argument subtree (the size) of a size_qualifier node.

              See also: size_qualifier/2.

       size_qualifier_body(Node::syntaxTree()) -> syntaxTree()

              Returns the body subtree of a size_qualifier node.

              See also: size_qualifier/2.

       string(String::string()) -> syntaxTree()

              Creates  an  abstract  string  literal.  The  result  represents "Text" (including the surrounding
              double-quotes),  where  Text  corresponds  to  the  sequence  of  characters  in  Value,  but  not
              representing a specific string literal.

              For  example, the result of string("x\ny") represents any and all of "x\ny", "x\12y", "x\012y" and
              "x\^Jy"; see char/1.

              See also: char/1, is_string/2, string_literal/1, string_literal/2, string_value/1.

       string_literal(Node::syntaxTree()) -> nonempty_string()

              Returns the literal string represented by a string node. This  includes  surrounding  double-quote
              characters. Characters beyond 255 will be escaped.

              See also: string/1.

       string_literal(Node::syntaxTree(), X2::encoding()) -> nonempty_string()

              Returns  the  literal  string represented by a string node. This includes surrounding double-quote
              characters. Depending on the encoding characters beyond 255 will be escaped ('latin1')  or  copied
              as is ('utf8').

              See also: string/1.

       string_value(Node::syntaxTree()) -> string()

              Returns the value represented by a string node.

              See also: string/1.

       subtrees(T::syntaxTree()) -> [[syntaxTree()]]

              Returns the grouped list of all subtrees of a syntax tree. If Node is a leaf node (see is_leaf/1),
              this  is  the  empty list, otherwise the result is always a nonempty list, containing the lists of
              subtrees of Node, in left-to-right order as they occur in the printed program text, and grouped by
              category. Often, each group contains only a single subtree.

              Depending on the type of Node, the size of some groups may be variable (e.g., the group consisting
              of all the elements of a tuple), while others always contain the same number of elements - usually
              exactly one (e.g., the group containing the  argument  expression  of  a  case-expression).  Note,
              however,  that  the exact structure of the returned list (for a given node type) should in general
              not be depended upon, since it might be subject to change without notice.

              The function subtrees/1 and the constructor functions make_tree/2 and update_tree/2 can be a great
              help if one wants to traverse a syntax tree, visiting all its subtrees, but  treat  nodes  of  the
              tree  in  a  uniform  way  in most or all cases. Using these functions makes this simple, and also
              assures that your code is not overly sensitive to extensions of the syntax tree data type, because
              any node types not explicitly handled by your code can be left to a default case.

              For example:

                   postorder(F, Tree) ->
                      F(case subtrees(Tree) of
                          [] -> Tree;
                          List -> update_tree(Tree,
                                              [[postorder(F, Subtree)
                                                || Subtree &lt;- Group]
                                               || Group &lt;- List])
                        end).

              maps the function F on Tree and all its subtrees, doing a post-order traversal of the syntax tree.
              (Note the use of update_tree/2 to preserve node attributes.) For a simple function like:

                   f(Node) ->
                      case type(Node) of
                          atom -> atom("a_" ++ atom_name(Node));
                          _ -> Node
                      end.

              the call postorder(fun f/1, Tree) will yield a new representation of Tree in which all atom  names
              have  been  extended  with  the prefix "a_", but nothing else (including comments, annotations and
              line numbers) has been changed.

              See also: copy_attrs/2, is_leaf/1, make_tree/2, type/1.

       text(String::string()) -> syntaxTree()

              Creates an abstract piece of source code text. The  result  represents  exactly  the  sequence  of
              characters in String. This is useful in cases when one wants full control of the resulting output,
              e.g., for the appearance of floating-point numbers or macro definitions.

              See also: text_string/1.

       text_string(Node::syntaxTree()) -> string()

              Returns the character sequence represented by a text node.

