Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       sspevx.f -

SYNOPSIS

   Functions/Subroutines
       subroutine sspevx (JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
           IWORK, IFAIL, INFO)
            SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for OTHER matrices

Function/Subroutine Documentation

   subroutine sspevx (characterJOBZ, characterRANGE, characterUPLO, integerN, real, dimension( *
       )AP, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W,
       real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK, integer, dimension( *
       )IWORK, integer, dimension( * )IFAIL, integerINFO)
        SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       OTHER matrices

       Purpose:

            SSPEVX computes selected eigenvalues and, optionally, eigenvectors
            of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
            can be selected by specifying either a range of values or a range of
            indices for the desired eigenvalues.

       Parameters:
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           RANGE

                     RANGE is CHARACTER*1
                     = 'A': all eigenvalues will be found;
                     = 'V': all eigenvalues in the half-open interval (VL,VU]
                            will be found;
                     = 'I': the IL-th through IU-th eigenvalues will be found.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is REAL array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the symmetric matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, AP is overwritten by values generated during the
                     reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     and first superdiagonal of the tridiagonal matrix T overwrite
                     the corresponding elements of A, and if UPLO = 'L', the
                     diagonal and first subdiagonal of T overwrite the
                     corresponding elements of A.

           VL

                     VL is REAL

           VU

                     VU is REAL
                     If RANGE='V', the lower and upper bounds of the interval to
                     be searched for eigenvalues. VL < VU.
                     Not referenced if RANGE = 'A' or 'I'.

           IL

                     IL is INTEGER

           IU

                     IU is INTEGER
                     If RANGE='I', the indices (in ascending order) of the
                     smallest and largest eigenvalues to be returned.
                     1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     Not referenced if RANGE = 'A' or 'V'.

           ABSTOL

                     ABSTOL is REAL
                     The absolute error tolerance for the eigenvalues.
                     An approximate eigenvalue is accepted as converged
                     when it is determined to lie in an interval [a,b]
                     of width less than or equal to

                             ABSTOL + EPS *   max( |a|,|b| ) ,

                     where EPS is the machine precision.  If ABSTOL is less than
                     or equal to zero, then  EPS*|T|  will be used in its place,
                     where |T| is the 1-norm of the tridiagonal matrix obtained
                     by reducing AP to tridiagonal form.

                     Eigenvalues will be computed most accurately when ABSTOL is
                     set to twice the underflow threshold 2*SLAMCH('S'), not zero.
                     If this routine returns with INFO>0, indicating that some
                     eigenvectors did not converge, try setting ABSTOL to
                     2*SLAMCH('S').

                     See "Computing Small Singular Values of Bidiagonal Matrices
                     with Guaranteed High Relative Accuracy," by Demmel and
                     Kahan, LAPACK Working Note #3.

           M

                     M is INTEGER
                     The total number of eigenvalues found.  0 <= M <= N.
                     If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the selected eigenvalues in ascending order.

           Z

                     Z is REAL array, dimension (LDZ, max(1,M))
                     If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                     contain the orthonormal eigenvectors of the matrix A
                     corresponding to the selected eigenvalues, with the i-th
                     column of Z holding the eigenvector associated with W(i).
                     If an eigenvector fails to converge, then that column of Z
                     contains the latest approximation to the eigenvector, and the
                     index of the eigenvector is returned in IFAIL.
                     If JOBZ = 'N', then Z is not referenced.
                     Note: the user must ensure that at least max(1,M) columns are
                     supplied in the array Z; if RANGE = 'V', the exact value of M
                     is not known in advance and an upper bound must be used.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is REAL array, dimension (8*N)

           IWORK

                     IWORK is INTEGER array, dimension (5*N)

           IFAIL

                     IFAIL is INTEGER array, dimension (N)
                     If JOBZ = 'V', then if INFO = 0, the first M elements of
                     IFAIL are zero.  If INFO > 0, then IFAIL contains the
                     indices of the eigenvectors that failed to converge.
                     If JOBZ = 'N', then IFAIL is not referenced.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, then i eigenvectors failed to converge.
                           Their indices are stored in array IFAIL.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Definition at line 226 of file sspevx.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.