Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       ssbgvd.f -

SYNOPSIS

   Functions/Subroutines
       subroutine ssbgvd (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK,
           IWORK, LIWORK, INFO)
           SSBGST

Function/Subroutine Documentation

   subroutine ssbgvd (characterJOBZ, characterUPLO, integerN, integerKA, integerKB, real,
       dimension( ldab, * )AB, integerLDAB, real, dimension( ldbb, * )BB, integerLDBB, real,
       dimension( * )W, real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK,
       integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)
       SSBGST

       Purpose:

            SSBGVD computes all the eigenvalues, and optionally, the eigenvectors
            of a real generalized symmetric-definite banded eigenproblem, of the
            form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
            banded, and B is also positive definite.  If eigenvectors are
            desired, it uses a divide and conquer algorithm.

            The divide and conquer algorithm makes very mild assumptions about
            floating point arithmetic. It will work on machines with a guard
            digit in add/subtract, or on those binary machines without guard
            digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
            Cray-2. It could conceivably fail on hexadecimal or decimal machines
            without guard digits, but we know of none.

       Parameters:
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N

                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           KA

                     KA is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KA >= 0.

           KB

                     KB is INTEGER
                     The number of superdiagonals of the matrix B if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KB >= 0.

           AB

                     AB is REAL array, dimension (LDAB, N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix A, stored in the first ka+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).

                     On exit, the contents of AB are destroyed.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KA+1.

           BB

                     BB is REAL array, dimension (LDBB, N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix B, stored in the first kb+1 rows of the array.  The
                     j-th column of B is stored in the j-th column of the array BB
                     as follows:
                     if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                     if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).

                     On exit, the factor S from the split Cholesky factorization
                     B = S**T*S, as returned by SPBSTF.

           LDBB

                     LDBB is INTEGER
                     The leading dimension of the array BB.  LDBB >= KB+1.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is REAL array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     eigenvectors, with the i-th column of Z holding the
                     eigenvector associated with W(i).  The eigenvectors are
                     normalized so Z**T*B*Z = I.
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If N <= 1,               LWORK >= 1.
                     If JOBZ = 'N' and N > 1, LWORK >= 3*N.
                     If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal sizes of the WORK and IWORK
                     arrays, returns these values as the first entries of the WORK
                     and IWORK arrays, and no error message related to LWORK or
                     LIWORK is issued by XERBLA.

           IWORK

                     IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                     On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.

           LIWORK

                     LIWORK is INTEGER
                     The dimension of the array IWORK.
                     If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
                     If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

                     If LIWORK = -1, then a workspace query is assumed; the
                     routine only calculates the optimal sizes of the WORK and
                     IWORK arrays, returns these values as the first entries of
                     the WORK and IWORK arrays, and no error message related to
                     LWORK or LIWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, and i is:
                        <= N:  the algorithm failed to converge:
                               i off-diagonal elements of an intermediate
                               tridiagonal form did not converge to zero;
                        > N:   if INFO = N + i, for 1 <= i <= N, then SPBSTF
                               returned INFO = i: B is not positive definite.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Contributors:
           Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

       Definition at line 227 of file ssbgvd.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.