Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       zgemqrt.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zgemqrt (SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, C, LDC, WORK, INFO)
           ZGEMQRT

Function/Subroutine Documentation

   subroutine zgemqrt (characterSIDE, characterTRANS, integerM, integerN, integerK, integerNB,
       complex*16, dimension( ldv, * )V, integerLDV, complex*16, dimension( ldt, * )T,
       integerLDT, complex*16, dimension( ldc, * )C, integerLDC, complex*16, dimension( * )WORK,
       integerINFO)
       ZGEMQRT

       Purpose:

            ZGEMQRT overwrites the general complex M-by-N matrix C with

                            SIDE = 'L'     SIDE = 'R'
            TRANS = 'N':      Q C            C Q
            TRANS = 'C':    Q**H C            C Q**H

            where Q is a complex orthogonal matrix defined as the product of K
            elementary reflectors:

                  Q = H(1) H(2) . . . H(K) = I - V T V**H

            generated using the compact WY representation as returned by ZGEQRT.

            Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'.

       Parameters:
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**H from the Left;
                     = 'R': apply Q or Q**H from the Right.

           TRANS

                     TRANS is CHARACTER*1
                     = 'N':  No transpose, apply Q;
                     = 'C':  Transpose, apply Q**H.

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           NB

                     NB is INTEGER
                     The block size used for the storage of T.  K >= NB >= 1.
                     This must be the same value of NB used to generate T
                     in CGEQRT.

           V

                     V is COMPLEX*16 array, dimension (LDV,K)
                     The i-th column must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     CGEQRT in the first K columns of its array argument A.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V.
                     If SIDE = 'L', LDA >= max(1,M);
                     if SIDE = 'R', LDA >= max(1,N).

           T

                     T is COMPLEX*16 array, dimension (LDT,K)
                     The upper triangular factors of the block reflectors
                     as returned by CGEQRT, stored as a NB-by-N matrix.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.  LDT >= NB.

           C

                     C is COMPLEX*16 array, dimension (LDC,N)
                     On entry, the M-by-N matrix C.
                     On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is COMPLEX*16 array. The dimension of WORK is
                      N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2013

       Definition at line 168 of file zgemqrt.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.