trusty (3) public_key.3erl.gz

Provided by: erlang-manpages_16.b.3-dfsg-1ubuntu2.2_all bug

NAME

       public_key -  API module for public key infrastructure.

DESCRIPTION

       This  module  provides functions to handle public key infrastructure. It can encode/decode different file
       formats (PEM, openssh), sign and verify digital signatures and validate certificate paths and certificate
       revocation lists.

PUBLIC_KEY

         * public_key  requires  the  crypto  and asn1 applications, the latter since R16 (hopefully the runtime
           dependency on asn1 will be removed again in the future).

         * Supports RFC 5280  - Internet X.509 Public Key Infrastructure Certificate and Certificate  Revocation
           List (CRL) Profile

         * Supports  PKCS-1  - RSA Cryptography Standard

         * Supports  DSS- Digital Signature Standard (DSA - Digital Signature Algorithm)

         * Supports  PKCS-3  - Diffie-Hellman Key Agreement Standard

         * Supports  PKCS-5 - Password-Based Cryptography Standard

         * Supports  PKCS-8 - Private-Key Information Syntax Standard

         * Supports  PKCS-10 - Certification Request Syntax Standard

COMMON DATA TYPES

   Note:
       All  records used in this manual are generated from ASN.1 specifications and are documented in the User's
       Guide. See Public key records and X.509 Certificate records.

       Use the following include directive to get access to the records and constant macros described  here  and
       in the User's Guide.

        -include_lib("public_key/include/public_key.hrl").

       Data Types

       oid() - a tuple of integers as generated by the ASN1 compiler.

       boolean() = true | false

       string() = [bytes()]

       der_encoded() = binary()

       pki_asn1_type() = 'Certificate' | 'RSAPrivateKey'| 'RSAPublicKey' |
           'DSAPrivateKey' | 'DSAPublicKey' | 'DHParameter' | 'SubjectPublicKeyInfo' |
           'PrivateKeyInfo' | 'CertificationRequest' | 'ECPrivateKey'|
           'EcpkParameters'

       pem_entry () = {pki_asn1_type(), binary(), %% DER or encrypted DER
                 not_encrypted | cipher_info()}

       cipher_info()  =  {"RC2-CBC | "DES-CBC" | "DES-EDE3-CBC", crypto:rand_bytes(8)} |
           'PBES2-params'}

       rsa_public_key()  = #'RSAPublicKey'{}

       rsa_private_key() = #'RSAPrivateKey'{}

       dsa_public_key() = {integer(),  #'Dss-Parms'{}}

       dsa_private_key() = #'DSAPrivateKey'{}

       ec_public_key()  = {#'ECPoint'{}, #'EcpkParameters'{} | {namedCurve, oid()}}

       ec_private_key()  = #'ECPrivateKey'{}

        public_crypt_options() = [{rsa_pad, rsa_padding()}].

        rsa_padding() =  'rsa_pkcs1_padding' | 'rsa_pkcs1_oaep_padding'
           | 'rsa_no_padding'

        rsa_digest_type()  = 'md5' | 'sha' | 'sha224' | 'sha256' | 'sha384' | 'sha512'

        dss_digest_type()  = 'sha'

        ecdsa_digest_type()  = 'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'

        crl_reason()  = unspecified | keyCompromise | cACompromise | affiliationChanged | superseded | cessationOfOperation | certificateHold | privilegeWithdrawn |  aACompromise

        ssh_file()  = openssh_public_key | rfc4716_public_key |
           known_hosts | auth_keys

EXPORTS

       compute_key(OthersKey, MyKey)->
       compute_key(OthersKey, MyKey, Params)->

              Types:

                 OthersKey = #'ECPoint'{} | binary(), MyKey = #'ECPrivateKey'{} | binary()
                 Params = #'DHParameter'{}

              Compute shared secret

       decrypt_private(CipherText, Key) -> binary()
       decrypt_private(CipherText, Key, Options) -> binary()

