Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all
NAME
slansb.f -
SYNOPSIS
Functions/Subroutines real function slansb (NORM, UPLO, N, K, AB, LDAB, WORK) SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.
Function/Subroutine Documentation
real function slansb (characterNORM, characterUPLO, integerN, integerK, real, dimension( ldab, * )AB, integerLDAB, real, dimension( * )WORK) SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. Purpose: SLANSB returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n symmetric band matrix A, with k super-diagonals. Returns: SLANSB SLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in SLANSB as described above. UPLO UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the band matrix A is supplied. = 'U': Upper triangular part is supplied = 'L': Lower triangular part is supplied N N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANSB is set to zero. K K is INTEGER The number of super-diagonals or sub-diagonals of the band matrix A. K >= 0. AB AB is REAL array, dimension (LDAB,N) The upper or lower triangle of the symmetric band matrix A, stored in the first K+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= K+1. WORK WORK is REAL array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, WORK is not referenced. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 129 of file slansb.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.