Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       zgbbrd.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zgbbrd (VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT, LDPT, C, LDC,
           WORK, RWORK, INFO)
           ZGBBRD

Function/Subroutine Documentation

   subroutine zgbbrd (characterVECT, integerM, integerN, integerNCC, integerKL, integerKU,
       complex*16, dimension( ldab, * )AB, integerLDAB, double precision, dimension( * )D, double
       precision, dimension( * )E, complex*16, dimension( ldq, * )Q, integerLDQ, complex*16,
       dimension( ldpt, * )PT, integerLDPT, complex*16, dimension( ldc, * )C, integerLDC,
       complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO)
       ZGBBRD

       Purpose:

            ZGBBRD reduces a complex general m-by-n band matrix A to real upper
            bidiagonal form B by a unitary transformation: Q**H * A * P = B.

            The routine computes B, and optionally forms Q or P**H, or computes
            Q**H*C for a given matrix C.

       Parameters:
           VECT

                     VECT is CHARACTER*1
                     Specifies whether or not the matrices Q and P**H are to be
                     formed.
                     = 'N': do not form Q or P**H;
                     = 'Q': form Q only;
                     = 'P': form P**H only;
                     = 'B': form both.

           M

                     M is INTEGER
                     The number of rows of the matrix A.  M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A.  N >= 0.

           NCC

                     NCC is INTEGER
                     The number of columns of the matrix C.  NCC >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals of the matrix A. KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals of the matrix A. KU >= 0.

           AB

                     AB is COMPLEX*16 array, dimension (LDAB,N)
                     On entry, the m-by-n band matrix A, stored in rows 1 to
                     KL+KU+1. The j-th column of A is stored in the j-th column of
                     the array AB as follows:
                     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
                     On exit, A is overwritten by values generated during the
                     reduction.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array A. LDAB >= KL+KU+1.

           D

                     D is DOUBLE PRECISION array, dimension (min(M,N))
                     The diagonal elements of the bidiagonal matrix B.

           E

                     E is DOUBLE PRECISION array, dimension (min(M,N)-1)
                     The superdiagonal elements of the bidiagonal matrix B.

           Q

                     Q is COMPLEX*16 array, dimension (LDQ,M)
                     If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
                     If VECT = 'N' or 'P', the array Q is not referenced.

           LDQ

                     LDQ is INTEGER
                     The leading dimension of the array Q.
                     LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.

           PT

                     PT is COMPLEX*16 array, dimension (LDPT,N)
                     If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
                     If VECT = 'N' or 'Q', the array PT is not referenced.

           LDPT

                     LDPT is INTEGER
                     The leading dimension of the array PT.
                     LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.

           C

                     C is COMPLEX*16 array, dimension (LDC,NCC)
                     On entry, an m-by-ncc matrix C.
                     On exit, C is overwritten by Q**H*C.
                     C is not referenced if NCC = 0.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C.
                     LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.

           WORK

                     WORK is COMPLEX*16 array, dimension (max(M,N))

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (max(M,N))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit.
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Definition at line 193 of file zgbbrd.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.