              See also: text/1.

       tree(Type::atom()) -> #tree{}

              Equivalent to tree(Type, []).

       tree(Type::atom(), Data::term()) -> #tree{}

              For  special purposes only. Creates an abstract syntax tree node with type tag Type and associated
              data Data.

              This function and the related is_tree/1 and data/1 provide a uniform way  to  extend  the  set  of
              erl_parse node types. The associated data is any term, whose format may depend on the type tag.

              Notes:

                * Any  nodes  created  outside  of this module must have type tags distinct from those currently
                  defined by this module; see type/1 for a complete list.

                * The type tag of a syntax tree node may also  be  used  as  a  primary  tag  by  the  erl_parse
                  representation;  in  that case, the selector functions for that node type must handle both the
                  abstract syntax tree and the erl_parse form. The function type(T) should  return  the  correct
                  type  tag  regardless  of the representation of T, so that the user sees no difference between
                  erl_syntax and erl_parse nodes.

              See also: data/1, is_tree/1, type/1.

       try_after_expr(Body::[syntaxTree()], After::[syntaxTree()]) -> syntaxTree()

              Equivalent to try_expr(Body, [], [], After).

       try_expr(Body::[syntaxTree()], Handlers::[syntaxTree()]) -> syntaxTree()

              Equivalent to try_expr(Body, [], Handlers).

       try_expr(Body::[syntaxTree()], Clauses::[syntaxTree()], Handlers::[syntaxTree()]) -> syntaxTree()

              Equivalent to try_expr(Body, Clauses, Handlers, []).

       try_expr(Body::[syntaxTree()], Clauses::[syntaxTree()], Handlers::[syntaxTree()],  After::[syntaxTree()])
       -> syntaxTree()

              Creates  an  abstract try-expression. If Body is [B1, ..., Bn], Clauses is [C1, ..., Cj], Handlers
              is [H1, ..., Hk], and After is [A1, ..., Am], the result represents "try B1, ..., Bn of  C1;  ...;
              Cj  catch  H1;  ...;  Hk after A1, ..., Am end". More exactly, if each Ci represents "(CPi) CGi ->
              CBi", and each Hi represents "(HPi) HGi -> HBi", then the result represents "try B1,  ...,  Bn  of
              CP1  CG1  ->  CB1; ...; CPj CGj -> CBj catch HP1 HG1 -> HB1; ...; HPk HGk -> HBk after A1, ..., Am
              end"; see case_expr/2. If Clauses is the empty list, the of ... section is left out. If  After  is
              the  empty  list,  the  after ... section is left out. If Handlers is the empty list, and After is
              nonempty, the catch ... section is left out.

              See also: case_expr/2,  class_qualifier/2,  clause/3,  try_after_expr/2,  try_expr/2,  try_expr/3,
              try_expr_after/1, try_expr_body/1, try_expr_clauses/1, try_expr_handlers/1.

       try_expr_after(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of "after" subtrees of a try_expr node.

              See also: try_expr/4.

       try_expr_body(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of body subtrees of a try_expr node.

              See also: try_expr/4.

       try_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]

              Returns  the  list  of case-clause subtrees of a try_expr node. If Node represents "try Body catch
              H1; ...; Hn end", the result is the empty list.

              See also: try_expr/4.

       try_expr_handlers(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of handler-clause subtrees of a try_expr node.

              See also: try_expr/4.

       tuple(List::[syntaxTree()]) -> syntaxTree()

              Creates an abstract tuple. If Elements is [X1, ..., Xn], the result represents "{X1, ..., Xn}".

              Note: The Erlang language has distinct 1-tuples, i.e., {X} is always distinct from X itself.

              See also: tuple_elements/1, tuple_size/1.

       tuple_elements(Node::syntaxTree()) -> [syntaxTree()]

              Returns the list of element subtrees of a tuple node.

              See also: tuple/1.

       tuple_size(Node::syntaxTree()) -> non_neg_integer()

              Returns the number of elements of a tuple node.

              Note: this is equivalent to length(tuple_elements(Node)), but potentially more efficient.