              Types:

                 CipherText = binary()
                 Key = rsa_private_key()
                 Options = public_crypt_options()

              Public key decryption using the private key. See also crypto:private_decrypt/4

       decrypt_public(CipherText, Key) - > binary()
       decrypt_public(CipherText, Key, Options) - > binary()

              Types:

                 CipherText = binary()
                 Key = rsa_public_key()
                 Options = public_crypt_options()

              Public key decryption using the public key. See also crypto:public_decrypt/4

       der_decode(Asn1type, Der) -> term()

              Types:

                 Asn1Type = atom()
                    ASN.1 type present in the public_key applications asn1 specifications.
                 Der = der_encoded()

              Decodes a public key ASN.1 DER encoded entity.

       der_encode(Asn1Type, Entity) -> der_encoded()

              Types:

                 Asn1Type = atom()
                    Asn1 type present in the public_key applications ASN.1 specifications.
                 Entity = term()
                   The erlang representation of Asn1Type

              Encodes a public key entity with ASN.1 DER encoding.

       generate_key(Params) -> {Public::binary(), Private::binary()} | #'ECPrivateKey'{}

              Types:

                  Params = #'DHParameter'{} | {namedCurve, oid()} | #'ECParameters'{}

              Generates a new keypair

       pem_decode(PemBin) -> [pem_entry()]

              Types:

                 PemBin = binary()
                   Example {ok, PemBin} = file:read_file("cert.pem").

              Decode PEM binary data and return entries as ASN.1 DER encoded entities.

       pem_encode(PemEntries) -> binary()

              Types:

                  PemEntries = [pem_entry()]

              Creates a PEM binary

       pem_entry_decode(PemEntry) -> term()
       pem_entry_decode(PemEntry, Password) -> term()

              Types:

                  PemEntry = pem_entry()
                  Password = string()

              Decodes  a PEM entry. pem_decode/1 returns a list of PEM entries. Note that if the PEM entry is of
              type 'SubjectPublickeyInfo' it will be further decoded to an rsa_public_key() or dsa_public_key().

       pem_entry_encode(Asn1Type, Entity) -> pem_entry()
       pem_entry_encode(Asn1Type, Entity, {CipherInfo, Password}) -> pem_entry()

              Types:

                 Asn1Type = pki_asn1_type()
                 Entity = term()
                   The Erlang representation of Asn1Type. If Asn1Type is 'SubjectPublicKeyInfo' then Entity must
                   be  either  an  rsa_public_key()  or  a  dsa_public_key()  and  this function will create the
                   appropriate 'SubjectPublicKeyInfo' entry.
                 CipherInfo = cipher_info()
                 Password = string()

              Creates a PEM entry that can be feed to pem_encode/1.

       encrypt_private(PlainText, Key) -> binary()

              Types:

                 PlainText = binary()
                 Key = rsa_private_key()

              Public key encryption using the private key. See also crypto:private_encrypt/4

       encrypt_public(PlainText, Key) -> binary()

              Types:

                 PlainText = binary()
                 Key = rsa_public_key()

              Public key encryption using the public key. See also crypto:public_encrypt/4

       pkix_decode_cert(Cert, otp|plain) -> #'Certificate'{} | #'OTPCertificate'{}

              Types:

                 Cert = der_encoded()

              Decodes an ASN.1 DER encoded PKIX certificate. The  otp  option  will  use  the  customized  ASN.1
              specification OTP-PKIX.asn1 for decoding and also recursively decode most of the standard parts.

       pkix_encode(Asn1Type, Entity, otp | plain) -> der_encoded()

              Types:

                 Asn1Type = atom()
                   The ASN.1 type can be 'Certificate', 'OTPCertificate' or a subtype of either .
                 Entity = #'Certificate'{} | #'OTPCertificate'{} | a valid subtype

