Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all
NAME
zgesc2.f -
SYNOPSIS
Functions/Subroutines subroutine zgesc2 (N, A, LDA, RHS, IPIV, JPIV, SCALE) ZGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.
Function/Subroutine Documentation
subroutine zgesc2 (integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )RHS, integer, dimension( * )IPIV, integer, dimension( * )JPIV, double precisionSCALE) ZGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2. Purpose: ZGESC2 solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by ZGETC2. Parameters: N N is INTEGER The number of columns of the matrix A. A A is COMPLEX*16 array, dimension (LDA, N) On entry, the LU part of the factorization of the n-by-n matrix A computed by ZGETC2: A = P * L * U * Q LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1, N). RHS RHS is COMPLEX*16 array, dimension N. On entry, the right hand side vector b. On exit, the solution vector X. IPIV IPIV is INTEGER array, dimension (N). The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i). JPIV JPIV is INTEGER array, dimension (N). The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j). SCALE SCALE is DOUBLE PRECISION On exit, SCALE contains the scale factor. SCALE is chosen 0 <= SCALE <= 1 to prevent owerflow in the solution. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. Definition at line 116 of file zgesc2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.