              See also: tuple/1, tuple_elements/1.

       type(Tree::syntaxTree()) -> atom()

              Returns the type tag of Node. If Node does not represent a  syntax  tree,  evaluation  fails  with
              reason badarg. Node types currently defined by this module are:

              application arity_qualifier atom attribute
              binary binary_field block_expr case_expr
              catch_expr char class_qualifier clause
              comment cond_expr conjunction disjunction
              eof_marker error_marker float form_list
              fun_expr function generator if_expr
              implicit_fun infix_expr integer list
              list_comp macro match_expr module_qualifier
              nil operator parentheses prefix_expr
              receive_expr record_access
              record_expr record_field record_index_expr rule
              size_qualifier string text try_expr
              tuple underscore variable warning_marker

              The user may (for special purposes) create additional nodes with other type tags, using the tree/2
              function.

              Note:  The  primary  constructor functions for a node type should always have the same name as the
              node type itself.

              See  also:  application/3,  arity_qualifier/2,  atom/1,  attribute/2,  binary/1,   binary_field/2,
              block_expr/1,   case_expr/2,   catch_expr/1,   char/1,   class_qualifier/2,  clause/3,  comment/2,
              cond_expr/1, conjunction/1, disjunction/1,  eof_marker/0,  error_marker/1,  float/1,  form_list/1,
              fun_expr/1,  function/2,  generator/2, if_expr/1, implicit_fun/2, infix_expr/3, integer/1, list/2,
              list_comp/2,  macro/2,  match_expr/2,  module_qualifier/2,   nil/0,   operator/1,   parentheses/1,
              prefix_expr/2,      receive_expr/3,      record_access/3,      record_expr/2,      record_field/2,
              record_index_expr/2, rule/2, size_qualifier/2,  string/1,  text/1,  tree/2,  try_expr/3,  tuple/1,
              underscore/0, variable/1, warning_marker/1.

       underscore() -> syntaxTree()

              Creates  an  abstract  universal  pattern ("_"). The lexical representation is a single underscore
              character. Note that this is not a variable, lexically speaking.

              See also: variable/1.

       update_tree(Node::syntaxTree(), Groups::[[syntaxTree()]]) -> syntaxTree()

              Creates a syntax tree with the same type and attributes as the given tree. This is  equivalent  to
              copy_attrs(Node, make_tree(type(Node), Groups)).

              See also: copy_attrs/2, make_tree/2, type/1.

       variable(Name::atom() | string()) -> syntaxTree()

              Creates an abstract variable with the given name. Name may be any atom or string that represents a
              lexically valid variable name, but not a single underscore character; see underscore/0.

              Note:  no checking is done whether the character sequence represents a proper variable name, i.e.,
              whether or not its first character is an uppercase  Erlang  character,  or  whether  it  does  not
              contain control characters, whitespace, etc.

              See also: underscore/0, variable_literal/1, variable_name/1.

       variable_literal(Node::syntaxTree()) -> string()

              Returns the name of a variable node as a string.

              See also: variable/1.

       variable_name(Node::syntaxTree()) -> atom()

              Returns the name of a variable node as an atom.

              See also: variable/1.

       warning_marker(Warning::term()) -> syntaxTree()

              Creates  an  abstract warning marker. The result represents an occurrence of a possible problem in
              the source code, with an associated Erlang I/O ErrorInfo structure  given  by  Error  (see  module
              io(3erl)  for  details).  Warning  markers  are regarded as source code forms, but have no defined
              lexical form.

              Note: this is supported only for backwards compatibility with existing parsers and tools.

              See also: eof_marker/0, error_marker/1, is_form/1, warning_marker_info/1.

       warning_marker_info(Node::syntaxTree()) -> term()

              Returns the ErrorInfo structure of a warning_marker node.

              See also: warning_marker/1.

AUTHORS

       Richard Carlsson <carlsson.richard@gmail.com>

                                               syntax_tools 1.6.12                              erl_syntax(3erl)