              DER  encodes a PKIX x509 certificate or part of such a certificate. This function must be used for
              encoding certificates or parts of certificates that are decoded/created in the otp format, whereas
              for the plain format this function will directly call der_encode/2.

       pkix_is_issuer(Cert, IssuerCert) -> boolean()

              Types:

                 Cert = der_encode() | #'OTPCertificate'{}
                 IssuerCert = der_encode() | #'OTPCertificate'{}

              Checks if IssuerCert issued Cert

       pkix_is_fixed_dh_cert(Cert) -> boolean()

              Types:

                 Cert = der_encode() | #'OTPCertificate'{}

              Checks if a Certificate is a fixed Diffie-Hellman Cert.

       pkix_is_self_signed(Cert) -> boolean()

              Types:

                 Cert = der_encode() | #'OTPCertificate'{}

              Checks if a Certificate is self signed.

       pkix_issuer_id(Cert, IssuedBy) -> {ok, IssuerID} | {error, Reason}

              Types:

                 Cert = der_encode() | #'OTPCertificate'{}
                 IssuedBy = self | other
                 IssuerID = {integer(), {rdnSequence, [#'AttributeTypeAndValue'{}]}}
                   The issuer id consists of the serial number and the issuers name.
                 Reason = term()

              Returns the issuer id.

       pkix_normalize_name(Issuer) -> Normalized

              Types:

                 Issuer = {rdnSequence,[#'AttributeTypeAndValue'{}]}
                 Normalized = {rdnSequence, [#'AttributeTypeAndValue'{}]}

              Normalizes a issuer name so that it can be easily compared to another issuer name.

       pkix_path_validation(TrustedCert,  CertChain,  Options)  ->  {ok,  {PublicKeyInfo, PolicyTree}} | {error,
       {bad_cert, Reason}}

              Types:

                  TrustedCert = #'OTPCertificate'{} | der_encode() | unknown_ca | selfsigned_peer
                   Normally a trusted certificate but  it  can  also  be  one  of  the  path  validation  errors
                   unknown_ca    or selfsigned_peer  that can be discovered while constructing the input to this
                   function and that should be run through the verify_fun.
                  CertChain = [der_encode()]
                   A list of DER encoded certificates in trust order ending with the peer certificate.
                  Options = proplists:proplists()
                 PublicKeyInfo = {?'rsaEncryption' | ?'id-dsa', rsa_public_key() |  integer(),  'NULL'  |  'Dss-
                 Parms'{}}
                  PolicyTree = term()
                   At the moment this will always be an empty list as Policies are not currently supported
                  Reason  =  cert_expired  | invalid_issuer | invalid_signature | unknown_ca | selfsigned_peer |
                 name_not_permitted | missing_basic_constraint | invalid_key_usage | crl_reason()

              Performs a basic path validation according to RFC 5280. However CRL validation is done  separately
              by pkix_crls_validate/3  and should be called from the supplied verify_fun

                {verify_fun, fun()}:
                  The fun should be defined as:

                fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom()} |
                                                          {extension, #'Extension'{}},
                    InitialUserState :: term()) ->
                     {valid, UserState :: term()} | {valid_peer, UserState :: term()} |
                     {fail, Reason :: term()} | {unknown, UserState :: term()}.

                  If  the  verify  callback  fun returns {fail, Reason}, the verification process is immediately
                  stopped. If the verify callback fun returns {valid, UserState}, the  verification  process  is
                  continued,  this can be used to accept specific path validation errors such as selfsigned_peer
                  as well as verifying application specific extensions. If called with an extension  unknown  to
                  the user application the return value {unknown, UserState} should be used.

