Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all
NAME
slasd5.f -
SYNOPSIS
Functions/Subroutines subroutine slasd5 (I, D, Z, DELTA, RHO, DSIGMA, WORK) SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank- one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
Function/Subroutine Documentation
subroutine slasd5 (integerI, real, dimension( 2 )D, real, dimension( 2 )Z, real, dimension( 2 )DELTA, realRHO, realDSIGMA, real, dimension( 2 )WORK) SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc. Purpose: This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. Parameters: I I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D D is REAL array, dimension (2) The original eigenvalues. We assume 0 <= D(1) < D(2). Z Z is REAL array, dimension (2) The components of the updating vector. DELTA DELTA is REAL array, dimension (2) Contains (D(j) - sigma_I) in its j-th component. The vector DELTA contains the information necessary to construct the eigenvectors. RHO RHO is REAL The scalar in the symmetric updating formula. DSIGMA DSIGMA is REAL The computed sigma_I, the I-th updated eigenvalue. WORK WORK is REAL array, dimension (2) WORK contains (D(j) + sigma_I) in its j-th component. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Definition at line 117 of file slasd5.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.