                {max_path_length, integer()}:
                   The  max_path_length  is the maximum number of non-self-issued intermediate certificates that
                  may follow the peer certificate in a valid certification path. So if max_path_length is 0  the
                  PEER  must  be signed by the trusted ROOT-CA directly, if 1 the path can be PEER, CA, ROOT-CA,
                  if it is 2 PEER, CA, CA, ROOT-CA and so on.

       pkix_crls_validate(OTPCertificate, DPAndCRLs, Options) -> CRLStatus()

              Types:

                  OTPCertificate = #'OTPCertificate'{}
                  DPAndCRLs = [{DP::#'DistributionPoint'{} ,CRL::#'CertificateList'{}}]
                  Options = proplists:proplists()
                  CRLStatus() =  valid  |  {bad_cert,  revocation_status_undetermined}  |  {bad_cert,  {revoked,
                 crl_reason()}}

              Performs   CRL   validation.   It   is   intended   to   be   called   from   the  verify  fun  of
              pkix_path_validation/3

                {update_crl, fun()}:
                  The fun has the following type spec:

                 fun(#'DistributionPoint'{}, #'CertificateList'{}) -> #'CertificateList'{}

                  The fun should use the information in the distribution point to  acesses  the  lates  possible
                  version  of  the  CRL.  If  this  fun  is  not  specified  public_key  will  use  the  default
                  implementation:

                 fun(_DP, CRL) -> CRL end

       pkix_sign(#'OTPTBSCertificate'{}, Key) -> der_encode()

              Types:

                 Key = rsa_public_key() | dsa_public_key()

              Signs a 'OTPTBSCertificate'. Returns the corresponding der encoded certificate.

       pkix_sign_types(AlgorithmId) -> {DigestType, SignatureType}

              Types:

                 AlgorithmId = oid()
                   Signature oid from a certificate or a certificate revocation list
                 DigestType = rsa_digest_type() | dss_digest_type()
                 SignatureType = rsa | dsa

              Translates signature algorithm oid to erlang digest and signature types.

       pkix_verify(Cert, Key) -> boolean()

              Types:

                 Cert = der_encode()
                 Key = rsa_public_key() | dsa_public_key()

              Verify PKIX x.509 certificate signature.

       sign(Msg, DigestType, Key) -> binary()

              Types:

                 Msg = binary() | {digest,binary()}
                   The msg is either the binary "plain text" data to be signed or it  is  the  hashed  value  of
                   "plain text" i.e. the digest.
                 DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
                 Key = rsa_private_key() | dsa_private_key() | ec_private_key()

              Creates a digital signature.

       ssh_decode(SshBin, Type) -> [{public_key(), Attributes::list()}]

              Types:

                 SshBin = binary()
                   Example {ok, SshBin} = file:read_file("known_hosts").
                  Type = public_key | ssh_file()
                   If Type is public_key the binary may be either a rfc4716 public key or a openssh public key.

              Decodes  a  ssh  file-binary. In the case of know_hosts or auth_keys the binary may include one or
              more lines of the file. Returns a list of public keys and  their  attributes,  possible  attribute
              values depends on the file type represented by the binary.

                rfc4716 attributes - see RFC 4716:
                  {headers, [{string(), utf8_string()}]}

                auth_key attributes - see man sshd :
                  {comment, string()}{options, [string()]}{bits, integer()} - In ssh version 1 files

                known_host attributes - see man sshd:
                  {hostnames, [string()]}{comment, string()}{bits, integer()} - In ssh version 1 files

       ssh_encode([{Key, Attributes}], Type) -> binary()

              Types:

                 Key = public_key()
                 Attributes = list()
                 Type = ssh_file()

              Encodes  a  list of ssh file entries (public keys and attributes) to a binary. Possible attributes
              depends on the file type, see  ssh_decode/2

       verify(Msg, DigestType, Signature, Key) -> boolean()

              Types:

                 Msg = binary() | {digest,binary()}
                   The msg is either the binary "plain text" data or it is the hashed value of "plain text" i.e.
                   the digest.
                 DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
                 Signature = binary()
                 Key = rsa_public_key() | dsa_public_key() | ec_public_key()

              Verifies a digital signature